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A B S T R A C T

In this work we address the analysis of discrete-time models of structured metapopulations subject to en-
vironmental stochasticity. Previous works on these models made use of the fact that migrations between the
patches can be considered fast with respect to demography (maturation, survival, reproduction) in the popu-
lation. It was assumed that, within each time step of the model, there are many fast migration steps followed by
one slow demographic event. This assumption allowed one to apply approximate reduction techniques that
eased the model analysis. It is however a questionable issue in some cases since, in particular, individuals can die
at any moment of the time step. We propose new non-equivalent models in which we re-scale survival to
consider its effect on the fast scale. We propose a more general formulation of the approximate reduction
techniques so that they also apply to the proposed new models. We prove that the main asymptotic elements in
this kind of stochastic models, the Stochastic Growth Rate (SGR)1 and the Scaled Logarithmic Variance (SLV),
can be related between the original and the reduced systems, so that the analysis of the latter allows us to
ascertain the population fate in the first. Then we go on to considering some cases where we illustrate the
reduction technique and show the differences between both modelling options. In some cases using one option
represents exponential growth, whereas the other yields extinction.

1. Introduction

Mathematical models used in ecology, trying to mimic natural sys-
tems complexity, are often described by a large number of variables
corresponding to various interacting organization levels. The use of
reduction and approximation techniques is a common approach in the
analysis of the proposed models. Among these techniques we could
include the so-called aggregation of variables methods (Auger et al.,
2008). They are in consonance with the important issue of up-scaling in
the framework of ecological hierarchy theory (Lischke et al., 2007).

In this context, we consider stochastic linear discrete systems as
population dynamics models. We distinguish time scales to deal with
the complexity of these models. Our approach consists in assuming the
existence of two different processes acting together at different time
scales. Both processes are represented in matrix form, each of them in
its associated time scale. We choose as time unit of the common discrete
model the characteristic one of the slow process. We suppose that the
slow time unit is approximately k times larger than the fast one and,
further, that in this large interval the fast process sequentially acts k

times followed by the slow process acting once. Thus, the combined
effect of both processes can be described by the product of the slow-
process matrix times the k-th power of the fast-process matrix.

The treated models incorporate environmental stochasticity, which
refers to unpredictable temporal fluctuations in environmental condi-
tions. A number of different environmental conditions are considered
and their variation is characterized by a sequence of random variables
corresponding to the different time steps of the discrete system
(Tuljapurkar, 1990; Tuljapurkar and Caswell, 1997; Caswell, 2001).
Each environment is characterized by its corresponding matrix of vital
rates. Given certain hypotheses on the pattern of temporal variation and
the vital rates in each environment, the distribution of total population
size is asymptotically lognormal, with an expected value and a variance
dependent on two parameters. The first one is the stochastic growth rate
λS (SGR), which is the stochastic analogue of the dominant eigenvalue
for deterministic systems (we follow Cohen's definition for the SGR
(Cohen, 1979) because it allows one to directly compare the stochastic
rate of growth with its deterministic analogue, although some authors
(Tuljapurkar, 1990; Caswell, 2001) define the SGR as the logarithmic
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rate of growth, i.e., logλS). The second one is the scaled logarithmic
variance (SLV), which characterizes the asymptotic deviation of the
population size from its mean value. The analytical derivation of the
SGR and SLV is not feasible in most situations, so it is necessary to
resort to computer simulations.

The reduction of two-scale discrete systems for populations subject
to environmental stochasticity was introduced in Sanz and Bravo de la
Parra (2000), where some results relating the moments of the solutions
of original and the reduced systems were provided. In Sanz and Bravo
de la Parra (2007) we studied how the SGR of the original system can be
approximated by the reduced system SGR for a finite number of en-
vironments and a Leslie-type demography. Those results were extended
in Alonso and Sanz (2009) to the case of an infinite number of different
environmental conditions and the relationship between the SLV of the
original and the reduced systems was established.

In this work, we focus on the analysis of discrete-time models of
structured metapopulations with environmental stochasticity and two
time scales. Its purpose is extending to the stochastic case the study
performed in Nguyen-Huu et al. (2011) for deterministic models. In the
aforementioned way of separating the slow and the fast process one
includes in the former all mechanisms having to do with local demo-
graphy (maturation, survival, reproduction) and in the fast one the
migration between patches. In Nguyen-Huu et al. (2011) it is argued
that this way of separating the slow and the fast process might be un-
realistic in some ecological situations. Indeed, this approach can be
seen as assuming that individuals perform at first a series of k migration
events followed by a demographic event in the arrival patch. The as-
sumption sounds realistic for reproduction when discrete models de-
scribe populations with separated generations, but not so much for
processes like survival, since deaths can happen in any moment of the
slow time step. To reflect this point in the model we propose to alter-
natively include survival in the fast process approximating its effect
during the fast time unit, and we refer to it as the re-scaling of survival
to the fast time scale.

The aim of this work is to adapt the method of re-scaling to the
proposed stochastic models and to compare the asymptotic behaviour
of the models with and without re-scaled survival. In order to do so, we
use the aforementioned reduction techniques, that need to be extended
(see Appendix B) so that they also apply to the new model with re-
scaled survival.

The re-scaling procedure, described here for survival in the context
of structured metapopulations models, might be generalized to a much
larger setting. Nevertheless, we consider that it is more accessible to
present it in this particular yet still meaningful case.

The structure of the paper is as follows:
In Section 2.1 we present two different metapopulation models for a

structured population subject to environmental stochasticity. The mi-
gration among the different patches is assumed fast with respect to
demography in the first of these models. In the second one, part of
demography, survival, is re-scaled to the fast scale. With the help of the
results in Appendix B, we propose in Section 2.2 a reduction technique
of both models to simplify their analysis and comparison.

The results of Section 2 are applied in Section 3. In Section 3.1 we
treat the case of an unstructured population in a multipatch environ-
ment where, with the help of the reduction technique, we obtain ap-
proximate closed expressions of the parameters defining the long term
behaviour of the solutions in both models. In Section 3.2 some results
for two classes model are established. Finally, in Section 3.3, with the
help of a particular simple case, the relationships between both mod-
eling approaches are discussed.

Following a discussion, two appendices are included. Appendix A
briefly introduces the basic form of matrix models with environmental
stochasticity and the result on the distribution of population size when
the environmental variation is a homogeneous Markov chain. Appendix
B includes the presentation of a general reducible linear discrete system
with environmental stochasticity, defined by means of sequences of

matrices with limits suitable for reduction, together with the con-
struction of its reduced system and the relationship between their
corresponding asymptotic elements.

2. Methods

2.1. Two-scale structured metapopulations models with environmental
stochasticity

In this section, we present a stochastic discrete population model
whose dynamics is driven by two processes, slow and fast, whose cor-
responding characteristic time scales are very different from each other.
The population is considered structured into q classes and inhabiting an
environment divided into r patches. We first assume that the fast pro-
cess has to do with the movements of the individuals between patches
whereas the slow process encompasses all the demographic issues:
births, deaths and transitions between classes. In a second step, we will
undertake the re-scaling to the fast scale of the death process.

We represent the state of the population at time t by vector

= … +x x xt t t( ): ( ( ), , ( )) ,q1 T qr

where = … +x t x t x t( ): ( ( ), , ( ))i i r1 ir and xiα(t) denotes the population
density of class i in patch α.

We choose as the projection interval of our model the one corre-
sponding to the slow dynamics, i.e., the time elapsed between times t
and t+ 1, and we denote it by Δt.

We assume that the population can be subject to n different en-
vironmental conditions that we consider indexed by the set

= n{1, ..., }. The environmental variation is characterized by a se-
quence of random variables τt, t= 0, a, b, .. . defined on a certain
probability space p( , , ) (Billingsley, 2012) over the state space .
For each realization ω ∈ Ω of the process, the population is subject to
environmental conditions τt+1(ω) between times t and t+ 1.

For each environment , the slow process is defined by a non-
negative projection matrix = +

×DD [ ] i j q
ij

1 ,
qr qr, divided into

blocks = = … +
×D ddiag( ) ,r

r rij ij,
1, , where d ij, represents the rate of

individual's transition from class j to class i in patch α during the slow
time interval in environment .

Note that, for each environment η, matrix +
×d[ ] i j q

q qij,
1 , re-

presents demography in patch α. This matrix does not appear as such in
our formulation due to the chosen ordering of the state variables.

Concerning the fast process, let pi, represent the rate of migration
from patch β to patch α for individuals of class i. Therefore

= +
×P p[ ]i i

r
r r,

1 , is a column-stochastic matrix that we assume
primitive, meaning the ability of individuals initially present in every
patch to eventually reach any other patch. Finally, the matrix re-
presenting the fast process for the whole population and each η is

= = … +
×PP diag( )i

i q1, ,
qr qr

We now introduce the first way of modeling the fast-slow system.
Since the time step of the complete model is the one corresponding to
the slow dynamics, we need to approximate the effect of the fast process
over this time interval. In order to do so, we assume that the fast process
acts k times before the slow process does, where k might take a large
value. Let τt+1 be the environmental process that selects the environ-
ment to which the population is subjected during interval Δt. Then, the
complete system reads as follows

+ = + +x xt tD P( 1) ( ) ( ),k
k

kt t1 1 (1)

where (A)k denotes the k-power of matrix A.
Model (1) can be interpreted as making individuals first perform a

series of k dispersal events followed by the demographic process that
occurs in the patch of arrival. This assumption might be realistic in
some aspects, such as reproduction, because discrete models are mainly
used for species having offspring once every time unit. However, the
situation is different in the case of mortality since individuals may die
at any time.
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Therefore, we propose next a new version of model (1) in which
mortality acts at the fast time scale, and we call this re-scaling of sur-
vival to the fast time scale.

Let >s 0j, be the survival rate of class j in patch α and environment
η. First, we factor every demographic coefficient in order to make s j,

appear explicitly, i.e., we define d̃ ij, through

=d d s˜ .jij, ij, ,

Defining = = …D̃ ddiag( ˜ ) r
ij ij,

1, , and = = …S sdiag( )j j
r

,
1, , we have

=D D̃ S .jij ij

Similarly, denoting = D̃D̃ [ ] i j q
ij

1 , and = = …SS diag( )j
j q1, , we have

=D D̃ S .

Now, we make power k appear explicitly in the survival rates by de-
fining matrices = = …S sdiag(( ) ) ,k

j j k
r,

, 1/
1, , and = = …SS diag( ) ,k k

j
j q, , 1, ,

that verify =S S( )k
j k j
, and (Sk,η)k = Sη.

Finally we obtain the following expression for matrix Dη

=D D̃ S( ) .k
k

,

This expression suggests the next complete model, not equivalent to
model (1), in which it is considered that mortality acts as the fast time
scale:

+ = + + +x xt tD S P( 1) ( ) ( ).k k
k

k,t t t1 1 1 (2)

This model can be interpreted as follows: individuals first perform a
series of k dispersal events in which in each of them we consider
mortality by taking into account the survival rate in the patch of arrival.
This is followed by the rest of the demographic process, that occurs at
the slow time scale.

2.2. Reduction of systems (1) and (2)

Following Appendix B, for system (1) we can take

=H D P( ) ,k
k

,

and now we must express its limit when k tends to infinity in the ap-
propriate form so that Hypotheses 1 and 2 are met.

The fact that matrix Pi is column-stochastic and primitive implies
that 1 is its dominant eigenvalue, the row vector = …1̄ (1, , 1) r is an
associated left eigenvector and there exists a unique positive right ei-
genvector vi r such that =1̄ v 1i . The Perron–Frobenius theorem
yields that

=P v 1̄.lim ( )
k

i k i

Calling = = … +
×vV : diag( )i

i q
q

1, ,
qr and = = … +

×1̄G: diag( )i q
q

1, ,
qr, we

have that

= =P V G D P D V Glim ( ) and so lim ( ) .
k

k
k

k

Thus, matrix DηVη plays the role of matrix Dη in (23). We can now write
the reduced system (27) for the global variables y(t) =Gx(t), the total
number of individuals in each class associated to system (1), in the
following form:

+ = =+ + +y y Ĥ yt t tG D V( 1) ( ) ( ).t t t1 1 1 (3)

Let us now proceed to the reduction of system (2), for which we
have, still following Appendix B,

=H D̃ S P( ) .k k
k

, ,

To show that Hypotheses 1 and 2 also hold for system (2), we use
Theorem A.1. in Nguyen-Huu et al. (2011) to express in a suitable form
the limit of matrix Hk,η when k tends to infinity. For every i= 1, …, q
and , let = …w s s(log( ), , log( ))i i i r r,1 , be a row vector and

define the scalar = w vexp( )i i i then, (Nguyen-Huu et al., 2011),

=S P v 1̄lim ( ) .
k

k
i i k i i
,

Calling = = …vṼ : diag( )i i
i q1, , it follows that

=D̃ S P D̃ Ṽ Glim ( ) ,
k

k
k

,

and, therefore, the reduced system (27) associated to system (2) for the
same global variables =ỹ t tG( ) x̃( ), is

+ = =+ + +ỹ ỹ H̃ ỹt t tG D̃ Ṽ( 1) ( ) ( ).t t t1 1 1 (4)

The interest of the proposed reduction method is that it is possible
to obtain asymptotic results for systems (1) and (2) through the analysis
of the reduced systems (3) and (4).

We need to impose some conditions so that the systems involved
have indeed good asymptotic properties. Theorem Appendix 1 in A
presents sufficient hypotheses so that the total population size of a
matrix model with environmental stochasticity is asymptotically log-
normal and describable in terms of a couple of constants, the stochastic
growth rate (SGR) and the scaled logarithmic variance (SLV). In
Appendix B the reduction of matrix models with environmental sto-
chasticity is presented in a general setting. In particular, it is proved
that under suitable hypotheses for both the complete and the reduced
systems, the total population size is asymptotically lognormal. More-
over, the SGR and the SLV of the complete system can be approximated
by those corresponding to the reduced system.

Assume that the following two conditions are met:

• The environmental variation τt is a homogeneous irreducible and
aperiodic Markov chain, i.e., its matrix of transition probabilities is
primitive. We denote its (unique and positive) stationary probability
distribution by π= (π1, …, πn).

• The sets …Ĥ Ĥ{ , , }n1 and …H̃ H̃{ , , }n1 are ergodic, i.e., for each of them
there exists a positive integer g such that any product of g matrices
(with repetitions allowed) drawn from the set is a positive matrix. It
is easy to check that for each , the incidence matrix of H̃
coincides with that of Ĥ and, therefore, if one of the previous sets is
ergodic so is the other.

Now we apply Proposition 2 and Theorem 3 in Appendix B and
obtain that systems (3) and (4), and for k large enough also systems (1)
and (2), verify that the total population size is asymptotically log-
normal. Moreover, denoting their corresponding SGR and SLV by ˆS, ˜S,
ˆ ,kS, ˜ kS, and ˆ 2, ˜ 2, ,k

2 ˜k
2 respectively we have

= =

= =

lim ˆ , lim ˆ ,

lim ˜ ˜ , lim ˜ ˜ .
k

k
k

k

k
k

k
k

S, S

S, S (5)

Thus, the lognormal asymptotic distribution for the complete system (1)
can be approximated through the constants ˆS and ˆ associated to the
reduced system (3). The same happens to system (2) using the constants
˜S and ˜ associated to (4). Therefore, in order to establish a comparison
between systems (1) and (2), we can compare the SGR and the SLV of
their corresponding simpler aggregated systems.

3. Results

In this section we present some results comparing the two modelling
options represented by systems (1) and (2). Specifically, we carry out
this comparison through their respective SGRs and SLVs.

In most ecological models, the exact derivation of the SGR and the
SLV is not feasible. This is due to the fact that there is not an explicit
expression for the stationary distribution of the population structure.
Therefore, it is necessary to approximate those parameters by computer
simulations or appropriate perturbation techniques (Tuljapurkar and
Caswell, 1997). The results presented in Section 2.2 justify using the
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simpler aggregated systems to carry out these simulations. Moreover,
there are particular cases in which our reduction procedure transforms
a complex model into a reduced one for which we can obtain the SGR
and the SLV exactly.

We proceed to introduce two such cases.

3.1. Unstructured models

We first consider the models of Section 2.1 when q= 1, i.e., there is
no structure in the population.

We represent the state of the population at time t by vector

= … +x t x t x t( ): ( ( ), , ( )) ,r r1

where xα(t) denotes the population density in patch α. For each en-
vironment , the slow process is defined by the nonnegative matrix

= = …dD diag( ) r1, , , where d , that we assume positive, represents the
growth rate of the population in patch α during a slow time interval.
Regarding the fast process, we represent migrations between patches
under environment η by a column-stochastic primitive matrix +

×P r r .
We denote = …v v v( , , )r1 the unique (positive) right eigenvector of
matrix Pη associated to eigenvalue 1 whose entries sum up to 1.

In this case model (1) reads

+ = + +( )x xt tD P( 1) ( ).k
k

kt t1 1 (6)

Regarding model (2), let >s 0 be the survival rate in patch α and
environment η. Then we define >d̃ 0 through =d s d˜ / , and denote

= = …dD̃ diag( ˜ ) r1, , and = = …sS diag(( ) )k
k

r,
1/

1, , to obtain

+ = + + +( )x xt tD̃ S P˜ ( 1) ˜ ( ).k k
k

k,t t t1 1 1 (7)

In both cases, the reduced system is a scalar system in which the
only variable is the total population size.

For system (6) the reduced system is

+ = +y t h y t( 1) ˆ ( ),t 1 (8)

with

=
=

h v dˆ , .
r

1 (9)

In the case of system (7), the reduced system becomes

+ = +y t h y t˜ ( 1) ˜ ˜ ( ),t 1 (10)

where in this case

=
= =

h v s v d˜ exp log( ) ˜ , .
r r

1 1 (11)

Since (8) and (10) are scalar, we are able to find analytical ex-
pressions for their SGRs, ˆS and ˜S, and their SLVs, ˆ 2 and ˜ 2.

We recall that we assume condition C1, and so the Markov chain τt
has a stationary probability distribution π= (π1, π2, .. ., πn). Since the
d and the d̃ are positive and so are vectors v , then the ĥ and h̃ are
also positive and as a consequence the sets …h h{ ˆ , , ˆ }n1 and …h h{ ˜ , , ˜ }n1 are
ergodic, so Condition C2 holds. Thus, for large enough k all four sys-
tems (6), (7), (8) and (10) meet the sufficient hypotheses for the ex-
istence of an asymptotic lognormal distribution for population size.

Using (21) we can obtain explicitly the SGR and the SLV that
characterize the asymptotic distribution for systems (8) and (10), the
reason being that in these cases the normalized population y(t)/||y(t)||
is trivial (equal to 1 with probability one), and so the stationary dis-
tribution of the chain (τt, y(t)/||y(t)||) is simply that of τt. Then it is
immediate to obtain that

= = =

= +

= = = =

= = =

h v d h

v s v d

log ˆ log ˆ log , log ˜ log ˜

log( ) log ˜ .

n n r n

n r r

S
1 1 1

S
1

1 1 1

Regarding the SLV, for the sake of simplicity in the mathematical ex-
pressions we will only consider the IID case, i.e., the case with no serial
correlation in τt (the general expressions can be found in Alonso and
Sanz (2009)). In that case it is immediate to conclude that

=

=

= =

= =

h h

h h

ˆ (log ˆ ) ( log ˆ ) ,

˜ (log ˜ ) ( log ˜ ) .

n n

n n

2

1

2

1

2

2

1

2

1

2

3.2. Two-stage models

We consider a population structured into two stage-specific classes:
non-reproductive juveniles (class 1) and reproductive adults (class 2).
The demography, which governs the transition between the different
classes, is defined by the survival rates of juveniles and adults, the
maturation rates of juveniles and the fertility rates of adults.

We represent the state of the population at time t by vector

= +x x xt t t( ): ( ( ), ( )) ,r1 2 T 2

where = … +x t x t x t( ): ( ( ), , ( ))i i r1 ir and xiα(t) denotes the population
density of class i in patch α.

Let α∈ {1, .. ., r}, j∈ {1, 2} and . For each patch α and each
environment η, let s j, be the fraction of individuals of class j alive at
time n that survive to time n+ 1. Also, let m be the fraction of the
surviving juveniles that mature and become adults. Finally, supposing
that reproduction happens at the end of each period of time [t, t+ 1),
let f be the number of juveniles produced by an adult individual in
patch α that has survived to time t+ 1.

Let us define matrices

diag= = =S M Fs s m m f f: ( , ..., ), : diag( , ..., ), : diag( , ..., ).i i i r r r,1 , 1 1

Then, the projection matrix Dη corresponding to demography for en-
vironment η consistent with the ordering of variables in x(t) is

= ×
S I M S F

S M S
D

( )
.r r

1 2

1 2
2 2

Regarding the fast process, for each environment η and each class i,
we represent migrations between patches by a column-stochastic pri-
mitive matrix +

×Pi r r . We denote = …v v v( , , )i i i r,1 , the unique positive
right eigenvector of matrix Pi associated to eigenvalue 1 whose entries
sum up to 1. The matrix representing migration for the whole popula-
tion is Pη =diag P P( , )1 2 .

Therefore, in this setting model (1) has the form

+ = + +x xt tD P( 1) ( ) ( ).k
k

kt t1 1 (12)

Following the procedure outlined in Section 2.2, its corresponding re-
duced system is

+ = +y Ĥ yt t( 1) ( ),t 1 (13)

where

= = =

= =

×Ĥ
s m v s v

s m v s v
:

(1 )
, .

r r

r r
1

1, 1,
1

2, 2,

1
1, 1,

1
2, 2,

2 2

(14)

We now turn our attention to model (2), i.e., the model in the case
we re-scale survival to the fast scale. In this case, following the
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proposed technique we define

=

= =

×

× ×

I M F
M I

S S Ss s

D̃

S

: ,

: diag(( ) , ...,( ) ) , : diag( , ) ,

r r

k
i i k i r k r r

k k k
r r

2 2

,
,1 1/ , 1/

, ,
1

,
2 2 2

and the resulting system has the form

+ = + + +t tD̃ S Px̃ ( 1) ( ) x̃ ( ).k k
k

k,t t t1 1 1 (15)

To obtain the corresponding reduced system we define
= = v s: exp( log )i r i i

1
, , and then in this setting system (4) takes the

form

+ = +ỹ H̃ ỹt t( 1) ( ),t 1 (16)

where

= = =

=

×H̃
m v v

m v
:

(1 )
, .

r r

r

1
1

1, 2
1

2,

1
1

1, 2
2 2

(17)

The reduced systems (13) and (16) are not scalar and so in general
they are not analytically tractable. There are, however, several parti-
cular cases in which analytical calculations are possible. Here we focus
on one of such cases.

Let us suppose that the parameters that govern demography are
independent of the environment (and therefore in the notation we drop
subindex η) and that migration rates depend on the environment
through a common multiplicative random variable, i.e., different en-
vironments increase or decrease all migration rates by the same factor.
Specifically, for each i= 1, 2 and α≠ β we have =p ti i i, , where

(0, 1]i and the ti,αβ ≥ 0 verify that ∑β≠αti,αβ ≤ 1. For β= α we have
=p t1i i i, , . Then it is easy to check that the eigenvector vi

of Pi associated to 1 is independent of η, i.e., T= =v v v v( , ..., )i i i i r,1 , for
all . So, we have that, although systems (12) and (15) are sto-
chastic, the reduced systems (13) and (16) are deterministic. More
specifically we have =Ĥ Ĥ , =H̃ H̃ where Ĥ and H̃ are given by
(14) and (17) by dropping subindex η. Therefore, ˆS and ˜S are, re-
spectively, the dominant eigenvalues of matrices Ĥ and H̃ whereas

= =ˆ ˜ 02 2 .

3.3. Comparison of the two modelling approaches

In this section we use a very simple setting to illustrate the differ-
ences between models (1) and (2). Due to the large number of para-
meters involved in the general case, we restrict our attention to the case
of Section 3.1 of a population without structure and, further, we assume
a deterministic setting and that the environment is constituted by two
patches. We present a first particular case that yields the same growth
rates for both systems. Then, a second situation in which the re-scaled
system always possesses a smaller growth rate. And, finally, a third case
where, depending on parameter values, the growth rate of any of the
two systems can be larger than the other. In the latter, we show in
particular that using one of the models can predict exponential growth
whereas, for the same parameter values, the use of the other predicts
extinction.

Following the notation in Section 3.1, let the demographic para-
meters of the model be =d d s˜1 1 1 and =d d s˜2 2 2 where d̃1 and d̃2 denote
the fertility coefficients in each patch. The fast process is then re-
presented by matrix

=P m m
m m

1
1 ,2 1

2 1

where m1 ∈ (0, 1) represents the migration rate from patch 2 to patch 1
and m2 ∈ (0, 1) the one from patch 1 to patch 2. P is a primitive sto-
chastic matrix with associated stable probability distribution vector

= = + +v v v m m m m m m( , ) ( /( ), /( ))1 2
1 1 2 2 1 2 . In this case model (1)

reads:

+ =x xt d s
d s

m m
m m t( 1)

˜ 0
0 ˜

1
1 ( ),k

k

k
1 1

2 2
2 1

2 1 (18)

and model (2)

+ =x xt d
d

s m s m

s m s m
t˜ ( 1)

˜ 0
0 ˜

( ) (1 ) ( )

( ) ( ) (1 )
˜ ( ).k

k k

k k

k

k
1

2

1 1
2

1 1
1

2 1
2

2 1
1 (19)

Their corresponding reduced systems are, respectively,

+ = = +y t h y t v d s v d s y t( 1) ˆ ( ) ( ˜ ˜ ) ( ),1 1 1 2 2 2

and

+ = = +y t h y t s s v d v d y t˜ ( 1) ˜ ˜ ( ) ( ) ( ) ( ˜ ˜ ) ˜ ( ).v v1 2 1 1 2 21 2

Thus, we have to compare = +h v d s v d sˆ ˜ ˜1 1 1 2 2 2 and
= +h s s v d v d˜ ( ) ( ) ( ˜ ˜ )v v1 2 1 1 2 21 2 .
Case 1: Assuming equal survival rates, s1 = s2, we have

= + = + =h s s v d v d s v d v d h˜ ( ˜ ˜ ) ( ˜ ˜ ) ˆ.v v 1 1 2 2 1 1 2 21 2

There is no difference between the asymptotic growth rates of systems
(18) and (19).
Case 2: Assuming equal fertility rates, = =d d d˜ ˜ ˜1 2 and using the

inequality relating the (weighted) arithmetic mean and the (weighted)
geometric mean, we obtain

= + = + =h s s v d v d s s d v s v s d h˜ ( ˜ ˜) ˜ ( ) ˜ ˆ,v v v v1 2 1 1 2 21 2 1 2

i.e., the asymptotic growth rate of the re-scaled model (19) is always
smaller than the one of system (18).

We would like to stress that the first two cases can be straightfor-
wardly extended to an environment with an arbitrary number of pat-
ches.
Case 3: Assuming a uniform distribution of individuals between

patches, = =v v 1/21 2 , we can find, depending on parameters values,
the same results as in cases 1 and 2 and, in addition, the reverse in-
equality <h hˆ ˜. The expressions for ĥ and h̃ in this particular case are

= + = +h d s d s h s s d dˆ 1
2

( ˜ ˜ ) and ˜ 1
2

( ˜ ˜ ).1 1 2 2 1 2 1 2

Considering d̃1 and d̃2 constant, we can write the fraction of the survival
rates in both patches, =C h h: ˆ/ ˜, as a function of variable α : = s2/s1 ∈ (0,
∞) in the following way:

=
+

+
+

C d
d d

d
d d

( ) 1 ˜
˜ ˜

˜
˜ ˜ .

1

1 2

2

1 2

An elementary analysis yields that C is decreasing in (0, αmin) and in-
creasing in (αmin, ∞), with = d d˜ / ˜min

1 2 and

=
+

C d d
d d

( )
˜ ˜

( ˜ ˜ )/2
1.min

1 2

1 2

On the other hand, for d d˜ ˜1 2, equation C(α) = 1 has two roots, α1 = 1
and = d d( ˜ / ˜ )2

1 2 2, one in (0, αmin) and the other in (αmin, ∞).
We can conclude from the above that, if <d d˜ ˜ ,1 2 then <h hˆ ˜ for

s s d d/ (( ˜ / ˜ ) , 1)2 1 1 2 2 and >h hˆ ˜ for s s d d/ (0, ( ˜ / ˜ ) ) (1, )2 1 1 2 2 . An
analogous reverse result is obtained in the case >d d˜ ˜1 2.

An important additional question is whether ĥ and h̃ can be one
larger than 1 and the other less than 1, since this would mean that one
of the models predicts extinction whereas the other predicts ex-
ponential growth. The answer is positive. Let us fabricate an example to
illustrate this fact. Take, for instance, the previous case with <d d˜ ˜1 2 and
s s d d/ (( ˜ / ˜ ) , 1),2 1 1 2 2 what implies <h hˆ ˜. Now just change parameters d̃1

and d̃2 into +d h h2 ˜ /( ˆ ˜)1 and +d h h2 ˜ /( ˆ ˜)2 . It is immediate to see that the
corresponding growth rates, that we call ĥ and h̃ , verify the required
condition:
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=
+

< <
+

=h
h h

h
h h

h hˆ 2
ˆ ˜

ˆ 1 2
ˆ ˜

˜ ˜ .

The previous discussion corresponds to a deterministic setting. If we
introduce stochasticity, the number of parameters is highly increased,
what renders the model difficult to analyze. However, one can check
that the three aforementioned cases still hold.

4. Discussion

We have dealt with the issue of distinguishing time scales in discrete
systems to help in their analysis. The setting is, on the one hand, simple
because we deal with a linear structured metapopulation model and, on
the other hand, complex due to the fact that the model considers en-
vironmental stochasticity and admits an arbitrary numbers of in-
dividual classes and spatial patches.

When there are two processes acting at different time scales that
must be gathered in a single discrete model, it is reasonable to choose
the slow time unit to express it. In this way, the action of the fast
process can be represented by letting it act a number of times ap-
proximately equal to the ratio between the two time scales. It is not
easy to establish a criterion to classify processes between those that
occur at the slow time scale and those happening at the fast time scale.
Indeed, let us consider processes, such as mortality, predation and
others, which are often measured at the slow time scale. If they act
almost continuously, then it can be argued that they should be better
considered as occurring at the fast time scale.

We have analysed the particular case of survival in a linear sto-
chastic structured metapopulation model. First, we have proposed a
model in which survival is included in the slow process. In a second
step, we have shown how to express its action on a much shorter in-
terval of time by performing a sort of k-th root of their action in a slow
time unit. Using this we have proposed a second model, to be compared
with the first one, in which survival has been re-scaled to the fast time
scale.

The comparison of the two models is done through their SGRs and
SLVs, as they are the main parameters describing their asymptotic be-
haviour. In general, it is not possible to calculate them exactly, and so
the available course of action is to estimate them by means of computer
simulations or other approximations. The obtained reduction results
simplify this task by performing it for the associated reduced models,
what is much less costly.

Considering the particular case of unstructured populations, their
reduced models are scalar, what allows one to obtain closed expressions

for their SGRs and SLVs, that approximate the SGRs and the SLVs of the
original models.

In this setting of unstructured populations, we carry out a com-
parison of the two models and we present cases where the re-scaling of
survival makes no difference in the dynamics, other cases where con-
sidering survival at the fast scale reduces population growth rate and,
finally, some cases where the population growth can be larger in any of
the two models depending on parameters values.

5. Conclusion

We have shown the relevance of using time scales when modelling
through dynamical systems. This is done in the framework of linear
matrix models with environmental stochasticity.

A key point to build an accurate two time scale model is the choice
of the time scale that it is associated to each of the processes involved.
For a given process, data can be obtained on a certain time scale and, at
the same time, they are better included in the model on a different time
scale. To deal with this issue, we have considered the procedure of re-
scaling applied to the survival process. Survival data are translated from
the slow to the fast time scale. We have proposed some cases where
including survival at either the slow or the fast time scale can mean the
difference between exponential growth or extinction of the population.
This illustrates how important the appropriate choice of time scale can
be.

Directly linked to the time scales models are the methods to reduce
them. They are the tools to simplify their analysis. In Appendix B we
have presented an extension of an already existing reduction technique
for linear matrix models with environmental stochasticity. This new
result has lead to reducing the model with re-scaled survival, but it can
be apply in more general situations.

The re-scaling in the case proposed in this work is rather straight-
forward, but this is not always the case and it would be very interesting
to study the influence of time scale choice on other demographic pro-
cesses. Nguyen-Huu et al. (2011) proposed a more general approach to
re-scaling in a deterministic setting that can be extended to the sto-
chastic case along the guidelines and the reduction results presented
here.
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Appendix A. Matrix models with environmental stochasticity

This section presents the basic form of the matrix models that consider environmental stochasticity when the environmental process is a Markov
chain. We assume that the population lives in an ambient in which there are different environmental states that, for simplicity, we suppose finite and
label with = n: {1, ..., }; a nonnegative matrix ×A N N represents the vital rates of the population in environment η. The environmental
variation is characterized by a Markov chain τt, t= 0, 1, 2, .. . defined on a certain probability space p( , , ) over the state space . For each
realization ω∈ Ω of the process, the population is subject to environmental conditions τt+1(ω) between times t and t+ 1. Thus, the model reads

+ = +z zt A t( 1) ( ),t 1 (20)

where T=z t z t z t( ) ( ( ), ..., ( ))N1 represents the population vector at time t for each t= 0, 1, .. .. We assume that z0 is a fixed nonzero nonnegative
vector.

The following theorem gives important information on the distribution of the total population size ||z(t)||1 = |z1(t)| + ⋯ + |zN(t)| (in the sequel
the subscript in the norm will be omitted):

Theorem 1. Let us assume that Markov chain τt is homogeneous, irreducible and aperiodic and, further, that the set = =A n{ , 1, ..., } of vital rate
matrices is ergodic, i.e., there exists a positive integer g such that any product of g matrices (with repetitions allowed) drawn from is a positive matrix (i.e., its
components are all positive). Then we have:

1. We can define the stochastic growth rate (SGR) λS for system (20) through = z t tlog : lim log ( ) /
t

S with probability one. Moreover, λS is finite, and is
independent of the initial probabilities of the chain states and of the initial (nonzero) population vector z0 ≥ 0 and can be calculated through
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= +A z
z

t
t

log log ( )
( )

,FS t 1 (21)

where F denotes the stationary distribution for z zt t( , ( )/ ( ) )t (whose existence is guaranteed (Cohen, 1977)).
2. We can also define the “scaled logarithmic variance” (SLV) as = z t t: lim [log ( ) ]/

t
2 where denotes variance and where σ2, which is finite, is

independent of the initial probabilities of the chain and of the initial (nonzero) population vector z0 ≥ 0.
3. If σ2 > 0 the population size is asymptotically lognormal in the sense that

z t t
t

log ( ) log (0, 1)S
1/2

where (0, 1) denotes a normal distribution of zero mean and unit variance and denotes convergence in distribution.

Proof. The result is essentially Lemma 4 in Tuljapurkar and Orzack (1980) except for a technical detail. See Theorem 2.3. in Alonso and Sanz (2009)
for the proof. □

Appendix B. Reduction of matrix models with environmental stochasticity

We present here a general class of matrix models with environmental stochasticity which can be reduced, as well as the reduction technique. We
also include a result that relates the behavior of the original and the reduced model. These models and results generalize those of Alonso and Sanz
(2009), which are only valid for models of the kind (1), to more general models like (2). For the sake of simplicity, in this work we deal with a finite
number of environments, but the general technique is valid even when there is an infinite (denumerable or not) number of environments.

Let N n, and = n{1, ..., }. For each k large enough, we consider a set of nonnegative matrices = H{ , }k k, with +
×Hk

N N
, and

denote the population vector = …x t x t x t( ) ( ( ), , ( ))k k k
N N1 . Let τt be the Markov chain defined in Appendix A that selects the environment in each

time step. Then we define the so called complete model

+ = +x H xt t( 1) ( ),k k k, t 1 (22)

where we assume that xk(0) is a fixed nonzero vector x0 ≥ 0.
In order to reduce system (22), we suppose that k is large enough and we impose some conditions which are specified in the following two

hypotheses:

Hypothesis 1. For all there exists a matrix H̄ such that
=H H̄lim .

k
k,

Hypothesis 2. There exist q , q < N, such that for all we can decompose H̄ in the form
(23) =H̄ D G,

where +
×G q N , independent of environment η, and +

×D N q are nonnegative matrices.
In what follows we accept Hypotheses 1 and 2. Then, we proceed to reduce system (22) in two steps.
First, we define the so-called auxiliary system which approximates (22) when k→ ∞. Denoting its vector of variables at time t by x(t), this

auxiliary system reads

+ = =+ +x H̄ x D Gxt t t( 1) ( ) ( ).t t1 1 (24)

The set of environmental matrices for the auxiliary system is = H̄{ , }aux .
Now we define global variables, which will play the role of state variables of the reduced, or aggregated, system

= +y Gxt t( ): ( ) .q (25)

Multiplying both sides of (24) with G, we obtain the aggregated system

+ = + = =+ +y Gx GD Gx GD yt t t t( 1) ( 1) ( ) ( ),t t1 1

which is a stochastic system for the global variables y(t) that we use as an approximation of system (22).
Denoting

=Ĥ GD: , (26)

we can write the aggregated system as

+ = +y Ĥ yt t( 1) ( ),t 1 (27)

for which the set of environmental matrices is = Ĥ{ , }.ag
Note that through the previous procedure we have constructed an approximation of (22) for k large enough that allows us to reduce a system with

N variables to a new system with q variables. In most practical applications (Caswell, 2001; Rogers, 2015), q will be much smaller than N.
In order to obtain asymptotic results of the original system (22) from the aggregated system (27) we proceed to relate the distribution of the total

population size for both systems. For the results to hold we need to impose the following hypothesis:

Hypothesis 3. For all , matrices Dη are row-allowable (i.e., each row has at least a nonzero component) and matrix G is column-allowable (i.e.,
each column has at least a nonzero component).

Proposition 2. Assume that the environmental process τt is an irreducible and aperiodic homogeneous Markov chain and that Hypotheses 1, 2 and 3 hold.
Then, if ag is ergodic, the set aux is also ergodic and there exists k0 such that k is ergodic for all k≥ k0. Therefore, if ag is ergodic, the aggregated
system meets the sufficient conditions of Theorem 1 for the SGR and SLV to exist, and those sufficient conditions are also met by the auxiliary system and by the
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original system for k≥ k0.

Proof. A straightforward generalization of the proofs of Proposition 4.1. and Corollary 4.2. in Alonso and Sanz (2009). □

Therefore, if ag is an ergodic set, we have, under the hypotheses of Proposition 2, that we can define the following characteristics for the
Aggregated system: =log ˆ : lim ;y

t

t
tS

log ( ) = y tˆ : lim [log ( ) ]
t t

2 1 ;

Original system: =log : lim x
k

t

t
tS,

log ( )k ; = x t: lim [log ( ) ]k
t t k

2 1 .

Next theorem shows that, when k is large, we can approximate λS,k and σk through ˆS and ˆ , respectively, which are easier to compute.

Theorem 3. Let us assume the same Hypotheses of Proposition 2 and, in addition, that ag is an ergodic set. Then we have
= =lim ˆ , lim ˆ ,

k
k

k
kS, S

and so the lognormal asymptotic distribution for the original system can be approximated through the parameters ˆS and ˆ that correspond to the reduced
system.

Proof. A quite technical generalization of the proof of Theorem 4.3. in Alonso and Sanz (2009) that will appear published elsewhere. □
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