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MODELLING THE ROLE OF OPPORTUNISTIC DISEASES IN

COINFECTION

Marcos Marvá1, Rafael Bravo de la Parra1,* and Ezio Venturino2

Abstract. In this paper, we formulate a model for evaluating the effects of an opportunistic disease
affecting only those individuals already infected by a primary disease. The opportunistic disease act on a
faster time scale and it is represented by an SIS epidemic model with frequency-dependent transmission.
The primary disease is governed by an SIS epidemic model with density-dependent transmission, and
we consider two different recovery cases. The first one assumes a constant recovery rate whereas the
second one takes into account limited treatment resources by means of a saturating treatment rate. No
demographics is included in these models.

Our results indicate that misunderstanding the role of the opportunistic disease may lead to wrong
estimates of the overall potential amount of infected individuals. In the case of constant recovery rate,
an expression measuring this discrepancy is derived, as well as conditions on the opportunistic disease
imposing a coinfection endemic state on a primary disease otherwise tending to disappear. The case of
saturating treatment rate adds the phenomenon of backward bifurcation, which fosters the presence of
endemic coinfection and greater levels of infected individuals. Nevertheless, there are specific situations
where increasing the opportunistic disease basic reproduction number helps to eradicate both diseases.
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1. Introduction

The importance of mathematical models in analyzing the spread and control of infectious diseases is now
broadly recognized. The use of models should favor the clarification of the assumptions on variables and param-
eters, as well as provide conceptual results expressed in terms of thresholds such as the basic reproduction
number.

In this work, we focus on a particular case of coinfection. In general, coinfection is understood to be the
simultaneous infection of a host by multiple pathogen species. The incidence of coinfection among humans is
huge [8] and supposed to be more common than single infection. It is important to know the effects, positive
or negative, of pathogen species interactions within their host. From the point of view of human health the
net effect of coinfection is found to be negative [13]. A broadly extended coinfection involves tuberculosis (TB)
and HIV [20]. The World Health Organization [12, 29] reports that people living with HIV are around 30 times
more likely to develop TB than persons without HIV and also that TB is the leading cause of death among
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people infected with HIV. A mathematical modelling analysis of TB-HIV coinfection can be found in [25]. Other
diseases that act synergetically with HIV are malaria [1, 24], helminthic infections [18] and sexually transmitted
diseases [11]. Another example of extended coinfection is the association of pertussis, influenza and tuberculosis
[16].

The coinfection case that we are treating in this work is provoked by two diseases, respectively called
primary and opportunistic. An opportunistic disease is a disease that will most often make one sick given
the opportunity of a damaged or weakened immune system by a primary disease like, for instance, AIDS.
Only relatively few pathogen species cause disease in otherwise healthy individuals [4]. Those few are
called primary pathogens and the diseases that they cause primary diseases. An opportunistic disease, on
the other hand, would be almost irrelevant for an organism with a fully-functioning immune system. A
healthy immune system is able to successfully fight off an opportunistic disease. Nevertheless, as a result
of the predisposing effect of a primary disease, an opportunistic disease has the capacity of causing a seri-
ous damage. Some diseases, like tuberculosis, can occur in anyone, regardless of their immune status, but
are much more likely to cause illness and complications in persons with a damaged/weakened immune
systems.

The authors already treated the topic of coinfection by opportunistic diseases in [23]. In that work, the host
population is affected by a primary disease, described by an SIS model with demographics; only individuals
infected by the primary disease are susceptible of acquiring an opportunistic disease, represented by an SIS
model with no demographics. Here, we simplify this framework, eliminating demographics, in order to focus on
the diseases interactions.

The primary disease dynamics is represented by an SIS epidemic model with density-dependent transmission.
Regarding recovery, we consider two different cases: constant recovery rate and saturated treatment/recovery
rate. We assume that the primary disease has a long illness period so that an opportunistic disease could
act on the primary infected individuals. In its turn, the opportunistic disease rapidly takes advantage of the
compromised immune system. As a simplified approximation of a general case of coinfection, we suppose that
the primary disease is a long-term infection that evolves slowly compared to the opportunistic disease, which
has a rapid evolution and, thus, can be considered a short-term infection. The density-dependent transmission
is generally based upon the assumption that the rate of contact increases directly with the density of the
population, whereas a constant rate of contact irrespective of the density of the population is associated to the
frequency-dependent transmission [5]. Therefore, the rapid evolution of the opportunistic disease seems to be
more appropriately described by an SIS epidemic model with frequency-dependent transmission, considering
that in the short-term the number of contacts must be bounded.

The basic model (constant recovery rate) presented as a simplification of the one studied in [23] puts together
the main actors in the epidemic process. Its extension (saturated treatment/recovery rate) introduces the impor-
tant issue of the limited capacity for the treatment of a disease. This issue has been treated in different forms in
the literature [9, 17, 21, 27, 28, 30–33]. We propose here a recovery term of the form of a saturated treatment
rate. We include in it both the natural recovery rate and the treatment rate as proposed in [22] where it is
called treatment/recovery rate. To be precise, we assume that the per capita recovery rate α of the SIS epidemic
model associated to the primary disease is not constant, but decreasing with the number of infected individuals
I: α(I) = α/(1 + γI).

The proposed models have the form of a three dimensional system of ordinary differential equation. Its state
variables correspond to the susceptible individuals, those affected by no disease, the infected individuals, affected
by the primary disease and susceptible to the opportunistic disease, and coinfected individuals, affected by both
diseases. Apart from distinguishing between transmissions, we reflect the different nature of both diseases by
assuming that they act at different time scales. The fact that the system of differential equations includes two
time scales has the advantage of allowing its complete qualitative analysis with the help of the appropriate
reduction method [2, 3].

The analysis of the basic model reveals the net effect of the opportunistic disease on the over-
all epidemic process. In particular, the effect of the opportunistic disease on the number of infected
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individuals by the primary disease can be explicitly and easily calculated. Also, an explicit expres-
sion of how the opportunistic disease reinforces the primary disease is obtained. A final insight is that
any improvement in primary disease treatment can be ruled out by a strong enough opportunistic
disease.

The common feature of epidemic models with saturated treatment rate is what it is known mathemat-
ically as backward bifurcation [14, 15]. It entails that even if the disease is being controlled in ways that
reduce R0 below 1 still it might become endemic if there exists a large enough number of infected individuals
[6, 10]. The basic reproduction number does not give information on disease elimination; rather disease elim-
ination is determined by the values of critical parameters at the turning points of the bifurcation curve. The
study of backward bifurcation in epidemic models is important in order to find conditions for disease control
[7, 19, 26].

The analysis of the model with saturated treatment rate shows that the influence of the opportunistic
disease mostly enhances the endemic coinfection, though there are specific situations where increasing the basic
reproduction number of the opportunistic disease yields diseases eradication. The possibility of the population to
be invaded by both diseases is prevented exacerbating the effects of the opportunistic disease. A further increase
of this reproduction number indefectibly leads to coinfection endemicity and at greater levels of coinfected
individuals than in the constant recovery case.

This paper is organized as follows. In Section 3, we introduce the model that allows for the incorpo-
ration of both infections at different time scales, firstly assuming a constant recovery rate and secondly
using a more general saturating treatment rate. Section 4 focuses on the asymptotic analysis of the models
presented in Section 3, which always corresponds to an equilibrium point: disease-free state, opportunis-
tic disease-free state or endemic coinfection state. Section 4 discusses the consequences of the results
obtained in Section 4. The analysis of the basic SIS model with saturating treatment rate is included in
Appendix A.

2. Model formulation

We consider a population affected by a primary disease whose individuals are then classified into sus-
ceptible and infected. A second opportunistic disease can be contracted only by those individuals already
infected by the primary disease. This reflects the fact that the secondary opportunistic disease can only
be successful on individuals whose immune system has been weakened by another infection. Thus, we
need to distinguish a third class of coinfected individuals, those infected by both diseases. To formulate
our model let S(t), I(t) and C(t) be the number of susceptible, infected only by the primary disease,
henceforth called infected, and coinfected individuals at time t, respectively. The basic assumptions are as
follows:

i. The system of differential equations possesses two time scales: the slow one encompassing the primary
disease evolution and the fast one associated with the opportunistic disease evolution. The parameter ε
represents the ratio between the time scales.

ii. We consider no demographics.
iii. The opportunistic disease evolution is described by means of an SIS epidemic model with frequency-

dependent transmission and constant recovery rate. Let βop and αop be, respectively, the constant
transmission and recovery rates.

iv. The primary disease dynamics follows an SIS epidemic model with density-dependent transmission. Sus-
ceptible individuals can be infected, at different rates, by infected and coinfected individuals. Let βI and
βC be the respective transmission coefficients.
We consider two different cases of recovery of the primary disease. The first one assumes a constant
recovery rate α, and the second one takes into account limited treatment resources by means of a saturating
treatment rate.
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Figure 1. Flowchart of the coinfection model with constant recovery rate for the primary
disease.

Figure 2. Flowchart of the coinfection model with saturating treatment rate for the primary
disease.

2.1. Constant recovery rate

Under the above assumptions, summarized in Figure 1, the coinfection model with constant recovery rate
takes the following form: 

S′ = ε (−βISI − βCSC + αI)

I ′ = −βop IC

I + C
+ αopC + ε (βISI + βCSC − αI)

C ′ = βop IC

I + C
− αopC

(2.1)

2.2. Saturating treatment rate

In this case, we assume that the per capita recovery rate α depends on treatment and thus it is not constant
but a decreasing function, α(I), of the number of infected individuals [22]. We take the following simple form
that we call saturating treatment rate:

α(I) =
α

1 + γI
, (2.2)

where γ is a non-negative parameter that weights the dependence of the recovery rate on the infected individuals
density. If γ = 0, we have again the constant recovery rate. The second coinfection model, which flowchart is in
Figure 2, reads as follows:

S′ = ε

(
−βISI − βCSC +

αI

1 + γI

)
I ′ = −βop IC

I + C
+ αopC + ε

(
βISI + βCSC −

αI

1 + γI

)
C ′ = βop IC

I + C
− αopC

(2.3)
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3. Analysis of the model

We analyze systems (2.1) and (2.3) using the fact that diseases are evolving at different time scales, i.e., ε� 1,
though, we eventually show that the asymptotic behaviour of solutions does not depend on it. We exploit of
the existence of time scales to apply the reduction method developed in [2, 3], that facilitates the analysis.

It consists in a sort of decoupling the fast and the slow parts of the system. The key point of the reduction
is in the fast part of the system, i.e., in the SIS model representing the opportunistic disease dynamics:


I ′ = −β

opIC

I + C
+ αopC

C ′ =
βopIC

I + C
− αopC

(3.1)

On the one hand, it keeps invariant the total number of individuals infected by the primary disease, infected
plus coinfected, that we call Ī,

I(t) + C(t) = Ī , (3.2)

and, on the other hand, the proportions of infected and coinfected individuals rapidly tend to an equilibrium. As
it is a classical SIS model with frequency-dependent transmission, it is well known [22] that its basic reproduction
number is

Rop
0 =

βop

αop
, (3.3)

and the long term behaviour of its solutions with I(0) ≥ 0 and C(0) > 0 is

lim
t→∞

(I(t), C(t)) = (I∗, C∗) = (ν∗, 1− ν∗)Ī , (3.4)

with ν∗ = 1 if Rop
0 ≤ 1 and ν∗ = 1/Rop

0 if Rop
0 > 1. Infected individuals tend to disappear whenever Rop

0 ≤ 1
whereas if Rop

0 > 1 the proportions of infected and coinfected individuals tend to ν∗ = 1/Rop
0 and 1 − ν∗ =

1− 1/Rop
0 , respectively.

The second step in the reduction procedure consist in building up a reduced system for variables S and Ī
by assuming that the fast part of the system has already attained its equilibria. This new system takes into
account the slow part of the initial systems and so we treat separately the cases for systems (2.1) and (2.3).

3.1. Constant recovery rate

The reduced system for the variables S and Ī is obtained from system (2.1). Variables I and C are substituted
by ν∗Ī and (1− ν∗)Ī, respectively. The equation for Ī is the sum of the equations for I and C. The time scale is
changed so that the parameter ε disappears, although we maintain the notation for the derivative with respect
to the new time variable. Finally, we obtain{

S′ = − (ν∗βI + (1− ν∗)βC)SĪ + ν∗αĪ,

Ī ′ = (ν∗βI + (1− ν∗)βC)SĪ − ν∗αĪ.
(3.5)

This turns out to be a classical SIS model with density-dependent transmission, where β̄ = ν∗βI + (1− ν∗)βC
is its transmission coefficient and ᾱ = ν∗α its recovery rate. The total population N = S(t) + Ī(t) remains
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constant. Its basic reproduction number

R̄0 =
β̄

ᾱ
N (3.6)

depends on ν∗, so that there are two different cases.
In the first case, when the opportunistic disease is rapidly eradicated, Rop

0 ≤ 1, ν∗ = 1, system (3.5) becomes
the SIS model associated to the primary disease in the absence of the opportunistic disease:{

S′ = −βISĪ + αĪ,

Ī ′ = βISĪ − αĪ,

whose basic reproduction number (3.6), that we call Rpr
0 , becomes

Rpr
0 =

βI
α
N. (3.7)

For Rop
0 ≤ 1 the asymptotic behaviour of the solutions of system (3.5) with S(0) ≥ 0 and Ī(0) > 0 is then:

1. If Rpr
0 ≤ 1 then

lim
t→∞

(S(t), Ī(t)) = (N, 0). (3.8)

2. If Rpr
0 > 1 then

lim
t→∞

(S(t), Ī(t)) =

(
N

Rpr
0

, N − N

Rpr
0

)
. (3.9)

In the second case, when the opportunistic disease rapidly attains a positive equilibrium, Rop
0 > 1 and

ν∗ = 1/Rop
0 . We have β̄ = βI/R

op
0 + (1− 1/Rop

0 )βC and ᾱ = α/Rop
0 , and hence the basic reproduction number

(3.6) of system (3.5), that we call Rcoi
0 , becomes

Rcoi
0 =

(
βI
α

+

(
βop

αop
− 1

)
βC
α

)
N = Rpr

0

(
1 + (Rop

0 − 1)
βC
βI

)
. (3.10)

The corresponding asymptotic behaviour of the solutions of system (3.5) with S(0) ≥ 0 and Ī(0) > 0 becomes:

1. If Rcoi
0 ≤ 1 then

lim
t→∞

(S(t), Ī(t)) = (N, 0). (3.11)

2. If Rcoi
0 > 1 then

lim
t→∞

(S(t), Ī(t)) =

(
N

Rcoi
0

, N − N

Rcoi
0

)
. (3.12)

Note that Rpr
0 and Rcoi

0 exchange their role as drivers of the system as Rop
0 crosses the threshold value 1. If

Rop
0 < 1 the opportunistic disease is eradicated and the outcome of the model depends solely on Rpr

0 . Conversely,
if Rop

0 > 1 the opportunistic disease can invade the population and Rcoi
0 , independently of Rpr

0 , decides on the
simultaneous endemicity or eradication of both diseases.
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The asymptotic behaviour of the solutions of system (2.1) is closely described by one of the following steady
state situations:

1. E0 = (N, 0, 0); both diseases are eradicated.
2. Epr = (S∗pr, I

∗
pr, 0) = (N/Rpr

0 , N(1 − 1/Rpr
0 ), 0); the primary disease is endemic and the opportunistic

disease disappears.
3. Ecoi = (S∗coi, I

∗
coi, C

∗
coi) = (N/Rcoi

0 , N(1 − 1/Rcoi
0 )/Rop

0 , N(1 − 1/Rcoi
0 )(1 − 1/Rop

0 )); the coinfection is
endemic.

Combining the asymptotic results obtained for systems (3.1) and (3.5) in (3.4), (3.8), (3.9), (3.11) and (3.12),
we can summarize the long-term behaviour of the solutions of system (2.1) as follows. Consider any solution
X(t) = (S(t), I(t), C(t)) of system (2.1) with initial conditions verifying S(0) ≥ 0, I(0) > 0, C(0) > 0 and
S(0) + I(0) + C(0) = N . Then

1. In the case Rop
0 < 1, Rpr

0 < 1 implies that X(t) approaches E0 while Rpr
0 > 1 implies that it approaches

Epr.
2. In the case Rop

0 > 1, Rcoi
0 < 1 implies that X(t) approaches E0 while Rcoi

0 > 1 implies that it approaches
Ecoi.

The obtained results can be extended to any positive ε due to two convenient properties of the system (2.1).
The first one is that for any value of ε, if the quantities εβI , εβC and εα are renamed βI , βC and α, we reobtain
system (2.1) with the choice ε = 1. At the same time the occurrence of these three parameters in the asymptotic
behaviour of system (2.1) is in the form of their ratios, Rpr

0 and Rcoi
0 . It follows thus that the parameter ε plays

no role in it.

3.2. Saturating treatment rate

Repeating the process of the previous section, we obtain the reduced system for variables S and Ī associated
to system (2.3).


S′ = − (ν∗βI + (1− ν∗)βC)SĪ +

ν∗αĪ

1 + ν∗γĪ
,

Ī ′ = (ν∗βI + (1− ν∗)βC)SĪ − ν∗αĪ

1 + ν∗γĪ
.

(3.13)

This SIS model with density-dependent transmission and saturating recovery rate of the form of (A.1) is analyzed
in Appendix A. We still need to distinguish two different cases depending on ν∗ being equal to 1 or to 1/Rop

0 .
In the first case, Rop

0 ≤ 1 and ν∗ = 1, system (3.13) becomes the SIS model with saturating recovery rate
associated to the primary disease in the absence of the opportunistic disease:


S′ = −βISĪ +

αĪ

1 + γĪ
,

Ī ′ = βISĪ −
αĪ

1 + γĪ
.

The basic reproduction number of the system is Rpr
0 , as defined in (3.7). The asymptotic behaviour of its

solutions is stated in the appendix Theorem A.1. Contrary to the constant recovery rate case, it presents the
phenomenon of backward bifurcation, i.e., for Rpr

0 ≤ 1 there are some conditions yielding bi-stability: the disease
is either eradicated or endemically established depending on the initial conditions. We postpone the analysis of
the details to the next case.
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In the second case, when the opportunistic disease rapidly attains a positive equilibrium, Rop
0 > 1 and

ν∗ = 1/Rop
0 , the system (3.13) can be written as

S′ = −β̄SĪ +
ᾱĪ

1 + γ̄Ī

Ī ′ = β̄SĪ − ᾱĪ

1 + γ̄Ī

(3.14)

with β̄ = βI/R
op
0 + (1− 1/Rop

0 )βC , ᾱ = α/Rop
0 and γ̄ = γ/Rop

0 . Its basic reproduction number is Rcoi
0 as defined

in (3.10).
Calling m̄ = γ̄N , with N being the constant population size, and

i∗1 =
(
m̄− 1−

√
(m̄− 1)2 + 4m̄(1− 1/Rcoi

0 )
)
/ (2m̄) ,

i∗2 =
(
m̄− 1 +

√
(m̄− 1)2 + 4m̄(1− 1/Rcoi

0 )
)
/ (2m̄) ,

(3.15)

the corresponding asymptotic behaviour of the solutions of system (3.14) is detailed in the next theorem.

Theorem 3.1. Let (S(t), Ī(t)) be a solution of system (3.14) with S(0) ≥ 0 and Ī(0) > 0, and N = S(0) + Ī(0).
For Rop

0 > 1

1. If Rcoi
0 > 1 then lim

t→∞
(S(t), Ī(t)) = E2 := (N(1− i∗2), Ni∗2).

2. If Rcoi
0 ≤ 1 and m̄ ≤ 1 then lim

t→∞
(S(t), Ī(t)) = E0 := (N, 0).

3. If Rcoi
0 < 4m̄/(m̄+ 1)2 and m̄ > 1 then lim

t→∞
(S(t), Ī(t)) = E0.

4. If 4m̄/(m̄+ 1)2 ≤ Rcoi
0 ≤ 1 and m̄ > 1 then

(a) If Ī(0) < Ni∗1 then lim
t→∞

(S(t), Ī(t)) = E0.
(b) If Ī(0) > Ni∗1 then lim

t→∞
(S(t), Ī(t)) = E2.

Proof. Follows straightforwardly from Theorem A.1 in Appendix A.

As done in the previous section, assuming Rop
0 > 1, the conditions established in th. (3.1) apply to obtain

the approximate asymptotic behaviour of the positive solutions of system (2.3). Thus E0 and E2 represent the
asymptotic behaviour of the solutions of system (3.14) while for (2.3) the equilibria correspondingly are either
E0 = (N, 0, 0), the situation where both diseases are eradicated, or

Em̄
coi =

(
N(1− i∗2), Ni∗2

1

Rop
0

, Ni∗2

(
1− 1

Rop
0

))
, (3.16)

the situation of endemic coinfection. When γ, and thus m̄, tends to 0 only the two first items hold in theorem
(3.1) and Em̄

coi tends to Ecoi. System (2.1) can be considered as the limiting case of system (2.3) when γ tends
to 0, i.e., when the saturating recovery becomes linear.

Similar arguments to those developed in the previous section imply that the parameter ε still plays no
significant role in the asymptotic behaviour of the solutions of system (2.3).

4. Discussion

We propose models of a population affected by a primary disease whose infected individuals can contract an
opportunistic disease acting at a faster time scale than the primary one. A first result of the analysis is that, in
the absence of other demographic processes, the asymptotic outcomes of both models do not depend on whether
the opportunistic disease evolves at a faster time scale or not.



MODELLING THE ROLE OF OPPORTUNISTIC DISEASES IN COINFECTION 9

In the constant recovery rate model (2.1), it is easy to compare S∗pr and S∗coi, the number of susceptible indi-
viduals at steady state when the outcome of the model is the primary disease endemic state without coinfection
and when instead it settles at the coinfection endemic state. We have

S∗pr
S∗coi

= 1 + (Rop
0 − 1)

βC
βI
, (4.1)

where the term on the right hand side added to 1 stands for the underestimated proportion of infected individuals
that follows from ignoring the effect of coinfective processes.

Focusing on the potential impact of the opportunistic disease, we discuss the case Rop
0 > 1, where in isolation

it becomes endemic. It is crucial to determine whether the opportunistic disease, together with the primary
disease, will establish or not.
Rop

0 > 1 is a necessary condition but it is not sufficient.
In model (2.1), for any Rop

0 > 1 if the recovery rate α of the primary disease is large enough the population
in the long-term attains a disease-free state. To be precise, we need Rcoi

0 < 1 that yields

(βI + (Rop
0 − 1)βC)N < α.

A large enough reduction of the average infectious period of the primary disease, 1/α, thus eliminates both
diseases. In the opposite sense, a low Rpr

0 can always be compensated by a high Rop
0 resulting in an endemic

coinfection situation, Rcoi
0 > 1. For any Rpr

0 < 1, that would entail the primary disease eradication in the absence
of the opportunistic one, if the reproduction number of this latter is large enough, more precisely

Rop
0 > 1 +

(
1

Rpr
0

− 1

)
βI
βC

,

then it is attained the situation where both diseases become endemic. A strong enough secondary disease makes
endemic both diseases. The opportunistic disease can be seen acting as a reservoir for the primary disease that
strengthens it. Moreover, the size of this strengthening can be measured. As we can see in (3.10), its value turns
out to be

(Rop
0 − 1)

βC
βI
.

The lack of treatment resources for the primary disease is reflected in model (2.3) by means of a saturating
treatment/recovery rate. The parameter γ measures the influence of the number of infected individuals on
the time of recovery. For the same number of infected individuals the time of recovery grows linearly with γ.
The important difference from the constant recovery rate case, γ = 0, is that even in the case Rcoi

0 < 1 the
coinfection may become endemic. The case Rcoi

0 > 1 entails the coinfection endemicity in both models, (2.1)
and (2.3), with the difference that the total number of infected plus coinfected individuals in the endemic
equilibrium, Ni∗2 (3.16), grows with m̄. Since m̄ = γN/Rop

0 , this total number of disease affected individuals
also grows with γ. For γ = 0 this number is N(1− 1/Rcoi

0 ). In Figure 3, we see, for two different values of Rcoi
0 ,

the fraction of infected plus coinfected individuals i∗2 in model (2.3) as function of m̄, in contrast with 1− 1/Rcoi
0

the corresponding fraction in model (2.1).
For Rcoi

0 = 1.1, we have 1− 1/Rcoi
0 = 0.1 and i∗2 rapidly grows with m̄, equivalently with γ. Taking a larger

Rcoi
0 = 2, the result is 1− 1/Rcoi

0 = 0.5 and the growing of i∗2 with m̄ is less steep.
The conditions for the coinfection to become endemic in the case Rcoi

0 < 1 are expressed in terms of the
values of the model parameters, m̄ > 1 and 4m̄/(m̄ + 1)2 ≤ Rcoi

0 ≤ 1, and the total initial number of infected
plus coinfected individuals I(0) + C(0) that must be larger than Ni∗1 (3.15).
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Figure 3. Fraction of infected plus coinfected individuals of the endemic equilibrium: i∗2 (model
(2.3)), as function of m̄, and 1 − 1/Rcoi

0 (model (2.1)). Left frame: Rcoi
0 = 1.1; Right frame:

Rcoi
0 = 2.

These conditions are easily met as the parameter m̄ gets larger. On the one hand, we have that 4m̄/(m̄+ 1)2

is a decreasing function of m̄ that tends to 0 for m̄ tending to infinity and, on the other hand, that the minimum
number of infected plus coinfected individuals necessary for the coinfection to become endemic,

Ni∗1 =
N

2

1− 1

m̄
−

√(
1− 1

m̄

)2

+ 4

(
1

m̄
− 1

m̄Rcoi
0

) ,

also tends to 0 with m̄ tending to infinity. Recalling that m̄ = γN/Rop
0 , we obtain that increasing the population

size, or the parameter γ, favours the existence of coinfection endemicity in spite of having Rcoi
0 < 1. A larger

population together with insufficient treatment resources for the primary disease yields a coinfection endemicity
preventable in a constant recovery rate case.

The other factor operating in m̄ is Rop
0 , the opportunistic disease basic reproduction number. The fact that

Rop
0 appears in the denominator of m̄ seems to imply that a stronger opportunistic disease helps in eradicating

both diseases. This is not true because Rcoi
0 is a linear expression of Rop

0 and it is larger than 1 whenever

Rop
0 > 1 +

βI
βC

(
1

Rpr
0

− 1

)
.

Hence, this condition is sufficient to guarantee the achievement of a coinfection endemic state. As in model
(2.1), a large enough value of Rop

0 makes also endemic the primary disease though it would tend to eradication
in the absence of the opportunistic disease.

In certain cases it is possible to find the counterintuitive fact that an increase of the value of Rop
0 helps

in eradicating both diseases. To look for this situation, we first need to assume that Rcoi
0 < 1 and Rop

0 > 1.
In addition, as Rop

0 grows, the conditions of point 4 in Theorem 3.1, for an asymptotically stable endemic
equilibrium, should change into those of point 3, for a globally asymptotically stable disease-free equilibrium.
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Figure 4. Bifurcation diagram of system (3.14) with fraction of infected plus coinfected
individuals at equilibria in terms of parameter Rop

0 , for γN = 9, Rpr
0 = 9/20 and βI/βC = 4.

We write Rcoi
0 and 4m̄/(m̄+ 1)2 in terms of Rop

0 :

Rcoi
0 = Rpr

0

βC
βI
Rop

0 −R
pr
0

(
1− βC

βI

)
(4.2)

and

4m̄

(m̄+ 1)2
=

4NγRop
0

(Nγ +Rop
0 )2

. (4.3)

We need, apart from m̄ = Nγ/Rop
0 > 1, to find α and β, 1 < α < β such that expression (4.2) be greater than

expression (4.3) if Rop
0 ∈ (1, α) and (4.3) greater than (4.2) if Rop

0 ∈ (α, β).
A characterization of the proposed situation does not seem to be straightforward. Thus, we just carry on an

illustration of what happens by means of a particular example. As can be seen in (4.2) and (4.3), apart from our
variable Rop

0 , the rest of the parameters appears in three independent expressions: Rpr
0 , βC/βI and Nγ. Once

fixed the values for these three expressions, any set of model (2.3) parameter values fitting on them share the
same qualitative behaviour of the corresponding system.

Let Rpr
0 = 9/20, βC/βI = 1/4 and Nγ = 9. The particular forms of expressions (4.2) and (4.3) are

Rcoi
0 =

9

80
Rop

0 −
27

80
and

4m̄

(m̄+ 1)2
=

36Rop
0

(9 +Rop
0 )2

,

and we also have m̄ = 9/Rop
0 . It is immediate to verify that there exist α ≈ 1.64456 and β ≈ 5.28957 for

which the above established conditions hold. In addition, Rcoi
0 > 1 if Rop

0 > 53/9. Concerning the condition
m̄ = 9/Rop

0 > 1, it holds, as required, if Rop
0 < 53/9.

The qualitative behaviour of the epidemic model (2.3) for the particular chosen values of the parameters is
described in the bifurcation diagram of Figure 4.

If Rop
0 ∈(1,1.64456) enough individuals affected by one or both diseases make the system approach the

asymptotically stable endemic equilibrium, i.e., the coinfection is established. If Rop
0 gets through the threshold

α ≈ 1.64456, allowing, for instance, a stronger transmission or reducing the recovery rate of the opportunistic
disease, both diseases are eradicated. The situation of the system tending to the stable endemic equilibrium if
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the fraction of infected plus coinfected individuals is greater than this same fraction for the unstable endemic
equilibrium is again found if Rop

0 ∈(5.28957,53/9). For Rop
0 > 53/9 the value of Rcoi

0 is larger than 1 and from
Theorem 3.1, we obtain that for any positive initial number of coinfected individuals the system tends to the
endemic coinfection equilibrium.

The bifurcation at Rop
0 = 53/9 is a typical example of backward bifurcation as presented in the introduction

and found in the basic SIS model with saturating treatment analysed in Appendix A.
To summarize our results, we focus on the case of the opportunistic disease not being controlled: Rop

0 > 1.
This fact can happen even due to disease overlooking. In the case of constant recovery rate, the options of
both diseases eradication go through increasing this recovery rate, equivalently, reducing the average time an
individual keeps transmitting the primary disease. Nevertheless, this might not be completely effective since a
large enough value of Rop

0 can cancel its effect out. Therefore, acting on the opportunistic disease, by avoiding
transmission or improving recovery, might sometimes be unavoidable. Obviously, the situation gets worse in the
case of saturating treatment/recovery rate. This can only be alleviated by reducing the effects of population
size on the treatment/recovery rate represented by parameter γ.

Appendix A. SIS model with saturating treatment


S′ = −βSI +

αI

1 + γI

I ′ = βSI − αI

1 + γI

(A.1)

The population size does not change: S(t) + I(t) = N . The asymptotic behaviour of the solutions of system
(A.1) can so be studied by means of the scalar equation for the fraction of infected individuals i = I/N where
S is substituted by N(1− i):

i′ = βN(1− i)i− αi

1 + γNi
(A.2)

The basic reproduction number of the system can be defined as R0 =
β

α
N . Changing the variable time, τ = αt,

equation (A.2) can be written in terms of just two parameters, R0 and m = γN , in the following form:

i′ = R0(1− i)i− i

1 +mi
(A.3)

where i′ now represents the derivative respect to τ .
A straightforward analysis of equation (A.3) gives the following results.
The equilibrium i∗0 = 0 is asymptotically stable if R0 < 1 and unstable if R0 > 1.
Equation (A.3) can still have two other equilibrium points, the solutions of the equation R0(1− i)(1 +mi)−

1 = 0:

i∗1 =
(
m− 1−

√
(m− 1)2 + 4m(1− 1/R0)

)
/ (2m)

i∗2 =
(
m− 1 +

√
(m− 1)2 + 4m(1− 1/R0)

)
/ (2m)

(A.4)

If R0 > 1 then i∗1 < 0 and i∗2 > 0. Moreover, i∗2 is asymptotically stable being (0,∞) its domain of attraction.
If R0 < 1 and m < 1 there is no positive equilibrium point and (0,∞) is in the domain of attraction of

i∗0 = 0. On the other hand, if R0 < 1 and m > 1 then i∗1 and i∗2 are both positive provided that they exist, i.e.,
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Figure A.1. Bifurcation diagram of equation (A.3) in terms of parameter R0 for m = 0.5 in
the left frame and for m = 9 in the right frame.

if (m− 1)2 + 4m(1− 1/R0) > 0 holds. This condition can be expressed in the following simpler form:

R0 >
4m

(m+ 1)2
. (A.5)

In this case there is bi-stability. To be precise, if
4m

(m+ 1)2
< R0 < 1 and m > 1 then (0, i∗1) is in the domain of

attraction of i∗0 = 0 and the domain of attraction of i∗2 is (i∗1,∞). If inequality (A.5) is reversed then there is no
positive equilibrium point and (0,∞) is again in the domain of attraction of i∗0 = 0.

From the previous analysis, we obtain the asymptotic behaviour of the solutions of system (A.1).

Theorem A.1. Let (S(t), I(t)) be a solution of system (A.1) with S(0) ≥ 0 and I(0) > 0, N = S(0) + I(0),
R0 = βN/α and m = γN .

1. If R0 > 1 then lim
t→∞

(S(t), I(t)) = E2 := (N(1− i∗2), Ni∗2).

2. If R0 ≤ 1 and m ≤ 1 then lim
t→∞

(S(t), I(t)) = E0 := (N, 0).

3. If R0 < 4m/(m+ 1)2 and m > 1 then lim
t→∞

(S(t), I(t)) = E0.
4. If 4m/(m+ 1)2 ≤ R0 ≤ 1 and m > 1 then
(a) If I(0) < Ni∗1 then lim

t→∞
(S(t), I(t)) = E0.

(b) If I(0) > Ni∗1 then lim
t→∞

(S(t), I(t)) = E2.

If m < 1 the disease cannot invade the population for R0 < 1, there is forward bifurcation at R0 = 1
(Fig. A.1). On the other hand, if m > 1 there is a backward bifurcation at R0 = 1 (Fig. A.1), for certain values
of R0 < 1 an endemic equilibrium is attained provided that enough infectives are introduced into the population.
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14 M. MARVÁ ET AL.
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