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The aim of this work is to analyze the influence of the fast development of a disease on competition dynamics. To this endwe present
two discrete time ecoepidemic models.The first one corresponds to the case of one parasite affecting demography and intraspecific
competition in a single host, whereas the second one contemplates the more complex case of competition between two different
species, one of which is infected by the parasite. We carry out a complete mathematical analysis of the asymptotic behavior of the
solutions of the corresponding systems of difference equations and derive interesting ecological information about the influence
of a disease in competition dynamics. This includes an assessment of the impact of the disease on the equilibrium population of
both species as well as some counterintuitive behaviors in which although we would expect the outbreak of the disease to negatively
affect the infected species, the contrary happens.

1. Introduction

Species interactions are a central issue in ecology in order to
explain community structure and its dynamics. Among the
frameworks that try to explain ecosystems dynamics, ecoepi-
demiology has become a proper discipline in its own right
[1, 2]. Loosely speaking, its main objective is to understand
the effect of diseases or parasites on species interactions and
vice versa. The empirical evidence of such an influence has
motivated a great deal of mathematical modeling in order to
reveal the underlying mechanisms.

In this work we focus on ecoepidemic competition
models that have attracted great attention [3]. Empirical
observations have revealed that disease/parasites can affect
the outcome of species competition in several different ways.
For instance, a shared parasite between the competing species
can change the fate of competition, allowing the otherwise
inferior competitor to rule out the superior competitor, as
observed by Park [4] with Tribolium castaneum (the stronger
competitor), Tribolium confusum, and the parasitoid Adelina
tribolii that lowers the fecundity of T. castaneum. There
is also evidence of species coexistence induced by special-
ist (i.e., affecting only one competitor) parasite. This is the

case of Anolis lizards in the Caribbean area [5]. Anolis gin-
givinus is a stronger competitor than A. wattsi and coexisting
populations are found only in the presence of the parasite
Plasmodium azurophilum. This parasite that reduces the
competitive abilities of the host rarely affectsA. wattsi but can
be common in A. gingivinus.

It is usually assumed that disease/parasites reduce either
the growth or competitive abilities of infected individuals
or both of them. Nevertheless, this is not always the case.
Regarding their effect on growth, some parasites spread
through host offspring, so that the strategy consists on
enhancing host fecundity to improve their spreading. For
instance, this is the case of Wolbachia and its host Bemisia
tabaci [6, 7]. Bemisia t. competes with Trialeurodes vaporari-
orum (Westwood) [8] and it has been reported that there are
no evidences of Westwood infected by Wolbachia [9]. As far
as competitive abilities are concerned, a laboratory study [10]
dealt with the effect of the tapeworm Hymenolepis diminuta
on competition between T. castaneum and T. confusum. T.
castaneum (as we have said, the superior competitor) has
higher infection and fitness costs from parasitism, so that a
parasite-mediated reversal of the outcome of competitionwas
expected. Nevertheless, T. confusumwas excluded even faster
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than what had happened in the absence of infection; it was
suggested that intraguild predation is behind this outcome
[10].

From the mathematical point of view, complete ecoepi-
demic competition models are known for the difficulty of
their analytical study (see [3] box 2.3 and references therein).
There exist a number of studies in continuous time [3] but, to
our knowledge, our work is the first attempt in discrete time.

An ecoepidemic competition model combines three dif-
ferent processes: each species demography, intra- and/or
interspecies competition, and epidemics. To our knowledge,
all the ecoepidemic competition models in the literature
consider that the three processes evolve within the same
time scale. In other words, it is assumed that the effects of
demography, competition, and infection are accounted for
at the population level. This assumption is fairly true for
certain long-term infections (as AIDS, tuberculosis, etc.) but
is not for some others. Indeed, there are diseases such that
a number of infection/recovery episodes take place within
each demography period. This assumption is equivalent to
that of the existence of different time scales associated with
each process. An example of this scenario is the human
trachoma, an infectious disease that is the leading cause of
blindness worldwide and is caused by amicroorganism called
Chlamydia trachomatis.The immune systemof human beings
can recover but reinfections happen often [11]. After repeated
episodes, successive scars cause the edge of the eyelid to
fold inward, causing pain and even permanent damage to
the cornea which may lead to irreversible blindness. In fact,
the assumption of an endemic background scenario can be
understood as the effect on the population dynamics of the
disease having attained one of its equilibrium states.

In this work we consider two models of competition and
disease. The first one is a single species model in which there
is intraspecific competition and the population is affected by a
disease-parasite. Demography-competition is assumed to be
governed by an adaptation of the Beverton-Holt model and
the disease corresponds to a discrete SIS epidemicmodel with
frequency-dependent transmission [12]. The second model
corresponds to two competing species, one of them affected
by specialist disease/parasite. Competition is built up from
the classical discrete time competition Leslie-Gower model
[13], and the disease is again introduced bymeans of a discrete
SIS epidemic model. This ecoepidemic model happens to be
rich enough to exhibit the complex behaviors described above
but simple enough to be analytically tractable.

One of the differences between continuous and discrete
models is that in the former all processes involved in the
model (demography, competition, and infection/recovery)
occur instantaneously at the same time, whereas in the later
it is usual to consider that processes take place sequentially
[14]. Keeping this idea as well as the separation of time scales
in mind, in the construction of both models we assume that a
large number 𝑘 of epidemic-related events take place within
each demographic/competition step. Concentrating our
attention on the case of the two competing populations, the
resulting model is a three-dimensional system. Making use
of the existence of different time scales, it is possible to build
up a reduced two-dimensional system that approximates

the behavior of the original system and that simplifies the
analysis of the model (see [15] for a recent review in the field
of discrete approximate reduction techniques). The resulting
reduced system can be regarded as a generalization of the
Leslie-Gower competition model and retains some of its
properties, as the fact that the unique attractor states are
equilibrium points. However, the reduced model allows for
disease-induced multistability scenarios.

This work is organized as follows: in Section 2 we con-
sider the interplay between intraspecific competition and a
disease on a single species model. In Section 3 we introduce
a competing species and carry on with the mathematical
analysis of the resulting system and its ecological interpre-
tation. Subsequently, we analyze separately the scenarios of a
disease affecting either species growth or species competitive
abilities.The conclusions in Section 4 and Appendix with the
proof of the mathematical results complete the manuscript.

2. Disease and Intraspecific Competition

We consider a host population with density dependent
regulation that is affected by a disease which acts on a shorter
time scale than the demographic dynamics. The time unit of
the discrete model is the one associated with its demographic
part. We consider that, in this time unit, called slow, a single
episode of demographic change following a number 𝑘 of
disease infection-recovery cycles happens. In this way we
intend to describe the fact that pathogens exhibit outbreaks
on short time scales, on the order of days or weeks, whereas
demographic changes might be considered annual.

Time in the slow time unit is denoted by 𝑡. 𝑁𝑆(𝑡) and𝑁𝐼(𝑡) represent the susceptible and the infected individuals,
respectively, at time 𝑡. Between time 𝑡 and time 𝑡 + 1 we
consider the disease dynamics acting sequentially 𝑘 times
followed by one demographic episode.

The disease dynamics is defined by means of the discrete
time SIS epidemic model studied in [12] whose associated
map is𝐹 (𝑁𝑆, 𝑁𝐼) = (𝐹𝑆 (𝑁𝑆, 𝑁𝐼) , 𝐹𝐼 (𝑁𝑆, 𝑁𝐼))= (𝑁𝑆 − 𝛽𝑁𝑆𝑁𝐼𝑁𝑆 + 𝑁𝐼 + 𝛾𝑁𝐼, 𝑁𝐼 + 𝛽𝑁𝑆𝑁𝐼𝑁𝑆 + 𝑁𝐼 − 𝛾𝑁𝐼) , (1)

so that the total effect of disease during one slow time unit is
represented by its 𝑘th iterate that we denote as 𝐹(𝑘).

We assume that transmission is frequency-dependent,
with 𝛽 being the transmission coefficient. The recovery
coefficient 𝛾 represents the fraction of infected individuals
that recover in a unit of time.

The disease dynamics keeps constant the population size𝐹𝑆 (𝑁𝑆, 𝑁𝐼) + 𝐹𝐼 (𝑁𝑆, 𝑁𝐼) = 𝑁𝑆 + 𝑁𝐼. (2)

Henceforth we assume that the following inequalities
hold: 𝛽 < (1 + √𝛾)2 , 𝛾 ≤ 1, (3)

so that if we denote R2+ = [0,∞) × [0,∞) and ∘R2+ = (0,∞)×(0,∞), one has 𝐹(R2+) ⊂ R2+ [12]. Note that condition 𝛾 ≤ 1
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amounts to requiring that the number of recovered individ-
uals in one time step can not be greater than the number of
infected individuals, which clearly is necessary for the num-
ber of infected individuals to remain positive. The second
condition in (3) says that the transmission coefficient can not
be too high with respect to the recovery coefficient because,
if this were not so, the number of susceptibles might become
negative.

The asymptotic behavior of the solutions of the discrete
system defined by map 𝐹 (1) is studied in [12]. The basic
reproduction number for this model is 𝑅0 = 𝛽/𝛾. If 𝑅0 ≤ 1
then for any positive initial condition the number of infected
individuals monotonically decreases to 0; that is, positive
solutions converge to the disease-free equilibrium 𝑁∗0 =(𝑁, 0), where𝑁 is the constant population size. On the other
hand, if 𝑅0 > 1 the disease becomes endemic. Assuming, in
addition to inequalities (3), that𝛾 < 𝛽 ≤ 2 + 𝛾, (4)

positive solutions converge to an asymptotically stable
endemic equilibrium

𝑁∗𝑒 = (𝑁∗𝑆 , 𝑁∗𝐼 ) = ((𝛾𝛽)𝑁, (1 − 𝛾𝛽)𝑁) . (5)

If 2 + 𝛾 < 𝛽 < (1 +√𝛾)2 then the monotonic convergence
to an endemic equilibrium disappears giving rise to period-
doubling and chaotic behavior.

In the followingwewill restrict to the casewhere (4) holds
and therefore the endemic equilibrium is stable. The fact that
the fast disease process attains an equilibrium point in the
long term allows one to reduce the dimension of the system
that we are proposing. This equilibrium is expressed as the
limit, 𝐹, of the iterates of map 𝐹𝐹 (𝑁𝑆, 𝑁𝐼) fl lim

𝑘→∞
𝐹(𝑘) (𝑁𝑆, 𝑁𝐼) = (]𝑁, (1 − ])𝑁) , (6)

where𝑁 fl 𝑁𝑆 + 𝑁𝐼 and ] is defined by

] fl
{{{{{
1, if 𝛽 ≤ 𝛾,𝛾𝛽 , if 𝛾 < 𝛽 ≤ 2 + 𝛾. (7)

Note that ] = 1 implies that the disease is eradicated.
To build up our demographic model where we have to

take into account susceptible and infected individuals, we
start from the Beverton-Holt model [16]

𝑁(𝑡 + 1) = 𝑏𝑁 (𝑡)1 + 𝑐𝑁 (𝑡) , (8)

where the positive parameters 𝑏 and 𝑐 are the intrinsic
growth rate and the intraspecific competition coefficient.
There are two possible asymptotic behaviors of the solutions
of equation (8) with positive initial condition:

(1) If 𝑏 ≤ 1 then lim𝑡→∞𝑁(𝑡) = 0.
(2) If 𝑏 > 1 then lim𝑡→∞𝑁(𝑡) = (𝑏 − 1)/𝑐.

Note that this corresponds to a logistic behavior with
carrying capacity (𝑏 − 1)/𝑐.

Now we adapt the Beverton-Holt model to consider indi-
viduals classified into susceptible and infected.The trait-med-
iated indirect effects of parasites on hosts are considered
both in the growth and in the intraspecific competition. We
assume different intrinsic growth rates for susceptible, 𝑏𝑆, and
infected, 𝑏𝐼, individuals.We also distinguish four intraspecific
competition coefficients: 𝑐𝑆𝑆, 𝑐𝑆𝐼, 𝑐𝐼𝑆, and 𝑐𝐼𝐼. The resulting
model is 𝑁𝑆 (𝑡 + 1) = 𝑏𝑆𝑁𝑆 (𝑡)1 + 𝑐𝑆𝑆𝑁𝑆 (𝑡) + 𝑐𝑆𝐼𝑁𝐼 (𝑡) ,𝑁𝐼 (𝑡 + 1) = 𝑏𝐼𝑁𝐼 (𝑡)1 + 𝑐𝐼𝑆𝑁𝑆 (𝑡) + 𝑐𝐼𝐼𝑁𝐼 (𝑡) . (9)

To build up the complete model combining the demo-
graphic and the disease processes we compose the 𝑘th iterate𝐹(𝑘) of map 𝐹 (1) and the map defining system (9). Using
the notation 𝐹(𝑘)(𝑁𝑆, 𝑁𝐼) = (𝐹(𝑘)𝑆 (𝑁𝑆, 𝑁𝐼), 𝐹(𝑘)𝐼 (𝑁𝑆, 𝑁𝐼)) the
complete model has the form𝑁𝑆 (𝑡 + 1)

= 𝑏𝑆𝐹(𝑘)𝑆 (𝑁𝑆 (𝑡) ,𝑁𝐼 (𝑡))1 + 𝑐𝑆𝑆𝐹(𝑘)𝑆 (𝑁𝑆 (𝑡) ,𝑁𝐼 (𝑡)) + 𝑐𝑆𝐼𝐹(𝑘)𝐼 (𝑁𝑆 (𝑡) ,𝑁𝐼 (𝑡)) ,𝑁𝐼 (𝑡 + 1)
= 𝑏𝐼𝐹(𝑘)𝐼 (𝑁𝑆 (𝑡) ,𝑁𝐼 (𝑡))1 + 𝑐𝐼𝑆𝐹(𝑘)𝑆 (𝑁𝑆 (𝑡) ,𝑁𝐼 (𝑡)) + 𝑐𝐼𝐼𝐹(𝑘)𝐼 (𝑁𝑆 (𝑡) ,𝑁𝐼 (𝑡)) .

(10)

System (10) can be reduced to a scalar equation from
which we can approximate the asymptotic behavior of its
solutions. To do so we make use of discrete approximate
reduction techniques and follow the reduction procedure
presented in [15, 17]. Assuming that the disease process has
attained its equilibrium (6), the dynamics of the total number
of individuals in the population,𝑁 = 𝑁𝑆+𝑁𝐼, can be approxi-
mated by the following equation:𝑁(𝑡 + 1) = 𝑏𝑆]𝑁(𝑡)1 + 𝑐𝑆𝑆]𝑁(𝑡) + 𝑐𝑆𝐼 (1 − ])𝑁 (𝑡)+ 𝑏𝐼 (1 − ])𝑁 (𝑡)1 + 𝑐𝐼𝑆]𝑁(𝑡) + 𝑐𝐼𝐼 (1 − ])𝑁 (𝑡) , (11)

obtained by adding up the two equations in (10) and using the
following approximations:𝑁𝑆 ≈ ]𝑁 and𝑁𝐼 ≈ (1 − ])𝑁 [18].

We can write (11) in the next simplified form𝑁(𝑡 + 1) = 𝑏1𝑁(𝑡)1 + 𝑐1𝑁(𝑡) + 𝑏2𝑁(𝑡)1 + 𝑐2𝑁(𝑡) , (12)

with four parameters defined as 𝑏1 = 𝑏𝑆], 𝑏2 = 𝑏𝐼(1 − ]), 𝑐1 =𝑐𝑆𝑆] + 𝑐𝑆𝐼(1 − ]), and 𝑐2 = 𝑐𝐼𝑆] + 𝑐𝐼𝐼(1 − ]). The asymptotic
behavior of its solutions is stated in the next theorem.

Theorem 1. One considers equation (12) with 𝑏1, 𝑐1, and 𝑐2
being positive and 𝑏2 nonnegative. Let 𝑁(𝑡) be any solution of
(12) with positive initial condition:
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(1) If 𝑏1 + 𝑏2 ≤ 1 then lim𝑡→∞𝑁(𝑡) = 0.
(2) If 𝑏1 + 𝑏2 > 1 then lim𝑡→∞𝑁(𝑡) = 𝑁, where

𝑁 = 12𝑐1𝑐2 ((𝑏2 − 1) 𝑐1 + (𝑏1 − 1) 𝑐2
+ √((1 − 𝑏2) 𝑐1 + (1 − 𝑏1) 𝑐2)2 + 4 (𝑏1 + 𝑏2 − 1) 𝑐1𝑐2) . (13)

Proof. See Th. A.4 in [18].

Making use of the last theorem and the results on approxi-
mate aggregation in [18], we can decide the asymptotic behav-
ior of solutions of system (10). We assume that the disease
becomes endemic (𝑅0 > 1, i.e., ] < 1) because otherwise
system (10) behaves as the scalar Beverton-Holt model.
Therefore we have that, for any positive initial condition, the
solution (𝑁𝑆(𝑡),𝑁𝐼(𝑡)) of system (10) verifies the following:

(1) If 𝑏𝑆] + 𝑏𝐼(1 − ]) ≤ 1 then it approximately tends to(0, 0).
(2) If 𝑏𝑆] + 𝑏𝐼(1 − ]) > 1 then it approximately tends to𝑊(𝑁/𝑅0, (1−1/𝑅0)𝑁)where𝑊 is the transformation

associated with the competition process (9); that is,

𝑊(𝑁𝑅0 , (1 − 1𝑅0)𝑁)
= ( 𝑏1𝑆𝑁𝑅0 (1 + 𝑐1𝑁), 𝑏1𝐼 (1 − 1/𝑅0)𝑁1 + 𝑐2𝑁 ) . (14)

Note that if the disease is established, either the popula-
tion tends to extinction or it tends to an endemic equilibrium.
To analyze the influence of the parasite on the population
dynamics we compare the asymptotic behaviors of the solu-
tions of (8), representing the dynamics of the disease-free
population, and (11), which yields the approximate long-term
behavior of system (10). For the comparison we assume that
parameters affecting susceptible individuals in system (10)
coincide with the corresponding ones in (8), that is, 𝑏 = 𝑏𝑆
and 𝑐 = 𝑐𝑆𝑆.

It is straightforward to check that max{𝑏𝑆, 𝑏𝐼} < 1 implies
extinction and min{𝑏𝑆, 𝑏𝐼} > 1 endemic stabilization. On the
other hand, if 𝑏𝑆 > 1, that is, if the population without disease
tends to (𝑏𝑆 − 1)/𝑐𝑆𝑆, then the disease leads the population
to extinction for 𝑏𝐼 small enough, specifically when 𝑏𝐼 <(1 − 𝑏𝑆])/(1 − ]). Conversely, if the population is not viable
without disease, 𝑏𝑆 < 1, a large enough infected growth
rate, 𝑏𝐼 > (1 − 𝑏𝑆])/(1 − ]), entails the population attaining
equilibrium (𝑁/𝑅0, (1 − 1/𝑅0)𝑁).

If the population attains a positive equilibrium in both
cases, with and without disease, we can explore the influence
of the disease by comparing the two final population sizes.
Without disease it is (𝑏𝑆 − 1)/𝑐𝑆𝑆 and with disease 𝑁. We do
the comparison in the relevant particular case in which the
disease does not affect the competitive abilities of individuals,
that is, 𝑐𝑆𝑆 = 𝑐𝑆𝐼 = 𝑐𝐼𝑆 = 𝑐𝐼𝐼 = 𝑐. In this case we obtain the ratio𝑁(𝑏𝑆 − 1) /𝑐 = 𝑏𝑆] + 𝑏𝐼 (1 − ]) − 1𝑏𝑆 − 1 . (15)

As a function of the growth rate of infected individuals,𝑏𝐼, this ratio is increasing and equals 1 for 𝑏𝐼 = 𝑏𝑆. More
interesting is its dependence on ] = 1/𝑅0𝑁(𝑏𝑆 − 1) /𝑐 = 𝑏𝑆 − 𝑏𝐼𝑏𝑆 − 1 ] + 𝑏𝐼 − 1𝑏𝑆 − 1 . (16)

If 𝑏𝑆 > 𝑏𝐼 then it increases with ]; that is, the larger 𝑅0, the
smaller the ratio. Conversely, if 𝑏𝑆 < 𝑏𝐼 the larger𝑅0, the larger
the ratio.

3. Disease and Interspecific Competition

3.1. Model Construction and Reduction. In this section we
generalize the setting of the previous one and introduce a
second species, which we consider disease free, which com-
petes, according to the well-known Leslie-Gower model [13],
with the species which is affected by the disease. Specifically,
let us consider two species that we denote by 1 and 2, in
competition and a disease defined by system (1) and which
affects only species 1. Let 𝑁1𝑆 and 𝑁1𝐼 represent the number
of susceptible and infected individuals of species 1 and let𝑁2 be the amount of individuals of species 2. Then, the slow
dynamics is described by

𝑁1𝑆 (𝑡 + 1) = 𝑏1𝑆𝑁1𝑆 (𝑡)1 + 𝑐𝑆𝑆𝑁1𝑆 (𝑡) + 𝑐𝑆𝐼𝑁1𝐼 (𝑡) + 𝑐𝑆2𝑁2 (𝑡) ,
𝑁1𝐼 (𝑡 + 1) = 𝑏1𝐼𝑁1𝐼 (𝑡)1 + 𝑐𝐼𝑆𝑁1𝑆 (𝑡) + 𝑐𝐼𝐼𝑁1𝐼 (𝑡) + 𝑐𝐼2𝑁2 (𝑡) ,𝑁2 (𝑡 + 1) = 𝑏2𝑁2 (𝑡)1 + 𝑐2𝑆𝑁1𝑆 (𝑡) + 𝑐2𝐼𝑁1𝐼 (𝑡) + 𝑐22𝑁2 (𝑡) ,

(17)

where all growth and competition coefficients are assumed to
be positive.

As in Section 2, we consider that in the time unit of
the model a single episode of demographic change happens,
defined by (17), followed by a number 𝑘 of disease infection-
recovery cycles corresponding to the SIS model (1) intro-
duced in Section 2.Then, the complete system that takes into
account the joint effect of the slow and fast processes takes
the form

𝑁1𝑆 (𝑡 + 1) = 𝑏1𝑆𝐹(𝑘)𝑆 (𝑁1𝑆 (𝑡) ,𝑁1𝐼 (𝑡))1 + 𝑐𝑆𝑆𝐹(𝑘)𝑆 (𝑁1𝑆 (𝑡) ,𝑁1𝐼 (𝑡)) + 𝑐𝑆𝐼𝐹(𝑘)𝐼 (𝑁1𝑆 (𝑡) ,𝑁1𝐼 (𝑡)) + 𝑐𝑆2𝑁2 (𝑡) ,
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𝑁1𝐼 (𝑡 + 1) = 𝑏1𝐼𝐹(𝑘)𝐼 (𝑁1𝑆 (𝑡) ,𝑁1𝐼 (𝑡))1 + 𝑐𝐼𝑆𝐹(𝑘)𝑆 (𝑁1𝑆 (𝑡) ,𝑁1𝐼 (𝑡)) + 𝑐𝐼𝐼𝐹(𝑘)𝐼 (𝑁1𝑆 (𝑡) ,𝑁1𝐼 (𝑡)) + 𝑐𝐼2𝑁2 (𝑡) ,𝑁2 (𝑡 + 1) = 𝑏2𝑁2 (𝑡)1 + 𝑐2𝑆𝐹(𝑘)𝑆 (𝑁1𝑆 (𝑡) ,𝑁1𝐼 (𝑡)) + 𝑐2𝐼𝐹(𝑘)𝐼 (𝑁1𝑆 (𝑡) ,𝑁1𝐼 (𝑡)) + 𝑐22𝑁2 (𝑡) .
(18)

If we follow the reduction procedure presented in [15, 17, 18],
which essentially consists in adding up the first two equations
in (18) and using the approximations 𝑁1𝑆 ≈ ](𝑁1𝑆 + 𝑁1𝐼 ) and𝑁1𝐼 ≈ (1 − ])(𝑁1𝑆 + 𝑁1𝐼 ), we obtain the reduced system

𝑁1 (𝑡 + 1) = 𝑏1𝑆]𝑁1 (𝑡)1 + 𝑐𝑆1𝑁1 (𝑡) + 𝑐𝑆2𝑁2 (𝑡)+ 𝑏1𝐼 (1 − ])𝑁1 (𝑡)1 + 𝑐𝐼1𝑁1 (𝑡) + 𝑐𝐼2𝑁2 (𝑡) ,𝑁2 (𝑡 + 1) = 𝑏2𝑁2 (𝑡)1 + 𝑐21𝑁1 (𝑡) + 𝑐22𝑁2 (𝑡) ,
(19)

where 𝑁1 fl 𝑁1𝑆 + 𝑁1𝐼 , 𝑐𝑆1 fl 𝑐𝑆𝑆] + 𝑐𝑆𝐼(1 − ]), 𝑐𝐼1 fl 𝑐𝐼𝑆] +𝑐𝐼𝐼(1 − ]), and 𝑐21 fl 𝑐2𝑆] + 𝑐2𝐼(1 − ]).
Note that system (19) generalizes the classical Leslie-

Gower competition model [13] in the sense that at ] = 1
(i.e., the disease-free scenario) system (19) becomes the usual
Leslie-Gower competition model.

3.2. Model Analysis. In order to carry out the mathematical
treatment of system (19) we express it in the form(𝑁1 (𝑡 + 1) ,𝑁2 (𝑡 + 1)) = 𝐻(𝑁1 (𝑡) ,𝑁2 (𝑡)) , (20)

where𝐻 is the map defined by𝐻(𝑥1, 𝑥2) = (𝐻1 (𝑥1, 𝑥2) ,𝐻2 (𝑥1, 𝑥2))= (𝜙1 (𝑥1, 𝑥2) 𝑥1, 𝜙2 (𝑥1, 𝑥2) 𝑥2) ,𝜙1 (𝑥1, 𝑥2) fl 𝑟𝑆1 + 𝑐𝑆1𝑥1 + 𝑐𝑆2𝑥2 + 𝑟𝐼1 + 𝑐𝐼1𝑥1 + 𝑐𝐼2𝑥2 ,𝜙2 (𝑥1, 𝑥2) fl 𝑟21 + 𝑐21𝑥1 + 𝑐22𝑥2 ,𝑟𝑆 fl 𝑏1𝑆], 𝑟𝐼 fl 𝑏1𝐼 (1 − ]) , 𝑟2 = 𝑏2.
(21)

Note that all the parameters of the model are positive except
possibly 𝑟𝐼 that is nonnegative. As we will see, the numbers𝜙1 (0, 0) = 𝑟𝑆 + 𝑟𝐼 = 𝑏1𝑆] + 𝑏1𝐼 (1 − ]) ,𝜙2 (0, 0) fl 𝑟2 = 𝑏2 (22)

will play an important role in the dynamics of the system.
We note that the functional form of system (20) is a

particular case of a model obtained in [19] which studies

the dynamics of two spatially distributed populations in
competition in which there is fast migration of individuals
between the different patches. In that work an analytical study
of the system was carried out in the case in which 𝜙𝑖(0, 0) ≤ 1
for at least one value of 𝑖 = 1, 2, which essentially corresponds
to our Proposition 3 andTheorem4. InTheorem6we provide
a full analytical study of the behavior of the orbits of the
system in the case 𝜙𝑖(0, 0) > 1 for 𝑖 = 1, 2, which was only
addressed numerically in [19].

Let 𝐴1 = {(𝑥1, 0) : 𝑥1 > 0} and 𝐴2 = {(0, 𝑥2) : 𝑥2 > 0}
be the positive axes. It is immediate to realize that the sets
R2+,

∘

R
2

+, and 𝐴 𝑖, 𝑖 = 1, 2 are forward invariant by 𝐻. In the
sequel, unless otherwise stated we will always assume that we
are working on R2+.

Let us study the isoclines of the system, that is, the sets
defined by 𝑥1 = 𝐻1(𝑥1, 𝑥2) and 𝑥2 = 𝐻2(𝑥1, 𝑥2). Clearly,
besides the positive axes 𝐴1 (resp., 𝐴2) in which the variable𝑥2 (resp.,𝑥1) is constant, the isoclines are the curves Γ𝑖 defined
by 𝜙𝑖(𝑥1, 𝑥2) = 1, for 𝑖 = 1, 2.
Lemma 2. The isoclines Γ1 and Γ2 are, respectively, a hyperbola
and a straight line. For each 𝑖 = 1, 2, Γ𝑖 intersects ∘R2+ if and only
if 𝜙𝑖(0, 0) > 1 and in that case Γ𝑖 intersects both the positive
axes 𝐴1 and 𝐴2. Moreover Γ1 ∩ R2+ can be written in the form𝑥2 = Φ(𝑥1), 𝑥1 ∈ [0, 𝑅] for a certain 𝑅 > 0, where Φ is a
strictly decreasing convex function.

Except in the degenerate case in which Γ1 and Γ2 are in
fact the same straight line, there can exist at most two positive
equilibriums.

Proof. See Appendix.

Let us now consider the existence of equilibriums for
system (20). Note that 𝐸∗0 fl (0, 0) is an equilibrium point
for all values of the parameters. Using Lemma 2 we conclude
the follwoing:

(i) For each 𝑖 = 1, 2, there exists a semitrivial equilibrium
point𝐸∗𝑖 on the positive axis𝐴 𝑖 if and only if𝜙𝑖(0, 0) >1. In that case the semitrivial equilibrium is unique.

(ii) A necessary condition for the existence of a positive
equilibrium is that 𝜙𝑖(0, 0) > 1 for both 𝑖 = 1, 2,
and in that case there can exist at most two such
equilibriums.

In what follows we will write (𝑥1, 𝑥2) ≤ (𝑥1, 𝑥2) (resp.,(𝑥1, 𝑥2) < (𝑥1, 𝑥2)) to denote that 𝑥1 ≤ 𝑥1 and 𝑥2 ≤ 𝑥2
(resp., 𝑥1 < 𝑥1 and 𝑥2 < 𝑥2). Similarly, we will write
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(𝑥1, 𝑥2) ≤𝐾 (𝑥1, 𝑥2) (resp., (𝑥1, 𝑥2) <𝐾 (𝑥1, 𝑥2)) to denote that𝑥1 ≤ 𝑥1 and 𝑥2 ≥ 𝑥2 (resp., 𝑥1 < 𝑥1 and 𝑥2 > 𝑥2).
Proposition 3. Let us consider system (20).

(a) All solutions in R2+ are forward bounded. More specifi-
cally,

𝐻(R2+) ⊂ 𝑆 fl [0, 𝑟𝑆𝑐𝑆1 + 𝑟𝐼𝑐𝐼1) × [0, 𝑟2𝑐22) . (23)

(b) 𝐻 is strongly competitive in R2+; that is, if 𝑥, 𝑥 ∈
R2+ are distinct points with 𝑥 ≤𝐾 𝑥 it follows that𝐻(𝑥) <𝐾𝐻(𝑥) [20].

(c) All orbits in R2+ are eventually componentwise mono-
tone; that is, for each (𝑁1(0),𝑁2(0)) ∈ R2+, the corre-
sponding solution (𝑁1(𝑡),𝑁2(𝑡)) verifies that 𝑁𝑖(𝑡) is
eventually monotone for each 𝑖 = 1, 2. Moreover, all
orbits tend to an equilibrium as 𝑡 → ∞.

Proof. See Appendix.

The next result analyzes the behavior of solutions of
system (20) except in the case in which 𝜙𝑖(0, 0) > 1, 𝑖 = 1, 2.
Theorem 4. Let us consider system (20).

(a) For each 𝑖 = 1, 2, if 𝜙𝑖(0, 0) ≤ 1 then for any initial
value on R2+ species 𝑖 tends to extinction as 𝑡 → ∞.

(b) If 𝜙𝑖(0, 0) ≤ 1 for 𝑖 = 1, 2, all orbits in R2+ tend to 𝐸∗0 ,
and if the inequalities are strict then 𝐸∗0 is hyperbolic.
If 𝜙𝑖(0, 0) > 1 for 𝑖 = 1, 2, then 𝐸∗0 is a repeller and
therefore no orbit can converge to 𝐸∗0 .

(c) If 𝜙1(0, 0) > 1 and 𝜙2(0, 0) ≤ 1 then (1) all orbits with𝑁1(0) = 0 tend to 𝐸∗0 and (2) all orbits with𝑁1(0) > 0
tend to 𝐸∗1 .

(d) If 𝜙2(0, 0) > 1 and 𝜙1(0, 0) ≤ 1 then (1) all orbits with𝑁2(0) = 0 tend to 𝐸∗0 and (2) all orbits with𝑁2(0) > 0
tend to 𝐸∗2 .

Proof. See Appendix.

Let us now consider the case in which 𝜙𝑖(0, 0) > 1 for𝑖 = 1, 2. In the first place we study the local stability of the
semitrivial equilibriums and the behavior of orbits on the
positive axes.

Proposition 5. Let us consider system (20) and let us assume
that 𝜙𝑖(0, 0) > 1 for 𝑖 = 1, 2.

(a) All orbits starting on the positive 𝑖-axis 𝐴 𝑖 converge to𝐸∗𝑖 , 𝑖 = 1, 2.
(b) Let 𝑖 = 1, 2 be fixed. If 𝜙𝑗(𝐸∗𝑖 ) < 1, 𝑗 ̸= 𝑖, then 𝐸∗𝑖 is

hyperbolic and attracting. If 𝜙𝑗(𝐸∗𝑖 ) > 1, 𝑗 ̸= 𝑖, then 𝐸∗𝑖
is hyperbolic and unstable.

Proof. (a) Let 𝑖 = 1, 2 be fixed. We know that 𝐴 𝑖 is invariant
for𝐻 and then any orbit corresponding to an initial condition

on𝐴 𝑖must converge to either𝐸∗0 or𝐸∗𝑖 . FromTheorem 4 part
(b) 𝐸∗0 is a repeller and therefore the result follows.

(b) It follows from the usual analysis of the eigenvalues
of the corresponding Jacobian matrix. Standard calculations
lead to the results bearing in mind that 𝜙𝑖(𝐸∗𝑖 ) = 1.

In order to study the behavior of solutions for positive
initial conditions, we will consider different cases based on
the relative position of the intercepts of the isoclines. To this
end, we define 𝑅𝑖𝑗 as the 𝑗-intercept of Γ𝑖, 𝑖, 𝑗 = 1, 2. It is
immediate to check that 𝑅𝑖𝑗 is given by

𝑅1𝑗 = 12𝑐𝑆𝑗𝑐𝐼𝑗 (𝛼𝑗 + √𝛼2𝑗 + 4𝑐𝑆𝑗𝑐𝐼𝑗 (𝑟𝑆 + 𝑟𝐼 − 1)) ,
𝑗 = 1, 2,𝑅2𝑗 = 𝑟2 − 1𝑐2𝑗 , 𝑗 = 1, 2, (24)

where 𝛼𝑗 fl 𝑟𝑆(𝑐𝐼𝑗 − 1) + 𝑟𝐼(𝑐𝑆𝑗 − 1), 𝑗 = 1, 2.
Now we distinguish the following scenarios:

(i) Case 𝐴: 𝑅11 < 𝑅21 and 𝑅12 > 𝑅22.
(ii) Case 𝐵: 𝑅11 > 𝑅21 and 𝑅12 < 𝑅22.
(iii) Case 𝐶1: 𝑅11 > 𝑅21 and 𝑅12 > 𝑅22.
(iv) Case 𝐶2: 𝑅11 < 𝑅21 and 𝑅12 < 𝑅22.
Taking into account Lemma 2, the isoclines divide

∘

R
2

+

in a finite number of open connected and disjoint sets 𝑈𝑘,𝑘 = 1, . . . , 𝑞, in which 𝑥𝑖 is either strictly increasing or
strictly decreasing for each 𝑖 = 1, 2. To describe the kind of
monotonicity in each region we will use arrows, in such a
way that, for example, the situation in which 𝑥1 decreases and𝑥2 increases corresponding to a horizontal arrow pointing
to the left and a vertical arrow pointing up. Figure 1 shows
the different configurations. Note that in case 𝐶1 we can
distinguish two generic cases depending on whether the two
isoclines do not intersect (case 𝐶1𝑎) or intersect at two points
(case 𝐶1𝑏).

The following result deals with the number and location
of the coexistence equilibriums and with the global behavior
of solutions for positive initial conditions.

Theorem6. Let us consider system (20) and let us assume that𝜙𝑖(0, 0) > 1 for 𝑖 = 1, 2.
(1) If there exists only one positive equilibrium that one

denotes as 𝐸∗3 = (𝑒∗1 , 𝑒∗2 ), then one has 0 < 𝑒∗1 <𝑅11 and 0 < 𝑒∗2 < 𝑅22. In the case that there exist
two positive equilibriums 𝐸∗3 = (𝑒∗31, 𝑒∗32) and 𝐸∗4 =(𝑒∗41, 𝑒∗42), then they can be ordered in such a way that0 < 𝑒∗31 < 𝑒∗41 < 𝑅11 and 0 < 𝑒∗42 < 𝑒∗32 < 𝑅22.

(2) Study of the different cases is as follows:

(i) Case 𝐴. 𝐸∗1 and 𝐸∗2 are hyperbolic and unstable.
There exists exactly one positive equilibrium 𝐸∗3
and it is hyperbolic and attracting. All orbits
starting on

∘

R
2

+ converge to 𝐸∗3 .
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(a) Case A. 𝑅11 < 𝑅21 and 𝑅12 > 𝑅22
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(b) Case B. 𝑅11 > 𝑅21 and 𝑅12 < 𝑅22
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(c) Case𝐶1𝑎. 𝑅11 > 𝑅21 and 𝑅12 > 𝑅22 and no positive
equilibrium
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(d) Case 𝐶1𝑏. 𝑅11 > 𝑅21 and 𝑅12 > 𝑅22
and two positive equilibriums

E
∗
2

E
∗
0

E
∗
1

Γ1

Γ2

U1

U3

U2

C2

(e) Case 𝐶2. 𝑅11 < 𝑅21 and 𝑅12 < 𝑅22

Figure 1: Different configurations of isoclines and equilibrium points of system (20) when 𝜙𝑖(0, 0) > 1 for 𝑖 = 1, 2, in terms of the relative
position of the intercepts of isoclines, 𝑅𝑖𝑗 (24).

(ii) Case 𝐵. 𝐸∗1 and 𝐸∗2 are hyperbolic and attracting.
There exists exactly only one positive equilibrium𝐸∗3 which is hyperbolic and a saddle.Moreover𝐸∗3
can not attract any open set and therefore almost
all orbits starting in

∘

R
2

+ converge to either 𝐸∗1 or𝐸∗2 .
(iii) Case 𝐶1. 𝐸∗1 is hyperbolic and attracting, 𝐸∗2 is

hyperbolic and unstable, and there can exist zero
(case 𝐶1𝑎), two (case 𝐶1𝑏), or one (nongeneric
case) positive equilibriums. Let us deal with the
generic cases:

(a) Case 𝐶1𝑎. All orbits starting on ∘R2+ converge
to 𝐸∗1 .

(b) Case 𝐶1𝑏. If one orders the two positive
equilibriums 𝐸∗3 and 𝐸∗4 as indicated in
part (1), then no orbits starting in

∘

R
2

+ can
converge to 𝐸∗2 . Besides 𝐸∗3 is hyperbolic and
attracting and 𝐸∗4 is hyperbolic and a saddle.
Moreover 𝐸∗4 can not attract any open set
and therefore almost all orbits starting in

∘

R
2

+

converge to either 𝐸∗1 or 𝐸∗3 .
(iv) Case 𝐶2. 𝐸∗2 is hyperbolic and asymptotically

stable, 𝐸∗1 is hyperbolic and unstable, and there

are no positive equilibriums. All orbits starting on
∘

R
2

+ converge to 𝐸∗2 .
Proof. See Appendix.

The analytic expression of the positive equilibrium points
is quite complex and we omit it, although we will specify it in
a particular case considered in Section 3.4.

In order to get a qualitative idea of the effect of the disease
in the competition dynamics, let us compare the different
scenarios regarding the long-term behavior of the classical
Leslie-Gower competition model (in the case where there
can exist positive equilibriums) with those resulting from
Theorem 6 in which the effect of a disease in species 1 is
taken into account. In the classical Leslie-Gower competition
model, we can have (a) competitive exclusion of one of the
two species for any initial condition (corresponding to our
cases 𝐶1𝑎 and 𝐶2), (b) competitive exclusion of one species
depending on the initial condition (corresponding to our
case 𝐵), and (c) species coexistence for any initial condition
(corresponding to our case 𝐴). Therefore, the introduction
of the disease includes a new scenario which is exclusion
of species 2 or species coexistence depending on initial
conditions (our case 𝐶1𝑏).

As we did in Section 2, the results on approximate
aggregation in [18] together with Theorems 4 and 6 allow
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one to study the asymptotic behavior of solutions of system
(18). Loosely speaking, the results in [18] guarantee that when
a solution of the reduced system (20) with initial condition(𝑎1, 𝑎2) tends to a hyperbolic equilibrium (𝑥∗1 , 𝑥∗2 ) then if 𝑘 is
large enough, the corresponding solution of system (18) (i.e.,
a solution of (18) with initial condition such that 𝑁1𝑆 (0) +𝑁1𝐼 (0) = 𝑎1, 𝑁2(0) = 𝑎2) tends to an equilibrium which is
approximately 𝑇(]𝑥∗1 , (1 − ])𝑥∗1 , 𝑥∗2 ) where 𝑇 is the mapping,
defined by (17), that corresponds to the competition process;
that is,

𝑇 (]𝑥∗1 , (1 − ]) 𝑥∗1 , 𝑥∗2 ) = ( 𝑏1𝑆]𝑥∗11 + 𝑐𝑆1𝑥∗1 + 𝑐𝑆2𝑥∗2 ,𝑏1𝐼 (1 − ]) 𝑥∗11 + 𝑐𝐼1𝑥∗1 + 𝑐𝐼2𝑥∗2 , 𝑏2𝑥∗21 + 𝑐21𝑥∗1 + 𝑐22𝑥∗2 ) . (25)

In the case in which the disease is endemic, 𝑅0 > 1, the
previous expression has the form 𝑇(𝑥∗1 /𝑅0, (1 − 1/𝑅0)𝑥∗1 , 𝑥∗2 ).

Figure 2 shows the basins of attraction of 𝐸∗1 and 𝐸∗3
for the reduced system together with some solutions of the
original system for a choice of parameters corresponding
to case 𝐶1𝑏. Note in particular that, as predicted by the
theory, when the initial condition is such that the solution
of the aggregated system tends to 𝐸∗1 = (𝑥∗1 , 0), the solution
of the original system converges to 𝑇(]𝑥∗1 , (1 − ])𝑥∗1 , 0) =(𝑏𝑆1]𝑥∗1 /(1 + 𝑐𝑆1𝑥∗1 ), 𝑏𝐼1(1 − ])𝑥∗1 /(1 + 𝑐𝐼1𝑥∗1 ), 0).

In the next sections we analyze particular cases of the
above setting in order to gain more insight into the effect of
infection in the dynamics of competition.

3.3. Disease Modified Competitive Abilities. In [21] the con-
sequences of parasite-modified competitive abilities of prey
are studied in a predator-prey system. They find that they
are crucial by showing that they may lead to coexistence of
predator and prey, a situation that is impossible otherwise.
These findings enhance the importance of the indirect effects
of parasite-mediated modifications of host life-history traits
beyond the direct effects as, that is, on reproduction.

We consider a first particular case in which disease affects
only the competitive abilities of infected individuals.Thus we
assume that the growth rate of species 1 is unaffected by the
disease, that is, 𝑏1 fl 𝑏1𝑆 = 𝑏. Moreover, we suppose that the
competitive abilities of infected individuals in species 1 are
worse that those corresponding to the susceptible individuals.
Specifically we assume 𝑐𝑆𝑆 > 𝑐𝑆𝐼, 𝑐2𝑆 > 𝑐2𝐼; that is, the interfer-
ence the susceptible individuals produce either on themselves
or on species 2 individuals is larger than the corresponding
interference exerted by infected individuals. At the same
time we suppose that the rest of intraspecific competition
coefficients of species 1 are equal, that is, 𝑐𝐼𝐼 = 𝑐𝐼𝑆 = 𝑐𝑆𝑆.

At first glance we could predict that our assumptions will
yield a negative impact in the capacity of species 1 to compete
against species 2 in the presence of infected individuals. How-
ever we will see that, for certain range of parameter values,
the combined effect of competition and fast disease dynamics
gives rise to scenarios in which the disease endemicity (1/] =𝑅0 > 1) improves the outcome of competition for species 1
with respect to the disease-free setting (] = 1).

To illustrate this last point we treat the particular example
of system (17) with parameters values verifying the above
relations. Let 𝑏1 fl 𝑏1𝑆 = 𝑏1𝐼 > 1, 𝑏2 = 5, 𝑐𝑆𝑆 = 3, 𝑐𝑆𝐼 = 2.8,𝑐𝑆2 = 𝑐𝐼𝑆 = 𝑐𝐼𝐼 = 𝑐𝐼2 = 𝑐22 = 1, 𝑐2𝑆 = 2, 𝑐2𝐼 = 1.8, and
] ∈ (0, 1]. ApplyingTheorem 6 to the corresponding reduced
system (19) we show in Figure 3 the asymptotic behavior of
solutions of system (17) for a range of values of parameters ]
and 𝑏1.

In the first place, notice that all five scenarios shown in
Theorem 6 can happen. Secondly, we highlight two unex-
pected behaviors that appear as the basic reproduction
number of the disease 𝑅0 = 1/] increases.The first one corre-
sponds to values of parameter 𝑏1 in the approximate range
3.3 to 5. Solutions tend to species 1 exclusion, case 𝐶2, in the
disease-free situation (] = 1) whereas increasing𝑅0 (decreas-
ing ]) makes case 𝐵 appear, that is, the exclusion of either
species 1 or species 2 depending on the initial sizes of both
populations. A second unexpected change of asymptotic
behavior appears for 𝑏1 > 5. The tendency to coexistence,
case𝐴, in the disease-free scenario is transformed, by increas-
ing 𝑅0, into case 𝐶1𝑎, exclusion of species 2, sometimes
going through C1𝑏, which also entails exclusion of species 2
depending on initial conditions.

3.4. Disease Modified Growth Capabilities. We consider now
another particular case in which we can strengthen some of
the analytical results of Section 3.2 and we can extract some
interesting quantitative biological information. Let us assume
that the disease does not affect the competitive abilities of
individuals but it only modifies the reproductive capabilities
of the infected species; that is,𝑐11 fl 𝑐𝑆𝑆 = 𝑐𝑆𝐼 = 𝑐𝐼𝑆 = 𝑐𝐼𝐼,𝑐12 fl 𝑐𝑆2 = 𝑐𝐼2,𝑐21 = 𝑐2𝑆 = 𝑐2𝐼. (26)

Then system (19) takes the form

𝑁1 (𝑡 + 1) = (𝑟𝑆 + 𝑟𝐼)𝑁1 (𝑡)1 + 𝑐11𝑁1 (𝑡) + 𝑐12𝑁2 (𝑡) ,𝑁2 (𝑡 + 1) = 𝑟2𝑁2 (𝑡)1 + 𝑐21𝑁1 (𝑡) + 𝑐22𝑁2 (𝑡)
(27)

which is a classical Leslie-Gower model [22] with disease
modified growth rates. From the general setting of Section 3.1,
the isocline Γ1 now degenerates into a straight line. The
isoclines intercepts (24) simplify to

𝑅1𝑗 = 𝑟𝑆 + 𝑟𝐼 − 1𝑐1𝑗 = 𝑏1𝑆] + 𝑏1𝐼 (1 − ]) − 1𝑐1𝑗 ,
𝑅2𝑗 = 𝑏2 − 1𝑐2𝑗 ,

𝑗 = 1, 2.
(28)

Then we can sharpen the results in Theorem 6. In the first
place, since the isoclines are straight lines there can be at
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(b) Solution of (18) for initial conditions 𝑁1𝑆(0) = 4, 𝑁
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(c) Solution of (18) for initial conditions 𝑁1𝑆(0) = 4, 𝑁
1
𝐼 (0) = 2, and

𝑁2(0) = 3.5, belonging to 𝐵(𝐸∗3 )

Figure 2: Basins of attraction 𝐵(𝐸∗1 ) and 𝐵(𝐸∗3 ) of 𝐸∗1 and 𝐸∗3 for the aggregated system (19) and solutions versus time for the original system
(18). The parameter values are 𝑘 = 20, 𝛾 = 0.9, 𝛽 = 1.125, 𝑏1𝑆 = 10, 𝑏1𝐼 = 20, 𝑏2 = 4, 𝑐𝑆𝑆 = 0.75, 𝑐𝑆𝐼 = 2, 𝑐𝐼𝑆 = 9, 𝑐𝐼𝐼 = 14, 𝑐𝑆2 = 6, 𝑐𝐼2 = 1,𝑐2𝑆 = 0.5, 𝑐2𝐼 = 3, and 𝑐22 = 1, which correspond to case 𝐶1𝑏.
most one positive equilibrium 𝐸∗3 = (𝑒∗1 , 𝑒∗2 ) which can be
computed explicitly as

𝑒∗1 = 𝑐22 (𝑟𝑆 + 𝑟𝐼 − 1) − 𝑐12 (𝑟2 − 1)𝑐11𝑐22 − 𝑐12𝑐21 ,
𝑒∗2 = 𝑐11 (𝑟2 − 1) − 𝑐21 (𝑟𝑆 + 𝑟𝐼 − 1)𝑐11𝑐22 − 𝑐12𝑐21

(29)

and, moreover, we have the following.

Corollary 7. Consider system (27). Then, in addition to the
results inTheorem 6 one has that case 𝐶1𝑏 can not happen and
therefore in case 𝐶1 (𝑅11 > 𝑅21 and 𝑅12 > 𝑅22) all orbits
starting on

∘

R
2

+ converge to 𝐸∗1 .
Proof. The result is immediate taking into account that Γ1 andΓ2 are now straight lines and therefore conditions 𝑅11 > 𝑅21
and 𝑅12 > 𝑅22 imply that they do not intersect.

Let us concentrate in case 𝐴 (coexistence for any initial
condition). In order to quantify the effect of the disease in the
equilibriumpopulation, we set 𝑏1 = 𝑏1𝑆 , 𝑏1𝐼 = 𝛼𝑏1, where𝛼 > 0
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b
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Figure 3: Asymptotic behavior cases (Theorem 6) of the solutions of
system (17) for parameters values 𝑏1 fl 𝑏1𝑆 = 𝑏1𝐼 > 1, 𝑏2 = 5, 𝑐𝑆𝑆 = 3,𝑐𝑆𝐼 = 2.8, 𝑐𝑆2 = 𝑐𝐼𝑆 = 𝑐𝐼𝐼 = 𝑐𝐼2 = 𝑐22 = 1, 𝑐2𝑆 = 2, 𝑐2𝐼 = 1.8, and
] ∈ (0, 1].
is a measure of the effect of the disease on the reproductive
capability of infected individuals in species 1. In this way,
using (29) we have that the quotient between the equilibrium
population of species 1 with (0 < ] < 1) and without disease
(] = 1) is given by

𝑐22 (𝑏1 [𝛼 + (1 − 𝛼) ]] − 1) − 𝑐12 (𝑏2 − 1)𝑐22 (𝑏1 − 1) − 𝑐12 (𝑏2 − 1) , (30)
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while the corresponding quotient for species 2 is𝑐21 (𝑏1 [𝛼 + (1 − 𝛼) ]] − 1) − 𝑐11 (𝑏2 − 1)𝑐21 (𝑏1 − 1) − 𝑐11 (𝑏2 − 1) , (31)

so that in particular if 𝛼 < 1 (resp., 𝛼 > 1) the long-term
population size of species 1 is reduced (resp., increased) and
the opposite happens to species 2.

4. Conclusion

In this work we have built up an ecoepidemic model in
which disease dynamics is fast with respect to competition-
demography and have carried out its mathematical analysis,
which reveals a number of possible long-term scenarios for
the populations.

From an applied point of view, biological controls as
predators or competitors, along with disease-induced pop-
ulation size reduction, are often used to control harmful
species. Some key questions are whether a given control strat-
egy will be effective or whether it hides unexpected effects (as
the well-known hydra effect [23]). In this direction we have
obtained threshold values for species persistence/extinction
(as in Theorems 1 and 4 or Proposition 5) and expressions
(like (16), (30), and (31)) that provide an estimation of
the impact on the community of a disease outbreak. Our
analysis also reveals that, for certain values of the parameters,
unexpected outcomes as those described in Section 3.3 may
appear. There we have shown that there are situations in
which as the basic reproductive number 𝑅0 increases, the
infected species improves as a competitor even though the
interspecific competitive pressure exercised by infected indi-
viduals is lower than that exercised by susceptible individuals.

The theoretical results obtained in this work can encour-
age laboratory experiments to validate some of the unex-
pected results predicted by the model as well as modeling
work in order to find plausible explanations for these scenar-
ios. Our findings also suggest possible future lines of work,
for example, the study of competition models in which both
species are infected by either a shared disease or, alternatively,
different diseases.

Appendix

Proofs of Results

Proof of Lemma 2. Clearly Γ2 is a straight line. We can writeΓ1 as a conic 𝐴𝑥21 + 2𝐵𝑥2 + 𝐶𝑥22 + 𝐷𝑥1 + 𝐸𝑥2 + 𝐹 = 0,
where 𝐴 = 𝑐𝑆1𝑐𝐼1, 𝐶 = 𝑐𝑆2𝑐𝐼2, and 𝐵 = (𝑐𝑆1𝑐𝐼2 + 𝑐𝑆2𝑐𝐼1)/2
and 𝐷, 𝐸, and 𝐹 are certain coefficients. The discriminant is𝐷 = 𝐴𝐶 − 𝐵2 = −(𝑐𝑆1𝑐𝐼2 + 𝑐𝑆2𝑐𝐼1)2/4 which is negative, so the
conic is a hyperbola. For each 𝑥1 ≥ 0, function 𝜙𝑖(𝑥1, ∗) is
strictly decreasing and tends to zero when 𝑥2 → ∞ (∗) and
the same happens if we interchange the variables; that is, for
each 𝑥2 ≥ 0 function 𝜙𝑖(∗, 𝑥2) is strictly decreasing and tends
to zero when 𝑥2 → ∞ (∗∗). As a consequence, the equation𝜙𝑖(𝑥1, 𝑥2) = 1 has a solution in

∘

R
2

+ if and only if 𝜙𝑖(0, 0) > 1.
Clearly, if 𝜙2(0, 0) > 1, then Γ2 intersects both the positive

axes. Let us now assume that 𝜙1(0, 0) > 1. Using (∗) we have

that for each value of 𝑥1 ≥ 0 there exists a unique value
of 𝑥2 such that 𝜙1(𝑥1, 𝑥2) = 1 and so we can write Γ1 in
the form 𝑥2 = Φ(𝑥1), 𝑥1 ≥ 0 for a certain Φ. Using (∗)
and (∗∗) it follows that the equation 𝜙1(0, 𝑥2) = 1 (resp.,𝜙1(𝑥1, 0) = 1) has a unique positive solution and so Γ1 inter-
sects each positive axes in one point. Differentiating twice
in 𝜙1(𝑥1, Φ(𝑥1)) = 1 we obtain after straightforward com-
putations that Φ(𝑥1) < 0 and Φ(𝑥1) ≥ 0 for 𝑥1 ≥ 0 and so
the convexity of Φ follows.

The last part of the result follows taking into account the
fact that a branch of a hyperbola can intersect a straight line
in at most 2 points.

Proof of Proposition 3. The proof of (a) is straightforward.
Regarding (b), it is immediate to check that, for 𝑖, 𝑗 ∈ {1, 2},𝑖 ̸= 𝑗, the map 𝐻𝑖(𝑥1, 𝑥2) is strictly increasing as a function
of 𝑥𝑖 and strictly decreasing as a function of 𝑥𝑗. Therefore
it follows trivially that if 𝑥, 𝑥 ∈ R2+ are distinct points with𝑥 ≤𝐾 𝑥 then𝐻(𝑥) <𝐾𝐻(𝑥).

(c) In the first place we prove that 𝐻 verifies property
(O+) in [20, p. 343]. To do so we apply [20, Lemma 4.3] to𝐻 : 𝑆 → 𝑆 where 𝑆 is defined in (23). We need to prove the
following four conditions:

(i) It is immediate that 𝑆 contains order intervals [20, p.
345] and is ≤𝐾 -convex [20, p. 339].

(ii) To prove that det𝐷𝐻(𝑥1, 𝑥2) > 0 for (𝑥1, 𝑥2) ∈ 𝑆
we used the CAS Maxima. The resulting expression
contains a number of summands all of which are
positive.

(iii) Direct calculations prove that 𝐷𝐻(𝑥1, 𝑥2) is 𝐾-
positive in 𝑆 [20, p. 338]; that is, 𝜕𝐻1/𝜕𝑥1 > 0,𝜕𝐻2/𝜕𝑥2 > 0, 𝜕𝐻1/𝜕𝑥2 ≤ 0, and 𝜕𝐻1/𝜕𝑥1 ≤ 0 in 𝑆.

(iv) The last hypothesis to prove is that𝐻 is injective. For
that, following [20, Remark 4.2], it suffices to confirm
that 𝑆 is compact and connected and that𝐻−1(0, 0) is
a single point, which is the case.

Now, using (a) and (b) and property (O+) we can apply
Theorem 4.2 in [20] so that all orbits in R2+ are eventu-
ally componentwise monotone and converge to an equilib-
rium.

Proof of Theorem 4. (a) Let 𝑖 ∈ {1, 2} such that 𝜙𝑖(0, 0) ≤ 1.
Then the only equilibriums in R2+ are 𝐸∗0 and, possibly, 𝐸∗𝑗
with 𝑗 ̸= 𝑖. As any positive solution must tend to one of these
equilibrium points we have that lim𝑡→∞𝑁𝑖(𝑡) = 0.

(b)Thefirst part is trivial from (a) and the rest of the result
is easy to check using the linearization of𝐻 in 𝐸∗0 .

(c) If 𝑁1(0) = 0 then 𝑁1(𝑡) = 0 for all 𝑡 and from𝜙2(0, 0) ≤ 1 we have that 𝑁2(𝑡) → 0 so (1) follows. In
order to prove (2), let us take 𝑁1(0) > 0 so that in particular𝑁1(𝑡) > 0 for all 𝑡 ≥ 0. The solution (𝑁1(𝑡),𝑁2(𝑡))must con-
verge to either 𝐸∗0 or 𝐸∗1 . As the convergence of𝑁1(𝑡)must be
eventually monotone and 𝜙1(0, 0) > 1, the only possibility is
that the solution converges to 𝐸∗1 .

(d) The proof of the result is analogous to that of (c).
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Lemma A.1. (a) For any initial condition 𝑥0 ∈ ∘R2+ there exists𝑛0 ∈ N and a region𝑈𝑘 such that𝐻(𝑛)(𝑥0) ∈ 𝑈𝑘 for all 𝑛 ≥ 𝑛0.
(b) Let 𝑊 = {𝑥 ∈ R2+ : 𝐻 (𝑥) ≤𝐾 𝑥} ,𝑊 = {𝑥 ∈ R2+ : 𝐻 (𝑥) ≥𝐾 𝑥} . (A.1)

Then𝑊 and𝑊 are forward invariant for𝐻.
(c) Let 𝑇 = {𝑥 ∈ R2+ : 𝐻 (𝑥) < 𝑥} ,𝑇 = {𝑥 ∈ R2+ : 𝐻 (𝑥) > 𝑥} . (A.2)

Then𝐻(𝑇) ⊂ (𝑇 ∪ 𝑊 ∪ 𝑊) and𝐻(𝑇) ⊂ (𝑇 ∪ 𝑊 ∪ 𝑊).
Proof. (a) The result is a direct consequence of the fact that
orbits are eventually componentwise monotone.

(b)The result is a direct consequence of the fact that𝐻 is
competitive. Indeed, let 𝑥 ∈ 𝑊 so that𝐻(𝑥) ≤𝐾 𝑥. Using the
fact that 𝐻 is competitive it follows that 𝐻(𝐻(𝑥)) ≤𝐾 𝐻(𝑥)
which implies that 𝐻(𝑥) ∈ 𝑊 and 𝑊 is forward invariant
as we wanted to prove. An analogous reasoning leads to the
conclusion that𝑊 is forward invariant.

(c) The result is a direct consequence of the fact that
property (O+) (part (c) of Proposition 3) holds.

Lemma A.2. Let 𝑥∗ ∈ ∘R2+ be a positive fixed point of𝐻. Then𝑥∗ is nonhyperbolic if and only if ∇𝜙1(𝑥∗) and ∇𝜙2(𝑥∗) are
linearly dependent.

Proof. Let 𝑥∗ = (𝑥∗1 , 𝑥∗2 ) ∈ ∘R2+ be a positive fixed point of 𝐻
and let

𝐽 fl 𝐷𝐻(𝑥∗) = (𝜕𝐻1𝜕𝑥1 (𝑥∗) 𝜕𝐻1𝜕𝑥2 (𝑥∗)𝜕𝐻2𝜕𝑥1 (𝑥∗) 𝜕𝐻2𝜕𝑥2 (𝑥∗))
= (1 + 𝑥∗1 𝜕𝜙1𝜕𝑥1 (𝑥∗) 𝑥∗1 𝜕𝜙1𝜕𝑥2 (𝑥∗)𝑥∗2 𝜕𝜙2𝜕𝑥1 (𝑥∗) 1 + 𝑥∗2 𝜕𝜙2𝜕𝑥2 (𝑥∗))

(A.3)

be the Jacobian matrix at 𝑥∗, where we have used the fact
that 𝜙𝑖(𝑥∗) = 1, 𝑖 = 1, 2. It is immediate to check that 𝜕𝐻1/𝜕𝑥2 < 0 and 𝜕𝐻2/𝜕𝑥1 < 0 in

∘

R
2

+ and so (𝜕𝐻1/𝜕𝑥2)(𝜕𝐻2/𝜕𝑥1) > 0. 𝐽 has complex eigenvalues if and only if the discri
minant Δ fl (tr 𝐽)2 − 4 det 𝐽 is negative. Δ can be expressed
as Δ = ((𝜕𝐻1/𝜕𝑥1)(𝑥∗) − (𝜕𝐻2/𝜕𝑥2)(𝑥∗))2 + 4(𝜕𝐻1/𝜕𝑥2)(𝑥∗)(𝜕𝐻2/𝜕𝑥1)(𝑥∗) > 0 and therefore 𝐽 cannot have
complex eigenvalues.

In the proof of Proposition 3 we have shown that
det𝐷𝐻(𝑥) > 0 for all𝑥 ∈ 𝑆. As𝑥∗ ∈ 𝑆, it follows that det 𝐽 > 0
and together with tr 𝐽 > 0 yields the fact that the eigenvalues

of 𝐽 are positive. In this case 𝑥∗ is nonhyperbolic if and only
if 𝜆 = 1 is an eigenvalue of 𝐽. Now, using (A.3) we obtain

det (𝐽 − 𝐼) = 𝑥∗1𝑥∗2 (𝜕𝜙1𝜕𝑥1 (𝑥∗) 𝜕𝜙2𝜕𝑥2 (𝑥∗)− 𝜕𝜙1𝜕𝑥2 (𝑥∗) 𝜕𝜙2𝜕𝑥1 (𝑥∗)) (A.4)

which, since 𝑥∗1 , 𝑥∗2 ̸= 0, is zero if and only if ∇𝜙1(𝑥∗) and∇𝜙2(𝑥∗) are linearly dependent.
Proof ofTheorem 6. (1)The bounds for the components of the
positive equilibriumor equilibriums are a trivial consequence
of the fact that 𝐸∗1 = (𝑅11, 0) and 𝐸∗2 = (0, 𝑅22) and of the
isoclines being curves given by strictly decreasing functions
of the 𝑥1 variable.

(2) Throughout the proof we will use implicitly the fact
that

∘

R
2

+ is forward invariant for𝐻 and that when 𝜙𝑖(0, 0) > 1
for 𝑖 = 1, 2, 𝐸∗ is a repeller and so no orbit can converge to𝐸∗. In each one of the different cases that we study below,
the hyperbolicity and the local stability properties (attracting
or unstable) of the semitrivial equilibriums follow directly
from Proposition 5 and the relative positions of the isoclines
intercepts.

Case A. The existence of a unique positive equilibrium is a
direct consequence of the fact that 𝑅11 < 𝑅21 and 𝑅12 > 𝑅22
and of the properties of the isoclines (Lemma 2). Since 𝑥1
is increasing in 𝑈2 ∪ 𝑈3 (see Figure 1(a)), no orbit in

∘

R
2

+

can converge to 𝐸∗2 . Similarly since 𝑥2 is increasing in the
regions 𝑈1 ∪ 𝑈3, no orbit in them can converge to 𝐸∗1 . Since𝐸∗0 (repeller),𝐸∗1 ,𝐸∗2 , and𝐸∗3 are the only equilibriums and all
orbits converge to an equilibrium, then necessarily all orbits
must converge to 𝐸∗3 . Using Lemma A.2 and the fact that the
isoclines are not tangent at 𝐸∗3 we have that 𝐸∗3 is hyperbolic.
Case B. The existence of a unique positive equilibrium 𝐸∗3 is a
direct consequence of the fact that 𝑅11 > 𝑅21 and 𝑅12 < 𝑅22
and of the properties of the isoclines (Lemma 2).

Clearly 𝑈1 ⊂ 𝑊 and 𝑈2 ⊂ 𝑊, where 𝑊, 𝑊 are defined
in (A.1). Using Lemma A.1 part (b), we have that 𝑈1 and𝑈2 are forward invariant for 𝐻, and from the monotonicity
of 𝐻 in these regions it follows that orbits starting in them
can not converge to 𝐸∗3 . Since all orbits must necessarily
converge to an equilibrium, those starting in 𝑈2 (resp., 𝑈1)
must necessarily converge to 𝐸∗2 (resp., 𝐸∗1 ). In particular 𝐸∗3
is unstable. Let 𝐵𝑖 be the basin of attraction of 𝐸∗𝑖 , 𝑖 = 1, 2
in
∘

R
2

+ which is open since 𝐸∗𝑖 is attracting [24]. Clearly 𝑋 fl
∘

R
2

+ \{𝐸∗3 } is an open connected set and therefore, since 𝐵1 and𝐵2 are disjoint,𝑋\(𝐵1∪𝐵2) can not be empty. So we conclude
that there are points in𝑋 such that their corresponding orbits
do not converge to either𝐸∗1 or𝐸∗2 , and so theymust converge
to 𝐸∗3 .

Using Lemma A.2 and the fact that the isoclines are not
tangent at 𝐸∗3 we have that 𝐸∗3 is hyperbolic, and so it must
necessarily be a saddle, for it attracts some points and repels
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others. In order to prove that 𝐸∗3 can not attract an open
set we will argue by contradiction. Let 𝑈 be a neighborhood
of 𝐸∗3 and let 𝑊𝑠loc(𝐸∗3 ) be its corresponding local stable
manifold that, as it is well known, is one-dimensional. Let
us assume that there is an open set 𝑉 that is attracted to𝐸∗3 . Then we can choose two points 𝑥, 𝑦 ∈ 𝑈 such that𝑥<𝐾 𝑦, and, using the fact that 𝐻 is strongly competitive
and denoting 𝐻(𝑛) = (𝐻(𝑛)1 , 𝐻(𝑛)2 ), it follows that, for all 𝑛 ≥1, 𝐻(𝑛)(𝑥) <𝐾𝐻(𝑛)(𝑦) and so the rectangle 𝑅𝑛 fl [𝐻(𝑛)1 (𝑥),𝐻(𝑛)1 (𝑦)] × [𝐻(𝑛)2 (𝑥),𝐻(𝑛)2 (𝑦)] has nonempty interior for all 𝑛.
Since 𝐻(𝑛)(𝑥) → 𝐸∗3 and 𝐻(𝑛)(𝑦) → 𝐸∗3 , using a standard
comparison argument it follows that 𝑅𝑛 converges to 𝐸∗3 and
therefore for large enough 𝑛 it must be 𝑅𝑛 ⊂ 𝑈, and so𝑅𝑛 ⊂ 𝑊𝑠loc(𝐸∗3 ) which contradicts the fact of 𝑊𝑠loc(𝐸∗3 ) being
one-dimensional.

Case 𝐶1𝑎. 𝐻1 is increasing in 𝑈1 ∪ Γ2 ∪ 𝑈2 what precludes
convergence of any orbit starting in

∘

R
2

+ to 𝐸∗2 , and so they
must all converge to 𝐸∗1 .
Case𝐶1𝑏. Using Lemma A.2 and the fact that the isoclines are
not tangent at either 𝐸∗3 or 𝐸∗4 we have that both equilibriums
are hyperbolic.

Clearly𝑈1 ∪𝑈2 ⊂ 𝑊 and𝑈3 ⊂ 𝑊 (𝑊 and𝑊 defined in
(A.1)), and so using Lemma A.1 part (b) we have that𝑈1 ∪𝑈2
and 𝑈3 are forward invariant for 𝐻. Since 𝐻 is continuous𝐻(𝑈1) must be connected and since 𝐸∗1 ∈ 𝑈1 is a fixed
point, 𝐻(𝑈1) can not intersect 𝑈2 and so we conclude that𝑈1 is forward invariant. A similar argument shows that 𝑈2
is forward invariant too. The monotonicity of𝐻 in 𝑈3 shows
that orbits starting in it can not converge to 𝐸∗4 and therefore
they must converge to 𝐸∗3 . Similarly, the monotonicity in 𝑈1
(resp., 𝑈2) shows that orbits starting in 𝑈1 (resp., 𝑈2) can not
converge to 𝐸∗4 (resp., 𝐸∗2 ) and so they must converge to 𝐸∗1
(resp., 𝐸∗3 ). In particular 𝐸∗4 is unstable.

Let us now show that 𝐸∗3 is attracting. Let 𝜀 > 0 be small
enough, let𝐵(𝐸∗3 , 𝜀)be the openball with center𝐸∗3 and radius𝜀, and let 𝑥 ∈ 𝐵(𝐸∗3 , 𝜀), so that 𝑥 belongs to𝑈2 ∪𝑈3 ∪𝑈4 ∪𝑈5.
Let us consider in turn the three following possibilities: (i)𝑥 ∈ 𝑈2 ∪ 𝑈3, (ii) 𝑥 ∈ 𝑈4, and (iii) 𝑥 ∈ 𝑈5.

In scenario (i) we have already shown that the corre-
sponding orbit converges to 𝐸∗3 . (ii) Clearly 𝑈4 ⊂ 𝑇 where𝑇 is defined in (A.2). Then Lemma A.1 part (b) implies that
if 𝑥 ∈ 𝑈4 then 𝐻(𝑛)(𝑥) can not enter 𝑈5 for any value of𝑛. Therefore either 𝐻(𝑛)(𝑥) enters 𝑈2 ∪ 𝑈3 for a certain 𝑛
and then we already know that the orbit must converge to𝐸∗3 or, on the contrary, 𝐻(𝑛)(𝑥) remains in 𝑈4 for all 𝑛 ≥ 0.
In this latter case 𝑥 is 𝜀-close to 𝐸∗3 and the monotonicity in
this region precludes convergence of the orbit to 𝐸∗2 or to 𝐸∗4 ,
and so it must necessarily converge to 𝐸∗3 . (iii) In this case we
can carry out a reasoning completely analogous to that of (ii)
replacing 𝑈4 by 𝑈5, 𝑇 by 𝑇, and 𝐸∗2 by 𝐸∗1 . In conclusion we
have that 𝐸∗3 attracts the open ball 𝐵(𝐸∗3 , 𝜀) and so it is stable.

In order to prove that there are points different from 𝐸∗4
that are attracted to it we proceed as in case𝐵: let𝐵3 and𝐵1 be
the basins of attraction of 𝐸∗3 and 𝐸∗1 , respectively, which are

disjoint nonempty open sets since 𝐸∗3 and 𝐸∗1 are attracting.𝑋 fl
∘

R
2

+ \ {𝐸∗4 } is an open connected set and therefore 𝑋 \(𝐵3 ∪ 𝐵1) can not be empty. Therefore, there are points in 𝑋
such that their corresponding orbits do not converge to either𝐸∗3 or 𝐸∗1 , and so they must converge to 𝐸∗4 .

The proof that 𝐸∗4 is hyperbolic and it can not attract any
open set is completely analogous as that carried out for 𝐸∗3 in
case 𝐵.
Case 𝐶2. Since 𝑅11 < 𝑅21, 𝑅12 < 𝑅22, and Γ1 is convex there
can be no positive fixed points. This case is the symmetric of𝐶1𝑎 when we interchange 𝑥1 with 𝑥2, 𝐸∗1 with𝐸∗2 , and 𝐸∗3 with𝐸∗4 , and so the proof for this case follows from the one carried
out there.
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