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Abstract1

In this work we study a nonlinear two time scales discrete competition model.2

Specifically, we deal with a spatially distributed Leslie-Gower competition3

model with fast dispersal. After building up the corresponding two time4

scales model, we have used approximate aggregation techniques to derive a5

lower dimensional, reduced system. When the ratio between time scales is6

large enough, the aggregated system can be used to analyze the two time7

scales model.8

As a result, we have found trade-off mechanisms between fast disper-9

sal and competition under spatial homogeneity conditions. When the envi-10

ronment is heterogeneous, we have found that under asymmetric dispersal,11

whether competitive coexistence or competitive exclusion occurs depends on12

the initial population sizes of the two species.13

Keywords: Leslie-Gower model; Survival strategies; Dispersal; Aggre-14

gation methods; Individual behavior; bi-stability; tri-stability.15
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1 Introduction.16

The analysis of the mechanisms underlying coexistence in patchy environ-17

ments is an important issue in theoretical ecology [17, 18, 16]. Essentially,18

species competition and individuals dispersal are taken into account and the19

interest relies on the interplay between both processes.20

One of its paradigms, the Patch Occupancy Metapopulation Theory21

(POT) [10], explores population persistence and species coexistence in patchy22

landscapes using the competition-colonization trade-off as its basis. The23

POT focuses on the presence of local populations in habitat patches and24

it does not include any description of local dynamics. The POT implic-25

itly recognizes that competition operates at a much faster time scale than26

colonization-extinction processes. All these assumptions preclude, in fact, lo-27

cal coexistence and imply that migration cannot influence local competitive28

interactions. The POT and its predictions are, nevertheless, at odds with29

some empirical data [11] due to the implicit separation of time scales.30

In [1] it is set up a metapopulation model considering dispersal and31

competition within the same time scale. Under this assumption, the authors32

shown that in a spatially homogeneous competitive environment differences33

in species dispersal are not enough to explain coexistence with the absence34

of a refuge for the weaker competitor. Besides, they considered spatial het-35

erogeneity either by allowing for species refuges or by assuming variations in36

competitive rankings over space such that the superior competitor in some37

parts of the landscape becomes the inferior competitor in the remnant land-38

scape. The heterogeneity is concreted in spatial variance in fitness that leads39

to a source- sink dynamics framework enabling coexistence.40

Finally, the puzzle was completed in [22] where dispersal was assumed41

to be much faster that competition. Under this settings, the authors shown42

that there is a trade-off between fast dispersal and competition when the43

environment is homogeneous. In particular, appropriate dispersal rates may44

allow the weaker competitor to survive and even to exclude the stronger com-45

petitor.46

47

The approaches presented in [10] and [22] share the feature that com-48

petition and dispersion occur at different time scales. Understanding how49

ecological phenomena interact across temporal scales is crucial in theoretical50

ecology [16, 12], since it is known that differences in process time scales may51

be critical for system dynamical behaviour [20, 12, 15].52
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53

The aim of this work is to analyze the interplay of species competition54

and fast individuals dispersal in a metapopulation, in the sense that we seek55

trade-off mechanism between these two processes related to species coexis-56

tence. We also study the role of spatial heterogeneity in the aforementioned57

compensation mechanism. Here, we focus on the impact of dispersal on local58

populations with discrete non-overlapping generations. This situation can be59

found in a range of evolutionary and ecological processes in which gene flow60

and dispersal rate due to non sedentary habits can operate at a fast scale rel-61

ative to selection or population interaction processes [22]. The corresponding62

mathematical models adopt the form of systems of difference equations [31].63

The study of the role of dispersal in continuous-time metapopulation models64

is extensive [16, 2, 4, 22].65

The paradigms of competition models are the Lotka-Volterra model66

in the continuous case and the Leslie-Gower model [13] in the discrete case.67

The latter played a fundamental role in laboratory experiments with the flour68

beetle (of the genus Tribolium) that give rise to the competitive exclusion69

principle that is one of the important tenets in ecology [23, 24, 25, 26, 13].70

The Leslie-Gower model consists of two Beverton-Holt equations with the71

adding of the interspecific competition.72

The proposed model considers two competing species inhabiting an en-73

vironment consisting of p different patches. The model couples local Leslie-74

Gower competition dynamics with linear (constant rates) individuals dis-75

persal between patches. Dispersal is assumed to be faster than competition,76

which yields a system of 2p difference equations with two time scales. Taking77

advantage of the time scales separation the system can be studied in terms78

of a two dimensional system for the total densities of the two species. This79

reduction is performed with the help of the so-called approximate aggrega-80

tion of variable technique [3, 5]. The form of the reduced system is that of a81

discrete competition model different from the Leslie-Gower model and with82

a richer dynamics.83

84

The Leslie-Gower model exhibits the same dynamics [6, 19] than the85

Lotka-Volterra model. Weak species competition leads to a coexistence equi-86

librium state while strong species competition makes competitive exclusion87

to occur: which species gets extinct either depends on priority effects (the88

excluded species depend on the initial amount of individuals, the species that89

gains an early advantage wins) or do not. The laboratory results with the90
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flour beetle where mostly supported by the Leslie-Gower competition model.91

Nevertheless, data from one of those experiments was at odds with this92

model, since in this experiment whether competitive coexistence occurred93

or competitive exclusion occurred depended on the initial population num-94

bers of the two species [6]. In [6, 7] an explanation to this data is proposed95

in terms of an age structured population model by introducing a Ricker-type96

nonlinearity and found multiple mixed-type attractors. Instead, the model97

that we propose keeps as local dynamics the simple Leslie-Gower model but98

we find that together with fast dispersal there exist scenarios displaying mul-99

tiple equilibrium attractors that compatible with the data observed in the100

experiments with the flour beetle and are different from those displayed in101

[6, 7] (see section 4).102

103

This work is organized as follows: in section 2 we set up a slow-fast104

Leslie-Gower spatially distributed competition model. The habitat consists105

of p patches and there individuals dispersal. The system consists of 2p equa-106

tions and we sketch both a dimension reduction procedure as well as the107

kind of information that produces. Section 3 is devoted to the analysis of the108

reduced system. We derive general conditions for species viability, species co-109

existence or species extinction. Nevertheless, under the most general settings,110

the model depends on so many parameters to perform a complete analysis. In111

section 3.1 we deal with the important case of an a 2 patches environment. In112

this case we show that fast dispersal in heterogeneous environments may lead113

to scenarios with two and even three stable equilibrium points (bi-stability114

and tri-stability), while it is not possible if both patches are homogeneous.115

Besides, we highlight a trade-off mechanism between dispersal and compe-116

tition. We discuss the previous results in section 4 and section 5 contains117

the conclusions of this work. The appendix section A devoted to prove the118

mathematical results completes the manuscript.119

2 Methods120

In this section we set up a difference equation (discrete time) model that121

accounts species competition along with fast dispersal. After building the122

slow fast model, the separation of time scales allows us to apply the results123

sketched in Appendix A and get a less dimensional system. The section124

finishes with a result which describes which kind of information about the125
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slow fast system can be retrieved from the reduced system.126

2.1 Presentation of the model.127

We consider two competing species inhabiting an environment divided into
p patches. Let nj

i (t) be the number of individuals of species i = 1, 2 in patch
j = 1, . . . , p at time t. We denote Ni(t) = (n1

i (t), n
2
i (t), . . . , n

p
i (t)) , the spatial

distribution of individuals of each species and the population vector

N(t) = (N1(t), N2(t))
T ,

where the superscript T stands for transposition. We assume that individual128

displacements between patches is faster than the local community dynamics.129

Following appendix A both processes, dispersal and local dynamics, are rep-130

resented by two mappings F (for fast) and S (for slow), respectively. The131

time unit of the system is that of the the slow process and the effect of the132

fast dynamics is represented by the k-th iterate of mapping F , F (k), with k133

being an approximation of the time scales ratio. Thus, we set the so called134

complete system that combines both processes, fast and slow, and that reads135

as follows:136

N(t+ 1) = S
(
F (k) (N(t))

)
(1)

Next, we explicitly define the mappings F and S.137

We assume that dispersal rates are constant and we denote f rs
i the138

fraction of individuals of species i moving from patch s to patch r. Gathering139

these coefficients we define the dispersal matrices Fi = (f rs
i ), i = 1, 2, that140

are stochastic. For further purposes, we also assume that they are regular.141

The definition of mapping F representing dispersal is thus142

F (N) =

(
F1 0
0 F2

)(
NT

1

NT
2

)
= FN (2)

The local species competition in each patch j = 1, · · · , p is represented by
the Leslie-Gower model [6]. If nj

1 and nj
2 are the number of individuals of

both species in patch j, after a time unit they become, respectively
bj1

1 + cj11n
j
1 + cj12n

j
1

nj
1 = sj1(n

j
1, n

j
2),

bj2
1 + cj21n

j
2 + cj22n

j
2

nj
2 = sj2(n

j
1, n

j
2),
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where bji is the intrinsic growth rate of species i in patch j (that is, the growth143

rate without taken into account density dependent effects) and cjrs measures144

the competitive effect of species s on species r in patch j. growth rate in the145

absence of the other competitor Denoting Si(N(t)) = (s1i (n
1
1, n

1
2), . . . , s

p
i (n

p
1, n

p
2))146

the mapping S representing the local dynamics is defined by147

S(N) = (S1(N), S2(N))T (3)

Summing up, it the complete system (1) S
(
F (k) (N(t))

)
= S

(
FkN(t)

)
148

2.2 Reduction of the model.149

We use the method described in appendix A to reduce the system (1). The150

procedure follows from the usual assumption for slow fast system that fast151

dynamics attains an stable equilibrium state ”instantaneously” fast, which152

is equivalent to assume that the ratio between time scales, k, is large. Math-153

ematically, the fact that Fi are regular and stochastic means [29] that, asso-154

ciated to the eigenvalue 1, there exist positive eigenvectors vi = (vi1, . . . , vip)155

and 1 = (1, . . . , 1) ∈ Rp such that 1vT
i = 1 and such that156

lim
k→∞
Fk

i = vT
i 1. (4)

The vector vi represents the stable distribution of individuals of species i157

among the p different patches, that is, the dispersal process drives both158

species to attain stable distributions given by vi at the fast time scale. From159

(4) it is straightforward that160

lim
k→∞
FkN =

(
vT
1 1NT

1

vT
2 1NT

2

)
= F̄N,

where F̄ is that in hypothesis A.1 andN(t+1) = S
(
F̄ (N(t))

)
is the auxiliary

system (13) in appendix A which approaches the complete system (1) for
k large enough. The dimension reduction is possible provided a suitable
decomposition F̄ = E ◦G as prescribed in hypothesis A.2, which is fulfilled
by defining

G (N) =

(
1 0
0 1

)
N =

(
p∑

j=1

nj
1,

p∑
j=1

nj
2

)T

, E (y1, y2) = (v1y1,v2y2)
T
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The existence of the mapping G is is equivalent to the existence of the so-161

called global variables of the system, that are constant for the fast dynamics162

and become the state variables of the reduced system. In this case, the global163

variables are the total number of individuals of each species that, obviously,164

do not change with dispersal and we denote them yi =
∑p

j=1 n
j
i , i = 1, 2.165

The mapping E describes the asymptotic distribution of individuals between166

regions. Note that the equilibria of fast dynamics depend on the global167

variables and the stable distributions of individuals of each species among168

the p different patches.169

With the help of mappings G and E we can build up the aggregated170

system (14) for the global variables, which reads as follows171 {
y1(t+ 1) = f1(y1(t), y2(t)),

y2(t+ 1) = f2(y1(t), y2(t)).
(5)

where172

f1(y1(t), y2(t)) =

p∑
j=1

bj1v1jy1(t)

1 + cj11v1jy1(t) + cj12v2jy2(t)
:= φ1(y1(t), y2(t))y1(t),

f2(y1(t), y2(t)) =

p∑
j=1

bj2v2jy2(t)

1 + cj21v1jy1(t) + cj22v2jy2(t)
:= φ2(y1(t), y2(t))y2(t).

(6)
The definition of the mapping F (see equation 2) imply that hypotheses173

of theorem A.1 are met. Thus, important features of the asymptotic behavior174

of the solutions of system (1) can be studied through the corresponding175

analysis of the reduced system (5). The next result is a contextualized version176

of the main general aggregation theorem A.1 from the appendix A.177

Theorem 2.1 Consider the general model (1). Let Y ∗ = (y∗1, y
∗
2) ∈ [0,∞)×

[0,∞) be a hyperbolic equilibrium point of the aggregated system (5). Then
there exists k0 ∈ N such that for each k ≥ k0 there exists a hyperbolic equi-
librium point X∗k of system (1) satisfying

lim
k→∞

X∗k = X∗ = (v1y
∗
1,v2y

∗
2)

where v1 and v2 stand for the asymptotic spatial distribution of individuals178

of each due to the dispersal process.179
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1. If y∗ is asymptotically stable then X∗k is asymptotically stable for each180

k ≥ k0, and the basins of attraction of each X∗k can be described in181

terms of the basins of attraction of Y ∗.182

2. If y∗ is unstable then X∗k is unstable, for each k ≥ k0.183

Proof.– We have already proved that system (1) fulfills hypotheses A.1 and184

A.2 that lead to theorem A.1. To prove that limits (15) are uniform on com-185

pact sets, see [28], proposition 3.10. �186

187

Therefore, whenever the time scales ratio is large enough, the behavior188

of the complete system (1) can be described in terms of the equilibrium points189

(y∗1, y
∗
2) of the aggregated system (5) and the asymptotic stable distribution190

of individuals among patches v1 and v2. That is, the larger is the time scales191

ratio, the better the solutions of the complete system approach (v1y
∗
1,v2y

∗
2).192

3 Results193

In this section we analyze the reduced system (5). In the first instance,194

there are three important kind of equilibrium states: the trivial equilibrium195

(0, 0) ∈ R2, that stands for global extinction, the semi trivial equilibrium196

points E∗1 = (y∗1, 0), E∗2 = (0, y∗2) ∈ R2, y∗1 6= 0, y∗2 6= 0 that correspond197

with the state in which on species gets extincted and, finally, coexistence198

equilibrium states of the form E∗ = (y∗1, y
∗
2) ∈ R2, y∗1 6= 0, y∗2 6= 0. Of199

course, discrete systems may exhibit many other long term behavior different200

from approaching one of these equilibrium states, including convergence to201

periodic states or chaotic orbits. The aim of this section is to determine202

which behavior admit the solutions of system 5 and which are the conditions203

enabling it.204

We prove first that the reduced system (5) is well defined and that205

it is competitive [30]. This is an important feature since, as we will see206

soon, it entails that any solution of the aggregated system converges to an207

equilibrium state in the form of an equilibrium point. This fact allows us208

to take full advantage of theorem (2.1). We denote the positive cone by209

R2
+ = (0,∞)× (0,∞).210

Proposition 3.1 Consider the aggregated system (5). Then211
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1. The positive cone as well as (0,∞)×{0} and {0}× (0,∞) are forward212

invariant.213

2. All solutions in [0,∞)× [0,∞) are forward bounded:

y1(t) ≤
p∑

j=1

bj1/c
j
11, y2(t) ≤

p∑
j=1

bj2/c
j
22, for t = 1, 2, · · ·

3. The system is competitive, meaning that if214

y1 < y′1 and y′2 < y2

then215

f1(y1, y2) < f1(y
′
1, y
′
2) and f2(y

′
1, y
′
2) < f2(y1, y2).

Proof.–: It can be easily accomplished by direct calculation. �216

217

It is immediate that (0, 0) is an equilibrium point of system (5) regard-218

less of the value of the parameters of the model, while this is not the case219

of the semi trivial equilibrium points. The following result relates conditions220

for global extinction of both species with conditions that assure the existence221

of the semi trivial equilibrium points. The key parameter is the global growth222

rate of species i, φi(0, 0) =
∑p

j vijb
j
i , that is, the sum of the local growth223

rates weighted by the asymptotic distribution of individuals among patches.224

Proposition 3.2 Consider system (5) and φi, the function defined in (6).225

Then,226

1. The trivial equilibrium is a global attractor if, and only if, φi(0, 0) ≤ 1227

for i = 1, 2.228

2. For each i = 1, 2, there exists E∗i if, and only if, φi(0, 0) > 1. In this229

case, y∗i is the unique positive value satisfying φi(E
∗
i ) = 1.230

Proof.– See appendix A.2 �231

232

Corollary 3.3 All solutions of system (5) in [0,∞)× [0,∞) converge even-233

tually to an equilibrium point.234
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Proof : See appendix A.2. �235

236

For each species, the existence of the semi trivial equilibrium is closely237

related to its ability to survive in the absence of the other species. The238

following result establishes that species i can survive if φi(0, 0) ≤ 1 but239

φj(0, 0) > 1, with i 6= j.240

Proposition 3.4 Consider system (5) and φi, the function defined in (6).241

Then242

1. Species i gets globally extinct if, and only, if φi(0, 0) ≤ 1.243

2. Assume that φ1(0, 0) > 1 and φ2(0, 0) ≤ 1. Then, for any solu-244

tion (y1(t), y2(t)) of system (5) such that y1(0) > 0 it follows that245

lim
t→∞

(y1(t), y2(t)) = E∗1 .246

3. If, instead, φ1(0, 0) ≤ 1 and φ2(0, 0) > 1 then, for any solution (y1(t), y2(t))247

of system (5) such that y2(0) > 0 it follows that lim
t→∞

(y1(t), y2(t)) = E∗2 .248

Proof.– See appendix A.2 �249

250

Nevertheless, when both species have the potential to survive (i.e.,251

φi(0, 0) > 1 for i = 1, 2) the effect of species competition must be taken252

into account and condition φi(0, 0) > 1 does not guarantees anymore that253

species i will survive. We carry on the analysis by assuming that φi(0, 0) > 1254

for i = 1, 2 and we seek for conditions leading to either one species exclusion255

or species coexistence.256

Proposition 3.5 Consider system (5) and assume that φi(0, 0) > 1 for i =257

1, 2, so that the semi trivial equilibrium points E∗i , i = 1, 2, exist. Then, E∗i258

is locally asymptotically stable if259

φj(E
∗
i ) < 1, j 6= i (7)

and unstable if260

φj(E
∗
i ) > 1, j 6= i. (8)

Proof : It follows from the usual analysis of the eigenvalues of the corre-261

sponding Jacobian matrix. Standard calculations lead to the desired results262

just keeping in mind that y∗i solves the equation 1 = φi(E
∗
i ). �263

264

A direct consequence of proposition 3.5 is the following265
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Corollary 3.6 Consider system (5) and assume that φi(0, 0) > 1 for i =266

1, 2. If condition φj(E
∗
i ) > 1 holds for i, j = 1, 2 j 6= i, then there is species267

coexistence.268

Proof : �269

270

Condition (7) in proposition 3.5 provides also sufficient conditions for271

species extinction via priority effects:272

Corollary 3.7 Consider system (5) and assume that φi(0, 0) > 1 for i =273

1, 2. If condition φj(E
∗
i ) < 1 holds for i, j = 1, 2 j 6= i, then exist neighbor-274

hoods Ui of E∗i such that or any initial condition in (yi1(0), yi2(0)) ∈ Ui ∩ R2
+275

the corresponding solutions (yi1(t), y
i
2(t)) converges to E∗i276

Proof : �277

278

We have found conditions entailing species coexistence and we already279

know that any solution converges to an stable equilibrium state. The focus is280

now on determine the structure of these stable states: number, distribution,281

and so on. Note that the coexistence states are the positive roots of a system282

of the form283 {
P1(y1, y2) = 0,
P2(y1, y2) = 0,

being Pi polynomials on y1 and y2 of degree p, the number of patches. To our284

knowledge, there is no general criterion to determine the number of coexis-285

tence states for an arbitrary p ≥ 5 (taking into account that these polyno-286

mials are not general ones, since there are constrains imposed by equations287

(5)). That fact prevents us from obtaining general results. Of course, pos-288

itive solutions can be numerically calculated for a given a concrete set of289

parameter values. It is important to recall that the aggregated model is a 2290

dimensional one, so that the stability of the positive equilibrium points can291

be easily analyzed, for instance, via linearization.292

3.1 Two patches environment293

In this section we set a two patches environment, that is simpler but still294

meaningful setting. The previous section left open the door to find multi295

attractor scenarios and one of the purposes of this section is to illustrate this296
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fact. The other aim of this section is to get an insight in the role of fast297

dispersal in competition on homogeneous environments.298

Note that the aggregated system still depends on 16 parameters, which299

makes any try of performing an exhaustive classification of all the possible300

outcomes of the model to be beyond the aims of this work. Therefore, we301

adopt either a numerical approach to show the existence of multi attractor302

scenarios or further ”homogenizer” assumptions on the coefficients of the303

system to enable an analytical approach.304

3.1.1 Multi stability results in heterogeneous environments.305

A serial of numerical experiments yielded, along with the classic dynamical306

outcomes, 2 and even 3 attracting equilibrium points. We display now an307

example in which whether competitive coexistence or competitive exclusion308

occurs depends on the initial population sizes of the two species.309

Figure 1 displays the case where the semi trivial equilibrium E∗2 =310

(0, y∗2) and a positive equilibrium E∗ = (y∗1, y
∗
2) are locally AS, whereas the311

semi trivial equilibrium E∗1 = (y∗1, 0) is unstable. Then, species 2 always sur-312

vives while species 1 may get extinct or may persist (coexistence) depending313

on the initial population values. Symmetric results exchanging the roles of314

E∗1and E∗2 exists.315

Instead, Figure 2 displays a more complex situation. There, both semi316

trivial equilibriums E∗1 = (y∗1, 0) and E∗2 = (0, y∗2) and a positive equilibrium317

E∗ = (y∗1, y
∗
2) are locally asymptotically stable, while there are another two318

unstable positive equilibrium points. In this case, coexistence or one species319

exclusion (having quite different competitive abilities) may arise.320

In both cases the outcome depends exclusively on the initial population321

values. Note that in both cases the asymmetric distribution of individuals.322

It is important to point out that, from extensive numerical experiments, we323

have found that for moderate dispersal rates the aggregated model behaves324

as the non spatially distributed one.325

3.1.2 Competition-dispersal trade-off.326

Now we investigate the net effect of individual displacements between patches327

on the outcome of the competition process. Thus, we set homogeneous con-328

ditions among patches, meaning that at patch j = 1, 2,329

bj1 = b1, bj2 = b2 cj11 = 1, cj22 = 1, cj12 = c12, cj21 = c21. (9)
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Furthermore, in order to avoid the extinction of both species we suppose330

b1, b2 > 1 (10)

Thus, the aggregated system is331 
y1(t+ 1) =

b1v1y1(t)

1 + v1y1(t) + c12v2y2(t)
+

b1(1− v1)y1(t)
1 + (1− v1)y1(t) + c12(1− v2)y2(t)

,

y2(t+ 1) =
b2v2y2(t)

1 + c21v1y1(t) + v2y2(t)
+

b2(1− v2)y2(t)
1 + c21(1− v1)y1(t) + (1− v2)y2(t)

.

(11)
where we have written v1 and v2 instead of v11 and v21, respectively. In what332

follows, keeping in mind the aforementioned homogeneity conditions, we are333

interested in two questions. On the one hand, are there multiattractors in334

a homogeneous environment? or, in other words, is spatial heterogeneity a335

necessary condition for the existence of multiattractors? And, on the other336

hand, regardless of the previous question, is there any dispersal strategy al-337

lowing the inferior competitor survive (when it would get extincted if patches338

were isolated)?339

The following result lightens the first question340

Proposition 3.8 Consider that the aggregated system (11) fulfills conditions341

(9) and (10). Then. there exists, at most, a single positive equilibrium point.342

Proof.– See appendix A.2 �343

344

Next, we establish conditions describing all the possible outcomes of345

system (11) under homogeneity conditions.346

Proposition 3.9 Consider that the aggregated system (11) fulfills conditions347

(9), (10) and φi(0, 0) > 1.348

1. If φi(E
∗
j ) > 1 for i, j = 1, 2, i 6= j then, there exists a single coexistence349

state E∗ ∈ R2
+ which attracts any solution with initial values in (0,∞)×350

(0,∞).351

2. If φi(E
∗
j ) < 1 for i, j = 1, 2, i 6= j then, there exists a single coexistence352

equilibrium point E∗u which is unstable. Any solution of the system353

aggregated system with initial values y1(0), y2(0) 6= E∗u converges either354

to E∗1 or E∗2 . Indeed, E∗u is a saddle and its stable manifold divides the355

positive cone in two regions, each of them being the basins of attraction356

of one semi trivial equilibrium point.357
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3. Assume now that φi(E
∗
j ) > 1 but φj(E

∗
i ) < 1. Then,358

(a) It there exists a coexistence state E∗, then it is a saddle any solu-359

tion of the system aggregated system with initial values y1(0), y2(0) 6=360

E∗ and yj(0) 6= 0 converges to E∗j .361

(b) It there exists no coexistence state, then any solution of the system362

aggregated system with initial values such that yj(0) 6= 0 converges363

to E∗j .364

Proof.– It follows from corollary 3.3, which assures that any solution con-365

verges to an equilibrium point, proposition 3.8, where it is shown that there366

is at most one coexistence state and conditions on φi(E
∗
j ), that are related367

with the local stability of the semi trivial equilibrium points. �368

369

The following result corroborates the intuition that there are always370

dispersal rates allowing species coexistence. An obvious choice consists of371

dividing the arena between species, setting dispersal rates so that each species372

occupies a different patch (but there will be no competition). This result will373

turn out interesting (and non obvious) situations.374

Proposition 3.10 Consider the aggregated system (11) and assume also375

condition (10). Then, for any fixed values b1 > 1, b2 > 1, c12 and c21,376

there exist dispersal rates v11 and v21 fulfilling conditions φi(E
∗
j ) > 1, for377

i 6= j, i, j = 1, 2.378

Proof.– See appendix A.2 �379

380

A first comment on the previous result is that strong (and not only381

extreme) asymmetric dispersal rates allows population coexistence. Besides,382

from the proof we get the following upper bounds for the population size383

after a transient time.384

Corollary 3.11 Under the hypotheses of proposition 11, after a transient385

time the population is bounded from above by (2(b1 − 1), 2(b2 − 1)).386

Proof.– It follows from direct calculations. �387

388

We conclude this section with numerical simulations (figure 3) that389

illustrate the possible outcomes of the competition process for different dis-390

persal strategies. We use the explicit conditions achieved in section 3.1.2 to391
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compute conditions (7) and (8). We consider an homogeneous environment392

(in the sense of (9)) and set coefficients so that species 1 would drive species393

2 to extinction if patches were isolated. The outcome of the model in case394

of asymptotic symmetrical distribution of individuals, that is, around the395

line ν1 = ν2, is the same as if patches were isolated (blue region). On the396

contrary, in case of strong asymmetric dispersal, there is species coexistence397

(white region). When species competition abilities are similar, appropriate398

dispersal rates allow the weaker to out compete the stronger species (green399

region). As the difference in competitive abilities become larger, the weaker400

competitor is more likely to disappear.401

4 Discussion of results402

Our results highlight the key role of fast dispersal for species competition in403

patchy habitats. In this case, dispersal becomes important not only to find404

new resources, but also to avoid patches where competitive pressure is high.405

From an applied point of view, the construction of corridors between406

patches allowing individuals to migrate is a popular management tool used407

in the design of species conservation or species control strategies [27]. Our408

results suggest how important is for management purposes controlling not409

only these corridors and the dispersal rates through them, but also local410

intrinsic growth rates. Aided by parameter φ(0, 0) managers can analyze411

and decide the most efficient strategy to enable one species extinction.412

We must point out that there is controversy surrounding the effects413

of connecting or not connecting patches, since there are experiments demon-414

strating beneficial and negative effect of dispersal on the size of the metapop-415

ulation [4]. This apparent contradiction is faced in [8] considering a single416

species in a two patches environment, and our results can be used to to ex-417

tend their findings to habitats consisting of an arbitrary number of patches418

connected by fast dispersal.419

420

As we have pointed out, when species competition effects are taken into421

account, φi(0, 0) > 1 is a necessary but not sufficient condition for species i to422

survive. We have derived explicit conditions (based on the values of φi(E
∗
j ))423

entailing species extinction due to priority effects or species coexistence. Our424

results preclude the existence of neither periodic nor chaotic behavior in the425

evolution of the competing species. On the contrary, we found that the total426
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amount of individuals of each species converges eventually to an equilibrium427

value.428

This results are somehow at odds with those found in [6, 7] used to429

explain the unexpected (and unexplained) laboratory data obtained in the430

experiments with flour beetles (see the Introduction section)performed by431

Park [23, 24, 25, 26]. Data from this experiment showed that whether com-432

petitive coexistence occurred or competitive exclusion occurred was due to433

priority effects. In [6, 7] the authors proposed age structured specific models434

for the flour beetle that produced multiple mixed type attractors compatible435

with the aforementioned data. In particular, the coexistence state is a two436

cycle. We have found also (see section 3.1.1) multi attractor scenarios con-437

sisting of two or three equilibrium states which are also compatible with the438

aforementioned data. However, even if the experiments designed by Park and439

his collaborators did not take into account space, subsequent studies pointed440

out in the opposite direction.441

In [9] it is reported a behavioral dissimilarity between the two species442

of triboulim (T) used by Park: T. castaneum was repelled by conditioned443

flour while T. confusum was strongly attracted by conditioned flour. Flour444

medium is conditioned by beetles living in and involves different factors, as445

depletion of the nutritive value of the medium or, most markedly, accumu-446

lation of the quinones given off by T. imagoes and taken up by the flour.447

In [21] it is reported that the average mobility of T. confunsum is about 9448

cm per day. To contextualize these results, we recall that Park established449

the cultures in glass containers of either 9.5× 2.5 cm or 10× 7 cm and that450

the medium was changed every 30 days. Summing up, during each 30 days451

period tribolium can conditioned the environment (which is equivalent to452

consider a two patches environment) and cultures location can evolve to-453

wards an asymmetric distribution due to medium preference along with high454

mobility rates (when compared with the size of the glass containers). And455

those are the ingredients allowing figures 1 and 2. Unfortunately we can not456

compare the model with real data since dispersal data was not recorded (as457

it was not part of the experiment).458

459

In the particular case of a two patches homogeneous environment with460

local Lotka-Volterra competition and fast linear dispersal was analyzed in461

[22]. The authors found an upper bound for the weaker competitor com-462

petitive abilities below which it will get extinct regardless of the dispersal463

rates that, however, does not exist in our model. Strong asymmetrical dis-464
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persal rates divide the arena: each patch is mainly occupied by one of the465

species and interaction becomes very low, so that the effects of competition466

are negligible. The underlaying mathematical reason for these incompatible467

results is that system (5) displays functional and dynamical emergence (see468

[3]) while its counterpart in [22] does not.469

5 Conclusions470

Our results highlight that fast dispersal is a trade-off mechanism in compet-471

ing species dynamics, and it should be accounted along with the life history472

trade-offs pointed out in [2] among those relevant processes in metapopula-473

tion theory.474

475

Even in the simplest environment consisting of two patches, and despite476

of being homogeneous or heterogeneous, we have proved that coexistence is477

always possible provided appropriate dispersal rates. Indeed, it follows from478

our results that manipulating local intrinsic growth rates and/or dispersal479

rates are effective steps to promote coexistence or one species exclusion and480

thus, are useful from the management point of view.481

Furthermore, as the number of sites increases, the topology of the482

patchy environment becomes more and more complex. We hope that this483

work will serve as first step to deepen in the interplay between the topo-484

logical structure (distribution of corridors and dispersal rates) and the local485

processes (local growth rate and competition effects) that define patchy en-486

vironments.487
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A Appendices492

A.1 Approximate aggregation of nonlinear discrete sys-493

tems494

We briefly describe the approximate aggregation procedure presented in [28]495

where details can be found. We consider a population divided into groups,496

and each of these groups divided into several subgroups. The state at497

time t of the population with q groups is represented by a vector X(t) :=498

(x1(t), . . . ,xq(t))T ∈ RN , where every vector xi(t) := (xi1(t), . . . , xiN
i
(t))T ∈499

RN i

+ , i = 1, . . . , q, represents the state of the i group which is divided into N i
500

subgroups, with N = N1 + · · ·+N q.501

The evolution of the population is driven by two processes which char-502

acteristic time scales are very different from each other. These two processes,503

fast and slow, are defined by two mappings504

F, S : ΩN −→ ΩN ; F, S ∈ C1(ΩN),

where ΩN ⊂ RN is a nonempty open set.505

We use as the time unit of the system coupling both processes that506

corresponding to the slow process. We approximate the effect of the fast507

dynamics over a time interval much longer than its own by means of the k-th508

iterate of mapping F , F (k), where k represents the time scales ratio. Thus,509

the complete system is defined by510

Xk(t+ 1) = S(F (k)(Xk(t))) := Hk(Xk(t)), (12)

In order to proceed to the approximate reduction of the system (12) we511

assume the following two hypotheses on F :512

Hypothesis A.1 The sequence of iterates of F , {F (k)}k∈N, converges point-513

wise on ΩN to a mapping F̄ : ΩN → ΩN , such that F̄ ∈ C1(ΩN).514

Hypothesis A.2 There exist a non-empty open subset Ωq ⊂ Rq with q < N515

and two mappings G : ΩN −→ Ωq and E : Ωq −→ ΩN with G ∈ C1(ΩN),516

E ∈ C1(Ωq), such that the mapping F̄ of Hypothesis A.1 can be expressed as517

F̄ = E ◦G.518
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We first define the auxiliary system which approximates (12) when519

k →∞, i.e., when the fast process has attained its equilibrium. Denoting its520

vector state at time t by Xt, this auxiliary system is521

X(t+ 1) = S(F̄ (X(t))) = (S ◦ E ◦G)(X(t)), (13)

second, we define the global variables through522

Y := G(X) ∈ Rq.

and applying G to both sides in (13) we obtain the so-called aggregated523

system associated to system (12)524

y(t+ 1) = (G ◦ S ◦ E)(y(t)) := s̄(y(t)). (14)

The next theorem relates the asymptotic behavior of systems (12) and (14)525

for large enough values of parameter k.526

Theorem A.1 Let us assume that F verify Hypotheses A.1 and A.2, and527

that528

lim
k−→∞

F (k) = F̄ and lim
k−→∞

DF (k) = DF̄ (15)

uniformly on any compact set K ⊂ ΩN .529

Let y∗ ∈ Rq be a hyperbolic equilibrium point of (14). Then there exists530

k0 ∈ N such that for each k ≥ k0 there exists a hyperbolic equilibrium point531

X∗k of (12) satisfying532

lim
k→∞

X∗k = X∗

where X∗ = E(y∗). Moreover,533

1. If y∗ is asymptotically stable then X∗k is asymptotically stable for each
k ≥ k0, and if X0 ∈ RN is such that lim

n−→∞
s̄(n)(y0) = y∗, where y0 =

G(X0), then

lim
n−→∞

H
(n)
k (X0) = X∗k .

2. If y∗ is unstable then X∗k is unstable, for each k ≥ k0.534
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A.2 Appendix 2. Proofs.535

Proof of proposition 3.2.- 1.- Consider any solution (y1(t), y2(t)) of the536

aggregated (5) such that y1(0) 6= 0, y2(0) 6= 0. The conditions φi(0, 0) ≤ 1537

imply that 0 < φi(y1, y2) < 1, so that (y1(t), y2(t)) is a strictly decreasing538

sequence bounded from below. Therefore, there exist ỹi = limt→∞ yi(t). If539

ỹi 6= 0, then 1 = φi(ỹ1, ỹ2), which in contradiction with φi(0, 0) ≤ 1. Thus540

ỹi = 0 for i = 1, 2.541

2.- Without lost of generality, we assume that i = 1. The fixed point542

equation is 1 = φ1(y1, 0) and the conclusion follows from the fact that543

φ1(y1, 0) is a strictly decreasing function such that limy1→∞ φ1(y1, 0) = 0544

�545

546

Proof of corollary 3.3.– We already know from proposition 3.2 that547

corollary 3.3 holds when φi(0, 0) ≤ 1 for i = 1, 2.548

Therefore, let us assume that φi(0, 0) > 1 for i = 1 or i = 2. In549

this case the desired result follows from theorem 5.2 in [30], and we proceed550

by showing that system (5) fulfills the hypotheses H1 up to H4 required551

there. Using the notation introduced in [30], we define a =
∑p

j=1 b
j
1/c

j
11 and552

b =
∑p

j=1 b
j
1/c

j
22 (so that J = [0, a]× [0, b]) and P (u, v) = (f1(u, v), f2(u, v)) :553

[0,∞)× [0,∞)→ [0,∞)× [0,∞) that is continuous.554

Hypothesis H1 requires system (5) to be strictly competitive on J and555

strongly competitive on the interior of J (see page 338 in [30] for the precise556

definitions) which follow from statement 3 in proposition 3.1. Hypothesis H2557

states that (0, 0) is a repellor, which holds since φi(0, 0) > 1 for i = 1, 2.558

Hypothesis H3 is also meet by defining û = y∗1 and v̂ = y∗2. Finally, from 2559

in proposition 3.1 we get that (f1, f2) : J → J which yields hypothesis H4. �560

561

Proof of proposition 3.4.- Statement 1 follows easily using the proof562

of proposition 3.2 and corollary 3.3.563

Regarding statement 2, thanks to corollary 3.3 we know that any so-564

lution (y1(t), y2(t)) of the aggregated system (5) converges to an equilibrium565

point (y∗1, y
∗
2). Condition φ2(0, 0) ≤ 1 implies that y∗2 = 0 and that it is566

the unique possible value for y∗2. Therefore, the only possible equilibrium567

points of the reduced system are (0, 0) and E∗1 . Note that y1(0) > 0 im-568

plies that y1(t) > 0 for all t ≥ 0. Being φ1 continuous in the positive569

cone, there exists δ > 0 such that φ1(y1, y2) > 1 for all (y1, y2) ∈ A =570
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{
0 < y1, 0 < y2, 0 <

√
y21 + y22 < δ

}
. It means that y1(t) can not converge571

to 0 since, as soon as (y1(t), y2(t)) ∈ A y1(t+1) = φ1(y1(t), y2(t))y1(t) > y1(t).572

Therefore, E∗1 attracts any solution such that y1(0) 6= 0.573

A similar reasoning leads to prove statement 3. �574

575

Proof of proposition 3.8.– The proof is not difficult but laborious.576

The first equation of the fixed point equation associated to system (11) is577

equivalent to578

v1(1− v1)y21 + [c12(v1 + v2 − 2v1v2)y2 + 1− 2b1v1(1− v1)] y1

+v2(1− v2)(c12)2y22 + c12 [1− b1(v1 + v2 − 2v1v2)] y2 + 1− b1 = 0.
(16)

Given that v1(1 − v2) > 0 we argue on the sign coefficient of y1 and the579

intercept. We analyze first with the sign of the intercept of equation (16):580

let us consider581

v2(1− v2)(c12)2y22 + c12 [1− b1(v2 + v2 − 2v1v2)] y2 + 1− b1 = 0. (17)

It is straightforward than this equation (in y2) has one positive root and one582

negative root too, since v2(1− v2)(1− b1) < 0.583

Then, we assume that the left hand side of (17) (the intercept of (16))584

is negative for any positive values of y2. Then, Descarte’s rule implies that585

equation (16) possesses, at most, one positive solution, since v1(1− v1) > 0.586

Instead, we assume now that the left hand side of (17) is positive and587

we focus on the sign of the coefficient of y1 in equation (16)588

c12(v1 + v2 − 2v1v2)y2 + 1− 2b1v1(1− v1). (18)

If it is positive, then there the real solutions of equation (16) are negative,589

if any. Otherwise equation (16) possesses up to two positive solutions. Still,590

we are only interested in positive values of y2, so that591

y2 > ŷ2 =
−[1−b1(v1+v2−2v1v2)]+

√
[v1+v2−b1(1−2v1v2)]2−4v2(1−v2)(1−b1)
2c12v2(1−v2) > 0.592

Then, it follows from (18) that

c12(v1 + v2 − 2v1v2)y2 + 1− 2b1v1(1− v1) >
c12(v1 + v2 − 2v1v2)ŷ2 + 1− 2b1v1(1− v1)
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since v1 + v2 − 2v1v2 > 0 ⇔ 1
v1

+ 1
v2
> 2, which always holds. The proof

finishes by showing that

c12(v1 + v2 − 2v1v2)ŷ2 + 1− 2b1v1(1− v1) > 0

which, replacing the ŷ2 by its value, is equivalent to593

(v1 + v2 − 2v1v2) (b1(v1 + v2 − 2v1v2)− 1)

+(v1 + v2 − 2v1v2)
√

[v1 + v2 − b1(1− 2v1v2)]
2 − 4v2(1− v2)(1− b1)

+2v2(1− v2) (1− 2b1v1(1− v1)) > 0.

594

The previous inequality holds if595

596

(v1 + v2 − 2v1v2) (b1(v1 + v2 − 2v1v2)− 1) + 2v2(1− v2) (1− 2b1v1(1− v1)) > 0.597

Note that v1 + v2 − 2v1v2 = v1(1 − v2) + v2(1 − v1) and, rearranging terms,598

the previous inequality is equivalent to599

b1(v1(1− v2)− v2(1− v1))2 + (v1 − v2)(1− 2v2)) > 0

Finally, calculating the maximum and minimum of functions600

ψ1(v1, v2) = b1(v1(1− v2)− v2(1− v1))2, ψ2(v1, v2) = (v1 − v2)(1− 2v2))

in the square [0, 1]× [0, 1] finishes the proof. �601

602

Proof of proposition 3.10.– Direct calculations show that one of the603

eigenvalues of the corresponding jacobian matrix is always in modulus less604

that 1 while and the other one605

λ1(v1, v2) :=
b2v2

1 + c21v1y∗1
+

b2(1− v2)
1 + c21(1− v1)y∗1

, (19)

where we have written v1 = v11 and v2 = v21, can be larger or less than 1.606

We can calculate explicitly y∗1, that depends n v1 and replace its expression607

in (19). It can be shown that y∗1(v1) is symmetric in the [0, 1] interval with608

respect to 1/2. Moreover, it is monotone increasing in [0, 1/2],609

lim
v1→0

y∗1(v1) = b1 − 1 and lim
v1→1/2

y∗1(v1) = 2(b1 − 1).
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Then, it is straightforward that λ1(0, 0) = b2
1+c12(b1−1) = λ1(1, 1), λ1(1, 0) =610

b2 = λ1(0, 1) > 1 while λ2(0, 0) = b1
1+c21(b2−1) = λ2(1, 1) and λ2(1, 0) =611

b1 = λ2(0, 1) > 1. Then, there exist a neighborhood of (v1, v2) = (1, 0) and612

(v1, v2) = (0, 1) inside the unit square where conditions φi(E
∗
j ) > 1, for i 6= j,613

i, j = 1, 2 hold. �614

615
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Figure 1: In gray, the nullclines. E1, E5 asymptotically stable equilibrium
points. E2, E3 unstable equilibrium points. Each polygonal displays an
orbit with initial values at P1, P2 and P3, respectively. b11 = 7, b21 = 8.5,
b12 = 1.5, b22 = 5, c112 = 5, c212 = 4.5, c121 = 13, c221 = 3.5, v11 = 0.95, v21 = 0.2.

Figure 2: In gray, the nullclines. E1, E2, E5 asymptotically stable equilib-
rium points. E3, E4 unstable equilibrium points. Each polygonal displays
an orbit with initial values at P1, P2 and P3, respectively. b11 = 7.5, b21 = 6.5,
b12 = 2, b22 = 5, c112 = 5, c212 = 4.5, c121 = 5.5, c221 = 3.5, v11 = 0.9, v21 = 0.2.
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b = 1.5, c21 = 1.1, c12 = 0.9 b = 1.5, c21 = 1.5, c12 = 0.85 b = 1.5, c21 = 3, c12 = 0.7

Figure 3: Competition outcome as a function of asymptotic distribution of
individuals. Parameter νi stands for the asymptotic fraction of individuals of
species i = 1, 2 at patch i. In blue: species 2 exclusion, in white, coexistence,
in red conditional extinction, in green species 1 exclusion.
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