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Abstract. In this paper, we propose a model for the dynamics of a physiologically structured population
of individuals whose life cycle is divided into two stages: the first stage is structured by the weight, while
the second one is structured by the age, the exit from the first stage occurring when a threshold weight is
attained. The model originates in a complex one dealing with a fish population and covers a large class of
situations encompassing two-stage life histories with a different structuring variable for each state, one of its
key features being that the maturation process is determined in terms of a weight threshold to be reached by
individuals in the first stage. Mathematically, the model is based on the classical Lotka–MacKendrick linear
model, which is reduced to a delayed renewal equation including a constant delay that can be viewed as the
time spent by individuals in the first stage to reach the weight threshold. The influence of the growth rate
and the maturation threshold on the long-term behavior of solutions is analyzed using Laplace transform
methods.

1. Introduction

The aim of this work was to propose and analyze a model for the dynamics of a physiologically struc-
tured population of individuals whose life cycle is divided into two stages with a different structure variable
for each stage. The model originates in a complex one proposed in [4] which describes the growth of a
population of fish. This model, trying to disentangle the massive regulation mechanisms of the abundance
of many fish populations, describes in detail the population dynamics at the larval stage while the other
stages of the life cycle are modeled using simple demographic mechanisms. The distinguishing feature of
the model is that the exit from the larval stage is determined in terms of a weight threshold to be reached by
the larvae. This kind of threshold models that can be transformed into state-dependent delayed equations
are well represented in the literature, see [12,18] for general presentations and [2,6] for particular models in
which the appearance of the delay is justified as a response of the maturation process to density dependence.
In [4], a drastic simplification of the density-dependent model is suggested, yielding the whole dynamics
to be reduced to a two-dimensional system of state-dependent delay equations.

The framework chosen for the model proposed in this paper is deliberately linear with the purpose of
focusing readers’ attention on the main mechanism: maturation represented by a larvae weight threshold.
That is, we consider a general linear model of a population classified into two stages: larval and adult. The
larval stage is structured by the weight, while the adult stage is structured by the age, the exit from the larval
stage occurring when individuals reach a threshold weight. In this linear setting, the maturation threshold
weight is assumed to be a priori given and hence not dependent on the population density.

This physiologically structured population model (PSPM) is based on the classical Lotka–MacKendrick
linear model [8,9,14], which integrating along the characteristic lines can be reduced in a standard way to
the so-called renewal equation for the function of births [7,13,14].

Keywords: Two-stage structured population, delayed renewal equation, Laplace transform, maturation
threshold.
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This reduction process applied to PSPM with several stages leads to a linear delayed integral equation
for the density of larvae at the maturation weight in which two different delays can be distinguished: the first
one, τ∗, corresponding to the time spent by larvae in the larval stage and the second one, a∗, the maximum
age attained by adults. Our assumptions on larvae growth and mortality rates, that are taken to be just weight
dependent, make τ∗ an individual feature in a constant environment and thus itself constant.

From a mathematical point of view, the main results established in this work concern the asymptotic
behavior of solutions to the linear renewal equation which describes the evolution of the density of larvae
at the maturation time. The linear formulation of the model allows Laplace transform methods to be used,
but the occurrence of delays in the equation and the usual choice of L1 as a suitable state space for initial
data introduce some complex technical difficulties that prevent a direct application of standard theoretical
results as described in [13].

Although we use in our model the terms larvae and adults to refer to the population stages, which is due
to the origins of this work, it is clear that the abstract setting of the proposed system of partial differential
equations encompasses the general class of threshold structured population models which incorporate a
two-stage life history with stages usually called juvenile and adult and that are frequently found in the
literature, see for instance [1,10,11,16]. A feature of the proposed model which usually is not treated in
the literature has to do with the two stages being structured by two different state variables, juveniles by
weight, or in general by size, and adults by age.

The organization of the paper is as follows. Section 2 presents the general model to be considered
throughout together with its reduction to a delayed renewal equation in Sect. 2.1. Section 3 deals with the
study of the asymptotic behavior of solutions via Laplace transform methods: asynchronous distributions of
larvae and adults and an extinction condition are established. The paper ends with Sect. 4 by discussing the
influence of larvae growth rate and the maturation threshold on the long-term behavior of the population.

2. Presentation of the model

Our work is concerned with the dynamics of a population classified into two stages: larvae (L) and adults
(A). Individuals in stage (L) are characterized by their body weight w and are described by the density
function l(w, t) so that

∫w2
w1

l(w, t)dw is the number of larvae in the population between weightsw1 andw2
at time t . Adults (A) are structured by their chronological age a in the stage; the dynamics being described
by the density function n(a, t). Thus,

∫ a2
a1

n(a, t)da is the number of adults in the population whose age
belongs to the interval [a1, a2] at time t . Since we are not considering spatial effects here, we assume that
the population has a uniform distribution with respect to space and we normalize the number of individuals
of every stage to the number per unit of volume.

Taking as a basis the classical Lotka–MacKendrick linear model of population dynamics, the density
functions satisfy the model:

(A)

⎧
⎪⎪⎨

⎪⎪⎩

∂n

∂t
(a, t)+ ∂n

∂a
(a, t) = −μ(a)n(a, t), 0 < a < a∗, t > 0 (A1)

n(0, t) = g(w∗)l(w∗, t), t > 0 (A2)

n(a, 0) = n0(a), 0 < a < a∗ (A3)

(L)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂l

∂t
(w, t)+ ∂

∂w
[g(w)l(w, t)] = −ν(w)l(w, t), w0 < w < w∗,

t > 0 (L1)

g(w0)l(w0, t) =
∫ a∗

0
β(a)n(a, t) da, t > 0 (L2)

l(w, 0) = l0(w), w0 < w < w∗ (L3)

where β(a) and μ(a) are the age-dependent adult fertility and mortality rates, ν(w) and g(w) are the
weight-dependent larvae mortality and growth rates, and n0(a) and l0(w) are the initial adult age and larvae
weight distributions.

We assume a maximum finite age a∗ > 0 for adults and that vital rates β andμ are nonnegative functions
satisfying:
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β ∈ L∞(0, a∗), μ ∈ L1
loc(0, a∗),

∫ a∗

0
μ(s) ds = +∞.

Larvae are assumed to be born with weight w0 and mature on reaching weight w∗, 0 < w0 < w∗. Vital
rates g and ν are positive functions that fulfill the following assumptions:

g ∈ C1[w0, w
∗], ν ∈ L1

loc(w0, w
∗).

We also assume that the initial data are nonnegative functions such that

n0 ∈ L1(0, a∗), l0 ∈ L1(w0, w
∗).

Partial differential equations (A1) and (L1) correspond to the balance equations of, respectively, the
classical McKendrick and continuous size-structured models [7,8,14]. Boundary condition (A2) represents
the recruitment to stage (A), and it is the result of the maturation of larvae when reaching the maximum
weightw∗. Boundary condition (L2) describes recruitment to stage (L) in terms of adult fertility. Equations
(A3) and (L3) are the initial conditions. For the sake of completeness, we include a short justification of the
boundary conditions (A2) and (L2) from a biological point of view, which follows closely some arguments
explained in [15].

Let S(t) be the rate of recruitment of larvae at birth at time t , so that during an infinitesimal time interval
[t, t + dt], the total recruitment of larvae is S(t)dt . The weights of these individuals belong to the interval
[w0, w0 + dw0], with dw0 = g(w0)dt (the maximum possible gain of weight during dt), and since the
total number of larvae with weight in this range is l(w0, t)dw0, we have:

S(t)dt = l(w0, t)dw0 = l(w0, t)g(w0)dt.

On the other hand, bearing in mind that S(t) is related with the fecundity of adults by S(t) =
∫ a∗

0 β(a)n(a, t) da, boundary condition (L2) follows. Condition (A2) can be justified by a similar argument,
using the fact that the recruitment of larvae at the maximum weight w∗ is related with n(0, t).

As a first step toward the analytical study of system (A)–(L), we proceed to a standard integration of
system (A) along the characteristic lines which allows adult density to be expressed in terms of larvae
density:
(i) For t ∈ [0, a∗]:

n(a, t) =
{

n0(a − t)e− ∫ a
a−t μ(s) ds if t < a

g(w∗)l(w∗, t − a)e− ∫ a
0 μ(s) ds if t > a

(ii) For t > a∗:

n(a, t) = g(w∗)l(w∗, t − a)e− ∫ a
0 μ(s) ds .

In turn, these values of n(a, t) can be substituted into Eq. (L2), reducing the (A)–(L) system to the
following one for the density of larvae:

∂l

∂t
(w, t)+ g(w)

∂l

∂w
(w, t) = −δ(w)l(w, t), w0 < w < w∗, t > 0 (1)

l(w0, t) =

⎧
⎪⎪⎨

⎪⎪⎩

G(t; n0)+
∫ t

0
�(a)l(w∗, t − a) da if 0 < t < a∗

∫ a∗

0
�(a)l(w∗, t − a) da if t > a∗

(2)

l(w, 0) = l0(w), w0 < w < w∗ (3)

where we have introduced the notations:

δ(w) := ν(w)+ g′(w); �(a) := g(w∗)
g(w0)

β(a)e− ∫ a
0 μ(s) ds

G(t; n0) :=
∫ a∗

t

1

g(w0)
β(a)e− ∫ a

a−t μ(s) dsn0(a − t) da.
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2.1. Reduction of the model (1)–(2)–(3) to a delayed renewal equation

First of all, we integrate this model along the characteristic lines, which are defined by the growth law:

dw

dt
= g(w).

The characteristic line passing through (w0, 0) is:

t = τ(w), τ (w) :=
∫ w

w0

ds

g(s)

which can be interpreted as the time employed by an individual born with the minimum weight w0 > 0 to
reach a weight w > w0. We will assume that individuals reach the maximum weight in a finite time, that
is:

HYPOTHESIS 1.

τ∗ :=
∫ w∗

w0

ds

g(s)
< +∞.

Then, a standard calculation leads to:

l(w, t) =
⎧
⎨

⎩
l0(τ

−1(τ (w)− t))
E(τ (w))

E(τ (w)− t)
if 0 < t < τ(w)

l(w0, t − τ(w))E(τ (w)) if t > τ(w)

(4)

where E(u) := e− ∫ u
0 δ(τ

−1(s)) ds .
Since Eq. (2) provides a relationship between l(w0, t) and l(w∗, t), expression (4) allows us to reduce

the problem to a delayed linear integral equation in the state variable R(t) := l(w∗, t), the density of larvae
at the maturation threshold. Expression (4) leads to, for t > τ∗:

l(w∗, t) = l(w0, t − τ∗)E(τ∗)

so that, Eq. (2) provides:
(i) For t ∈ [τ∗, τ∗ + a∗]:

R(t) = E(τ∗)G(t − τ∗; n0)+ E(τ∗)
∫ t−τ∗

0
�(a)R(t − τ∗ − a) da

(ii) For t > τ∗ + a∗:

R(t) = E(τ∗)
∫ a∗

0
�(a)R(t − τ∗ − a) da.

Introducing the notations:

�∗(a) := E(τ∗)�(a); N0(t) := E(τ∗)G(t; n0), a, t ∈ [0, a∗]
L0(t) := l0(τ

−1(τ∗ − t))
E(τ∗)

E(τ∗ − t)
, t ∈ [0, τ∗]

we have obtained for R(t) the following functional equation:

R(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

L0(t) if t ∈ [0, τ∗]
N0(t − τ∗)+

∫ t−τ∗

0
�∗(a)R(t − τ∗ − a) da if t ∈ [τ∗, τ∗ + a∗]

∫ a∗

0
�∗(a)R(t − τ∗ − a) da if t > τ∗ + a∗

(5)
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Straightforward calculations lead to

�∗(a) = β(a)e− ∫ a
0 μ(s)dse

− ∫w∗
w0

(ν(w)/g(w))dw
(6)

The term e
− ∫w∗

w0
(ν(w)/g(w))dw

represents the probability that a larva survives and reaches the maturation

weight w∗ [8]. The probability for an adult to survive to age a corresponds to the term e− ∫ a
0 μ(s)ds , that

together with the adult fertility β(a) give the so-called maternity function [13] for age-structured models.
Let us define the parameter called net reproduction rate for model (A)–(L):

�0 :=
∫ a∗

0
�∗(a)da = e

− ∫w∗
w0

(ν(w)/g(w))dw ·
∫ a∗

0
β(a)e− ∫ a

0 μ(s)dsda (7)

which gives the expected number of offspring produced by one individual during her reproductive life con-
sidering together both stages (A) and (L). We will see in the next section that the population either grows
or declines exponentially depending on the values of parameter �0.

A standard step-by-step procedure applied to expression (5) in intervals [kτ∗, (k + 1)τ∗], k = 0, 1, . . .
allows R(t) to be constructed in R+. Notice that extending by zero to R the definitions of the initial data
n0, l0 and the rates β, μ, Eq. (5) can be written as:

R(t) = L̃0(t)+ Ñ0(t − τ∗)+
∫ t−τ∗

0
�̃∗(a)R(t − τ∗ − a) da, t ≥ 0

where we have introduced the notations L̃0, Ñ0, and �̃∗ to represent the extension by zero to R of the
functions L0, N0, and �∗, respectively.

Applying well-known general theoretical results on continuity of translations in L1(R), it is easy to
check the continuity of the functions defined by:

∀ t ∈ R, t →
∫ a∗

t
K (a) f (t − a) da, t →

∫ t

0
K (a) f (t − a) da

where K ∈ L∞(R), f ∈ L1(R), from which the continuity of functions t → Ñ0(t) and t →∫ t
0 �̃

∗(a)R(t − a) da for t ≥ 0 can be immediately deduced.
As an immediate consequence, we have:

THEOREM 1. For each initial data n0 ∈ L1(0, a∗), l0 ∈ L1(w0, w
∗), there exists a unique solution

R(t) to (5), which is defined for t ≥ 0 and R ∈ L1
loc(R+). This solution satisfies that R(t) ≥ 0 for t ≥ 0 if

both initial data n0, l0 are nonnegative. Moreover, R(t) is continuous for t ≥ τ∗.

Notice that the model (A)–(L) is being analyzed through Eq. (5). Therefore, Theorem 1 provides exis-
tence, uniqueness, and positivity of solutions to (A)–(L) corresponding to nonnegative initial data n0, l0.

3. Asymptotic behavior of solutions

In this section, we will establish the asymptotic behavior of solutions to (5) by applying Laplace trans-
form methods (see [13]). To this end and bearing in mind that R ∈ L1

loc(R), we start by showing that the
solutions R(t) to (5) are exponentially bounded for t big enough, so that their Laplace transform exist.

Let Rk+1(t) be the restriction of R(t) to the interval [kτ∗, (k + 1)τ∗]. Set k0 ≥ 2(τ∗ + a∗)/τ∗. Then,
for k ≥ k0, t ∈ [kτ∗, (k + 1)τ∗] implies that t ≥ τ∗ + a∗, so that Rk+1 is continuous and satisfies:

‖Rk+1‖∞ := sup
t∈[kτ∗,(k+1)τ∗]

|Rk+1(t)|

= sup
t∈[kτ∗,(k+1)τ∗]

∣
∣
∣
∣
∣

∫ a∗

0
�∗(a)R(t − τ∗ − a) da

∣
∣
∣
∣
∣

≤ ‖�∗‖L1(0,a∗)

(

sup
t∈[(k−1)τ∗−a∗,kτ∗]

|R(t)|
)

.
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Choosing some constant M > max(1, ‖�∗‖L1(0,a∗)), a straightforward calculation leads to:

‖Rk0+p‖∞ ≤ ‖�∗‖L1(0,a∗) max
(
R∗

0 , ‖Rk0+1‖∞, , . . . , ‖Rk0+(p−1)‖∞
) ≤ M p R∗

0

p = 1, 2, . . . where R∗
0 := supt∈[(k0−1)τ∗−a∗,k0τ

∗] |R(t)|.
Since (k0+p)τ∗ ≤ t ≤ (k0+p+1)τ∗ implies that p ≤ t/τ∗−k0, we have for all t ≥ k0τ

∗ ≥ 2(τ∗+a∗):

|R(t)| ≤ R∗
0 Mt/τ∗−k0 = M−k0 R∗

0 e(log M/τ∗)t

as we wanted to prove.
Now, set R̂(p), p ∈ C, to denote the Laplace transform of R(t), solution to (5). We have:

R̂(p) =
∫ τ∗

0
e−pt L0(t) dt +

∫ τ∗+a∗

τ∗ e−pt N0(t − τ∗) dt

+
∫ +∞
τ∗ e−pt

(∫ t−τ∗

0
�̃∗(a)R(t − τ∗ − a) da

)

dt

= L̂0(p)+ e−pτ∗
N̂0(p)+ e−pτ∗ ∫ +∞

0
e−pt (�̃∗ ∗ R)(t) dt

= L̂0(p)+ e−pτ∗
N̂0(p)+ e−pτ∗

�̂(p)R̂(p)

where L̂0(p), N̂0(p), and �̂(p) are, respectively, the Laplace transforms of the functions L̃0(t), Ñ0(t),
and �̃∗(a).

Setting Ĥ(p) := L̂0(p)+e−pτ∗
N̂0(p) (which is an entire function), we obtain the following expression

for the Laplace transform of the solution:

R̂(p) = Ĥ(p)

1 − e−pτ∗
�̂(p)

= Ĥ(p)+ e−pτ∗
Ĥ(p)�̂(p)

1 − e−pτ∗
�̂(p)

, Re p > b∗ (abscissa of
convergence)

(8)

Notice that Ĥ(p) is the Laplace transform of H(t) := L̃0(t) + Ñ0(t − τ∗), t ≥ 0. Therefore, we can
obtain the asymptotic behavior of R(t) using the Laplace transform inversion formula, from the analysis of
the function F(t) defined by:

F(t) := 1

2π i
lim

T →+∞

∫ b+iT

b−iT
e pt F̂(p) d p (b > b∗); F̂(p) := e−pτ∗

�̂(p)Ĥ(p)

1 − e−pτ∗
�̂(p)

. (9)

A first step to calculate the above integral consists of locating the singularities of F̂(p), which are poles
that must be found among the roots of the transcendental equation:

1 − e−pτ∗
�̂(p) = 0. (10)

With respect to this equation, we have:

PROPOSITION 1. Equation (10) has one and only one real solution α∗ which is a simple root. Any
other solution p∗ to (10) is such that Re p∗ < α∗ and within any strip of the complex plane −∞ < b1 ≤
Re p ≤ b2 < +∞ there is at most a finite number of roots.

Moreover, α∗ < 0 if and only if �0 < 1, where �0 has been defined in (7).

Proof. Let us consider the function ψ : R −→ R defined by:

∀ λ ∈ R, ψ(λ) := e−λτ∗
�̂(λ) =

∫ a∗

0
e−λ(a+τ∗)�∗(a) da.

It is a C1 strictly decreasing function such that limλ→−∞ ψ(λ) = +∞ and limλ→+∞ ψ(λ) = 0. There-
fore, there exists one and only one real value α∗ such that ψ(α∗) = 1, which is the unique real solution to
Eq. (10) and which is a simple root since ∀ λ ∈ R, ψ ′(λ) < 0. Moreover, it is evident that α∗ < 0 if and
only if ψ(0) < 1.
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On the other hand, set p∗ = α + iβ (β �= 0) a complex solution to (10). Then, we have

ψ(α) =
∫ a∗

0
e−α(a+τ∗)�∗(a) da

>

∫ a∗

0
e−α(a+τ∗) cosβ(τ∗ + a)�∗(a) da = 1 = ψ(α∗)

which implies that α < α∗, that is, α∗ is a strictly dominant real part root of (10).
Finally, let us examine the roots of (10) within a strip of the complex plane −∞ < b1 ≤ Re p ≤

b2 < +∞. As these roots are the zeros of an entire function, they constitute at most a sequence
{pn}n=1,2,... without accumulation points, which in the case of being an infinite sequence, implies that
limn→∞ |Im pn | = +∞. Since {Re pn}n=1,2,... is a bounded set, the Riemann–Lebesgue lemma implies

that limn→∞
∫ a∗

0 e−pn (a+τ∗)�∗(a) da = 0, which contradicts the fact that each pn is a root of (10).
This finishes the proof of the proposition. �

To estimate the integral appearing in (9), we will apply the residue theorem to a positively oriented circuit
� constituted by a rectangle defined by the points b0 ± iT , b1 ± iT (T > 0) such that b1 < α∗ < b0 and
all the other complex roots p∗ to Eq. (10) satisfy that Re p∗ < b1. There is no loss of generality choosing
b0 > 0.

An immediate consequence of Proposition 1 is that α∗ is a simple pole of this integral, so that:

∫

�
e pt F̂(p) d p = 2π iRes (α∗) (11)

where

Res(α∗) = lim
p→α∗(p − α∗)e pt F̂(p) = C∗(l0, n0)e

α∗(t−τ∗)

and

C∗(l0, n0) := �̂(α∗)Ĥ(α∗)
∫ a∗

0 (τ∗ + a)e−α∗(τ∗+a)�∗(a) da
. (12)

Let us obtain an estimation for this constant. In what follows we simplify by denoting Ci , i = 1, 2, . . . all
the positive constants that appear in calculations and whose specific values are not relevant for our purposes.

Since:
(i) For t ∈ [0, τ∗]:

|L0(t)| ≤
∣
∣
∣
∣

E(τ∗)
E(τ∗ − t)

∣
∣
∣
∣ |l0(τ−1(τ∗ − t))| ≤ |l0(τ−1(τ∗ − t))|

(ii) For u ∈ [0, a∗]:

|N0(u)| ≤ |E(τ∗)||G(u; n0)| ≤ ‖β‖∞
g(w0)

∫ a∗

u
|n0(a − u)|da ≤ ‖β‖∞

g(w0)
‖n0‖L1(0,a∗)

we have:

|Ĥ(α∗)| ≤
∫ τ∗

0
e−α∗t |L0(t)| dt + e−α∗τ∗ ∫ a∗

0
e−α∗u |N0(u)| du

≤ C1[‖l0‖L1(w0,w
∗) + ‖n0‖L1(0,a∗)]

which immediately provides:

|C∗(l0, n0)| ≤ M∗[‖l0‖L1(w0,w
∗) + ‖n0‖L1(0,a∗)]

for some constant M∗ > 0, depending on α∗, τ∗.
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Retaking the calculation of the integral in the left-hand side of (11), notice that the two terms corre-
sponding to the horizontal sides of � in this complex integral are:

∫ b0

b1

e(σ−iT )t F̂(σ − iT ) dσ −
∫ b0

b1

e(σ+iT )t F̂(σ + iT ) dσ = −2iIm J (T, t)

where

J (T, t) :=
∫ b0

b1

e(σ+iT )t F̂(σ + iT ) dσ.

LEMMA 1. For each t ≥ 0, we have limT →+∞ J (T, t) = 0.

Proof. Set

g(x + iy) := 1 − e−(x+iy)τ∗
�̂(x + iy) = 1 −

∫ a∗

0
e−(x+iy)(τ∗+a)�∗(a) da. (13)

Then, for b1 ≤ σ1 < σ2 ≤ b0, we have:

|g(σ2 + iT )− g(σ1 + iT )| ≤
∫ a∗

0
�∗(a)|e−σ1(τ

∗+a) − e−σ2(τ
∗+a)| da

≤ |σ1 − σ2|
∫ a∗

0
�∗(a)(τ∗ + a) sup

σ∈[b1,b0]
|e−σ(τ∗+a)| da

:= C1|σ2 − σ1|.

We claim that there exists a constant g0 > 0 such that for any T0 > 0 we have:

inf
(σ,T )∈[b1,b0]×[T0,+∞)

|g(σ + iT )| ≥ g0.

If this is not true, then there exists a sequence {(σn , Tn)}n=1,2,... ⊂ [b1, b0] × [T0,∞) such that
limn→∞ g(σn + iTn) = 0. It is simple to argue that there is no loss of generality assuming that
limn→∞ σn = σ∗ ∈ [b1, b0] and also that limn→∞ Tn = +∞.

Since the Riemann–Lebesgue lemma yields to limT →+∞ g(σ + iT ) = 1 for each σ ∈ [b1, b0], we
have:

|g(σn + iTn)− 1| ≤ |g(σn + iTn)− g(σ∗ + iTn)| + |g(σ∗ + iTn)− 1|
≤ C1|σn − σ∗| + |g(σ∗ + iTn)− 1| −→ 0 (n → ∞)

which is a contradiction.
Therefore, we have for T ≥ T0 > 0 and t ≥ 0:

|J (T, t)| ≤
∣
∣
∣
∣
∣

∫ b0

b1

e(σ+iT )t e−(σ+iT )τ∗
�̂(σ + iT )Ĥ(σ + iT )

g(σ + iT )
dσ

∣
∣
∣
∣
∣

≤ eb0|t−τ∗|
g0

∫ b0

b1

|�̂(σ + iT )||Ĥ(σ + iT )| dσ −→ 0 (T → +∞).

In the last integral, we have applied the Lebesgue dominated convergence theorem, bearing in mind that
the Riemann–Lebesgue lemma assures for each σ ∈ [b1, b0] that

lim
T →+∞ �̂(σ + iT ) = lim

T →+∞ Ĥ(σ + iT ) = 0.

The lemma is proved. �
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As a consequence, taking the limit when T → +∞ in (11), the inversion formula (9) provides:

F(t) = C∗(l0, n0)e
α∗(t−τ∗) + 1

2π i
lim

T →+∞

∫ b1+iT

b1−iT
e pt F̂(p) d p. (14)

To obtain the asymptotic behavior of R(t) when t → +∞, we have to estimate the dependence with
respect to t of the improper complex integral in the right-hand side of (14).

First of all notice that:

1

2π i

∫ b1+iT

b1−iT
e pt F̂(p) d p = eb1(t−τ∗)

2π

∫ T

−T
eiσ(t−τ∗) �̂(b1 + iσ)Ĥ(b1 + iσ)

g(b1 + iσ)
dσ

= eb1(t−τ∗)

2π
I (T, t)

where we have introduced the notation:

I (T, t) :=
∫ T

−T
eiσ(t−τ∗) Ĥ(b1 + iσ)�̂(b1 + iσ)

g(b1 + iσ)
dσ.

The usual choice in population dynamics models of L1(w0, w
∗) as state space for the initial data l0

introduces some technical difficulties in the behavior of the integral I (T, t) for T → +∞, that can be
solved by imposing additional regularity conditions to the vital rates β andμ. To be precise, we will assume
the following:

HYPOTHESIS 2. The extension by zero to R of the function a → �∗(a), a ∈ [0, a∗] belongs to C2(R).

Then, we have:

LEMMA 2. The improper integral I∗(t) := limT →+∞ I (T, t) is absolutely convergent and bounded
by a constant non-dependent on t > 0.

Proof. Since the vertical line Re p = b1 does not contain any solution to (10), then σ → |g(b1 + iσ)|
is a strictly positive and continuous function such that limσ→±∞ |g(b1 + iσ)| = 1. Therefore, g1 :=
infσ∈R |g(b1 + iσ)| is a strictly positive constant so that:

|I (T, t)| ≤ 1

g1

∫ T

−T
|Ĥ(b1 + iσ)||�̂(b1 + iσ)| dσ. (15)

Let us notice that Ĥ(b1 + iσ) and �̂(b1 + iσ), σ ∈ R, are, respectively, the Fourier transforms of the two

functions t → e−b1t
[

L̃0(t)+ Ñ0(t − τ∗)
]

and a → e−b1a�̃∗(a).
The mathematical complexity mentioned above appears because the function t → L̃0(t) belongs to

L1(R), and therefore, we can also assure that its Fourier transform is a continuous and bounded function on
R, which in general does not belong to L2(R), making impossible to apply the Parseval–Plancherel identity
to estimate the integral in (15).

It is a well-known fact that the Fourier transform F( f ) of a function f ∈ L1(R) is a continuous function
on R bounded by:

‖F( f )‖∞ := sup
σ∈R

|F( f )(σ )| ≤ ‖ f ‖L1(R)

so that in our case, straightforward calculations provide:

sup
σ∈R

|Ĥ(b1 + iσ)| ≤
∫ τ∗

0
e−b1t |L0(t)| dt +

∫ a∗

0
e−b1(s+τ∗)|N0(s)| ds

≤ C1[‖l0‖L1(w0,w
∗) + ‖n0‖L1(0,a∗)].

On the other hand, assuming Hypothesis 2, standard properties of the Fourier transform, that relate the
order of differentiability of a function with the growth at infinity of its Fourier transform, provide that



E. Sá nchez et al. J. Evol. Equ.

the function σ → σ 2�̂(b1 + iσ) belongs to L∞(R), which immediately implies the convergence of the
improper integral

∫ +∞
−∞ |�̂(b1 + iσ)| dσ .

Summing up, we obtain from (15):

|I (T, t)| ≤ 1

g1
sup
σ∈R

|Ĥ(b1 + iσ)|
∫ T

−T
|�̂(b1 + iσ)| dσ

≤ C1

g1
[‖l0‖L1(w0,w

∗) + ‖n0‖L1(0,a∗)]
∫ +∞
−∞

|�̂(b1 + iσ)| dσ

from which we obtain:

|I∗(t)| ≤ lim
T →+∞ |I (T, t)| ≤ C2[‖l0‖L1(w0,w

∗) + ‖n0‖L1(0,a∗)] (16)

and the lemma is proved. �

We can now establish the asymptotic behavior of R(t) for t → +∞, which constitutes the main result
of this section:

THEOREM 2. For each initial data l0 ∈ L1(w0, w
∗), n0 ∈ L1(0, a∗), the solution to (5) can be written

as:

R(t) = eα
∗(t−τ∗)[C∗(l0, n0)+�(t)], t > 0

for some function�(t) such that limt→+∞�(t) = 0, where α∗ is the unique real solution to (10), and the
constant C∗(l0, n0) ≥ 0 has been defined in (12).

Proof. The Laplace inversion formula applied to expression (8) together with (14) yields to:

R(t) = H(t)+ F(t) = L̃0(t)+ Ñ0(t − τ∗)+ F(t)

= L̃0(t)+ Ñ0(t − τ∗)+ C∗(l0, n0)e
α∗(t−τ∗) + eb1(t−τ∗)

2π
I∗(t)

= eα
∗(t−τ∗)[C∗(l0, n0)+�(t)]

with:

�(t) := e−α∗(t−τ∗)[L̃0(t)+ Ñ0(t − τ∗)] + e(b1−α∗)(t−τ∗)

2π
I∗(t).

Bearing in mind Lemma 2, since b1 < α∗ and since L̃0, Ñ0 are zero for t > 0 big enough, it is evident that
limt→+∞�(t) = 0.

Also, notice that estimation (16) provides, for t > 0 big enough and for some constant K ∗ > 0:

|�(t)| ≤ K ∗[‖l0‖L1(w0,w
∗) + ‖n0‖L1(0,a∗)].

The theorem is proved. �

3.1. Asymptotic behavior of solutions to the model (A)–(L)

Bearing in mind expression (4) together with the relationship l(w∗, t) = l(w0, t − τ∗)E(τ∗) valid for
t > τ∗, the densities of larvae and adults can be expressed in terms of R(t) as:

l(w, t) = E(τ (w))

E(τ∗) R(t + τ∗ − τ(w)) t > τ∗

n(a, t) = g(w∗)R(t − a)e− ∫ a
0 μ(s) ds t > a∗

which provide immediately the following result:
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COROLLARY 1. The asymptotic behavior of the densities of larvae and adults is given by:

lim
t→+∞ e−α∗t l(w, t) = C∗(l0, n0)

E(τ (w))

E(τ∗) e−α∗τ(w)

lim
t→+∞ e−α∗(t−τ∗)n(a, t) = g(w∗)C∗(l0, n0)e

−(α∗a+∫ a
0 μ(s) ds).

Theorem 2 allows us to establish a long-time estimation for the total population of larvae and adults,
which are defined, respectively, by:

L(t) :=
∫ w∗

w0

l(w, t) dw (larvae); N (t) :=
∫ a∗

0
n(a, t) da (adults).

That is, straightforward calculations provide, for t > 0 big enough, and some positive constants Mi ,
i = 1, 2:

|L(t)| ≤ M1eα
∗t [‖l0‖L1(w0,w

∗) + ‖n0‖L1(0,a∗)]
|N (t)| ≤ M2eα

∗(t−τ∗)[‖l0‖L1(w0,w
∗) + ‖n0‖L1(0,a∗)].

These results show an exponential growth of the densities of larvae and adults as well as the total
populations, determined by the constant α∗, solution to (10).

Let us say a few words about the constant C∗(l0, n0), bearing in mind that we have restricted our
calculations to nonnegative initial data l0, n0.

First, notice that C∗(l0, n0) = 0 if and only if Ĥ(α∗) = 0, which holds if and only if L0(t) = 0
a.e. t ∈ [0, τ∗] together with N0(a) = 0 for all a ∈ [0, a∗]. Our aim is to investigate whether there are
nonnegative and nonzero initial data l0, n0 for which C∗(l0, n0) = 0. It is easy to see that L0(t) = 0 a.e.
t ∈ [0, τ∗] if and only if l0(w) = 0 a.e. w ∈ [w0, w

∗].
Regarding the function N0, the result depends on the support of function β, supp (β) := [a1, a2],

0 ≤ a1 < a2 ≤ a∗. We have:

LEMMA 3. If a2 < a∗, then N0(a) = 0 for all a ∈ [0, a∗] if and only if supp (n0) ⊂ [a2, a∗].
If a2 = a∗, then N0(a) = 0 for all a ∈ [0, a∗] if and only if n0(a) = 0 a.e. a ∈ [0, a∗].

Proof. We only carry out the proof for the case a2 < a∗, the result for a2 = a∗ being an easy consequence.
It is evident that N0(a) = 0 for all a ∈ [a2, a∗], so that let us assume that a ∈ [0, a2]. Recall that:

N0(a) = E(τ∗)
∫ a2

a

1

g(w0)
β(s)e− ∫ s

s−a μ(σ) dσ n0(s − a) ds

therefore, N0(a) = 0 if n0(s) = 0 for all s ∈ [0, a2 − a]. Since a varies in [0, a2], this implies that
N0(a) = 0 for all a ∈ [0, a2] if and only if n0(a) = 0 a.e. a ∈ [0, a2], as we wanted to prove. �

The conditions L0 = 0 and N0 = 0 in expression (5) imply that R(t) = 0 for all t ≥ 0, and therefore,
l(w, t) = 0 for all t ≥ τ∗ and also n(a, t) = 0 for all t ≥ a∗. That is, the previous lemma provides a
condition for extinction of both populations in a finite time, which has a not surprisingly biological meaning:
Population (A)–(L) will be extinguished if and only if initially there is no population of larvae and if adults
are too old to be fertile.

Let us say a few words about the statement if of the condition for extinction in a finite time of populations
of larvae and adults. This means that there exists t0 > 0 such that for all t ≥ t0 we have that l(w, t) = 0
a.e. w ∈ [w0, w

∗] and also that n(a, t) = 0 a.e. a ∈ [0, a∗], which in turn implies that R(t) = 0 for all
t ≥ 0 big enough. Therefore, if extinction in a finite time of both populations occurs, Theorem 2 leads to
the condition C∗(l0, n0) = 0 and then Lemma 3 applies.
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4. Conclusion

In this work, we study a linear system of hyperbolic partial differential equations, (A)–(L), with boundary
and initial conditions. The system represents a model of a structured population based on the classical linear
Lotka–MacKendrick model. The specificity of the proposed model lies in treating a population classified
into two stages with different structuring variable for each one. The stages are called larval and adult though
they could also be assimilated to the widespread terminology juvenile–adult. The larval stage is structured
by weight so that the model can take into account that maturation occurs at a larval threshold. The adult
stage is simply structured by age.

Generalizing what happens in simpler models for density-independent population growth [8,9,14], we
prove in Corollary 1 that asymptotically the population will grow exponentially and that the larvae weight
and adult age distributions will stabilize. To prove this result, the original system (A)–(L) is reduced to a
delayed renewal equation with constant delay for the density of larvae at the maturation threshold, which
asymptotic behavior is found via Laplace transform methods in Theorem 2.

The population either grows or declines exponentially depending on number α∗ being positive or nega-
tive. Constant α∗ is the only real solution (Proposition 1) of Eq. (10) which plays the role of characteristic
equation of the functional equation (5). The net reproduction rate �0 defined in (7) is larger or smaller
than one if and only if α∗ is positive or negative, respectively. This means that the expected number of
offspring produced by one individual during her reproductive life, being larger or smaller than one, decides
whether the population grows or declines exponentially. The expression of parameter �0 is composed

of two factors, one of them,
∫ a∗

0 β(a) exp(− ∫ a
0 μ(s)ds)da, describing the expected number of offspring

produced by an adult, and the second one, exp(− ∫w∗
w0
(ν(w)/g(w))dw), measuring the probability that a

new recruited larva survives till maturation weight. This last term is the key to analyze the influence on
the population asymptotic behavior of particular forms of the growth rate together with different values of
the maturation threshold. Note that this discussion could also be important for the analysis of equilibria in
density-dependent models as well, since the environment at equilibrium could also be considered constant
in time.

The complex model in [4] that originates the linear model (A)–(L) in this work describes the growth of a
population of fish focussing on density-dependent effects at the larval stage, and in spite of its complexity,
it takes into account no spatial effects. Starting from our simplified model, we plan to transform it into a
spatially explicit one. In a previous work [3], which is a precedent of [4], a fish species which is subject
to industrial fishing is studied: Solea solea, the common sole of the Bay of Biscay. The proposed model
distinguishes different structured stages, as in [4], but pays no special attention to the larval stage. On the
other hand, it includes the migration of the sole from its spawning grounds to the nursery grounds essen-
tially as a horizontal diffusion process taking place during the larval stage. This migration is not the only
movement the sole larvae undergo, they also move in the water column, from below the surface down to
the seabed or the top of a lower sea layer, according to an essentially circadian rhythm. In [3], these vertical
migrations are averaged throughout the whole water column to produce a supposedly constant shoreward
velocity. In [5], it is presented a simple age-structured model that includes the phenomenon of vertical
migrations through a spatial structure of horizontal layers where demographic parameters change across
it. A rigorous treatment of averaging in this framework is undertaken by considering vertical motion a fast
process compared with the demographic process. This means that after averaging has been performed, using
the so-called aggregation method, the model at hand is age-only dependent.

Research toward including in model (A)–(L) at the larval stage a horizontal diffusion process and vertical
motion at possibly different time scales is planned following previous works [5,17].
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