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H I G H L I G H T S
� We develop an analytical model of mono and multi-species stand dynamics.

� The model study is done both analytically and by means of an ad hoc numerical method.
� A single species persistence depends on potential replacement in terms of basal area.
� Tradeoffs between shade tolerance and fecundity or growth explain species coexistence.
� The ratios of inter to intraspecific depression coefficients decide on coexistence.
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Understanding the mechanisms of coexistence and niche partitioning in plant communities is a central
question in ecology. Current theories of forest dynamics range between the so-called neutral theories
which assume functional equivalence among coexisting species to forest simulators that explain species
assemblages as the result of tradeoffs in species individual strategies at several ontogenetic stages.
Progress in these questions has been hindered by the inherent difficulties of developing analytical size-
structured models of stand dynamics. This precludes examination of the relative importance of each
mechanism on tree coexistence. In previous simulation and analytical studies emphasis has been given to
interspecific differences at the sapling stage, and less so to interspecific variation in seedling recruitment.
In this study we develop a partial differential equation model of stand dynamics in which competition
takes place at the recruitment stage. Species differ in their size-dependent growth rates and constant
mortality rates. Recruitment is described as proportional to the basal area of conspecifics, to account for
fecundity and seed supply per unit of basal area, and is corrected with a decreasing function of species
specific basal area to account for competition. We first analyze conditions for population persistence in
monospecific stands and second we investigate conditions of coexistence for two species. In the
monospecific case we found a stationary stand structure based on an inequality between mortality rate
and seed supply. In turn, intra-specific competition does not play any role on the asymptotic extinction or
population persistence. In the two-species case we found that coexistence can be attained when the
reciprocal negative effect on recruitment follows a given relation with respect to intraspecific competi-
tion. Specifically a tradeoff between recruitment potential (i.e. shade tolerance or predation avoidance)
and fecundity or growth rate. This is to our knowledge the first study that describes coexistence
mechanisms in an analytical size-structured model in terms of competitive differences at the
regeneration state.
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1. Introduction

Understanding the mechanisms of coexistence and niche parti-
tioning in plant communities is a central question in ecology
(Tilman, 1988). Current theories of forest dynamics range between
the so-called neutral theories which assume functional equivalence
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among coexisting species to forest simulators models that explain
species assemblages as the result of tradeoffs in species strategies
(Chave, 1999; Purves et al., 2008).

Tradeoffs among species strategies in relation to resource avail-
ability and disturbances determines coexistence mechanisms for a
given community. Important mechanisms of coexistence however
can differ throughout the developing stages of tree life history and
population studies need to concentrate on specific processes to
detect specific assembly rules for each forest system (Nakashizuka,
2001). To do so models of forest dynamics are critical tools that allow
us to evaluate the community-level consequences of species indivi-
dual strategies (e.g. Pacala et al., 1996).

Forest dynamics imply height or size structured competition
(Kohyama, 1989, 1991, 1992) and spatial interactions (Pacala and
Deutschman, 1995). Typically models of forest dynamics have
relied on simulation approximations (e.g. individual based mod-
els) that trace the fate of each individual throughout its life cycle.
Forest simulators are mechanistic in the sense that tree perfor-
mance is a function of resource availability (e.g. light) which is in
turn determined by stand structure. Differential competitive
ability along a light gradient explains species successional niches
(Shugart, 1984; Pacala et al., 1996).

The complexity associated to individual based mechanistic
descriptions has hindered the development of analytical approx-
imations, and the identification of key coexistence mechanisms is
still poorly understood. Alternatively to complex forest simulators,
partial differential equations provide analytical framework for
describing key features of stand forest systems at a level of
complexity that is tractable (e.g. Kohyama, 1989, 1991, 1992;
Zavala et al., 2007). Recent work suggests convergence between
forest simulators and macroscopic equations based on average
densities of trees of different sizes and parameter values and that
describe individual performance in the simulator (i.e. Lischke
et al., 1998; Strigul et al., 2008; Adams et al., 2007; Cammarano,
2011). On the other hand, progresses in numerical methods
analysis (Angulo and López-Marcos, 2004) allow us for rigorous
numerical exploration of system dynamics and thus biological
interpretation of key results.

Recent explanations for tree coexistence rely on interspecific
differences in competitive ability at the sapling stage. In particular
species-specific differences in growth and mortality determine
species ability to reach the canopy and thus stand composition
along successional gradients (Pacala and Deutschman, 1995;
Pacala et al., 1996). Reciprocal species ability to recruit under the
canopy of other species, however, is a key determinant of succes-
sional replacement (Horn, 1981; Woods, 1979). A critical question
is to understand the role of recruitment in species coexistence.
Specifically we aim to elucidate if recruitment alone can explain
species coexistence or competitive exclusion even when there is
no competition at later developmental stages.

In this study, we develop an analytical size-structured model of
stand dynamics to investigate the role of competition at the
seedling recruitment stage on species persistence and coexistence.
We assume constant species specific mortality rates and size-
dependent logistic growth. Competition takes place at the seedling
stage with species differing in their fecundity and in their
competitive effect on recruitment of other species. Once the
seedling stage has been reached we assume that cohorts grow
independently of competitive effects. Specifically we address the
following issues: (i) in monospecific stands, how do species-
specific rates of growth, mortality and fecundity combine to
determine species persistence and stand structure?; in mixed
stands can interspecific differences in recruitment rate and com-
petition alone explain species coexistence? If so, how do species-
specific competitive effects, growth, mortality and fecundity
combine to determine coexistence?
In Section 2 we proceed to present the general two species
model. Section 3 is devoted to state some analytical results on
extinction conditions and stationary distributions, first for the
mono-species model and second for the two species model, which
are developed in Appendix A. These results are further studied in
Section 4 by means of ad hoc numerical methods presented in
Appendix B. The discussion in Section 5 and the list of references
complete the paper.
2. Model description

Zavala and Bravo de la Parra (2005) propose a general analytical
framework to describe stand dynamics by means of a general
multi-species model of a size-structured tree population which
takes into account the effects of competition for light and water. In
Zavala et al. (2007) the dynamics of a mono-species stand was
studied under the effect of competition for light either in the
growth or the mortality rates of the population. Here our aim is
studying the light competition in the recruitment of a community
of two tree populations at the stand level as mechanism of
coexistence.

We start presenting the model. Both independent variables size
x and time t are considered continuous. The size variable x
represents, following Kohyama (1991, 1992), the d.b.h. (diameter
at breast height). Let uiðx; tÞ, with i¼1,2, be the population density
of species i with respect to d.b.h. of trees in the stand per m2, what
means thatZ x2

x1
uiðs; tÞ ds

represents the number of trees of species i in the stand patch perm2

with d.b.h. x∈½x1; x2� at time t.
The light competition will be included in the model through

the total basal areas of both species, defined for species i (i¼1,2) as
follows:

BiðtÞ ¼
Z xM

x0

π

4
s2uiðs; tÞ ds

where xM is the maximum d.b.h. reached by trees and x0 is the
minimum d.b.h. for a tree to be considered a recruit. For technical
reasons we consider the same maximum and minimum d.b.h. for
both species.

Changes in size distribution depend on the rates of size growth,
mortality and recruitment. These rates are presented in full
generality in Zavala and Bravo de la Parra (2005) and Zavala
et al. (2007). Here we just present the particular forms of these
rates that we use in the sequel.

We assume that mortality rates, μi (i¼1,2), are constant and
growth rates, gi(x) (i¼1,2), are dependent on trees individual size x
but we do not take into account the effects of light competition on
trees growth. We suppose that gi(x) are general regular functions,
positive on ½x0; xMÞ and verifying giðxMÞ ¼ 0. Only to sharpen some
results and in the numerical simulations we use a specific growth,
logistic growth, which is a particular case of Richards law
(Richards, 1959)

giðxÞ ¼ rix 1−
x
xM

� �
: ð1Þ

Concerning the recruitment rates, Ri(t) (i¼1,2), we suppose that
they are dependent, on the one hand, on the total basal area Bi(t)
of the corresponding species, assuming that potential seedling
supply without shading is proportional to Bi(t), and, on the other
hand, on a weighted sum of both total basal areas that takes into
account the shading effect through a negative exponential. The
particular expression for the recruitment rates (i¼1,2) that we use
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is the following:

RiðtÞ ¼ ρi expð−f i1B1ðtÞ−f i2B2ðtÞÞBiðtÞ; ð2Þ
where ρi is the recruitment rate without shading per basal area
unit of species i and fij is the depression coefficient defining the
suppression in the recruitment of species i caused by species j.

Under these assumptions the two-species stand structure
model with light dependent recruitment reads as follows:

Balance law

ðuiÞtðx; tÞ
þðgiðxÞuiðx; tÞÞx ¼ −μiuiðx; tÞ; ðx0oxoxM ; t40Þ; ði¼ 1;2Þ; ð3Þ
Recruitment law

giðx0Þuiðx0; tÞ ¼ RiðtÞ; ðt40Þ; ði¼ 1;2Þ; ð4Þ
Initial d.b.h. distribution

uiðx;0Þ ¼ u0
i ðxÞ; ðx0 ≤x≤xMÞ; ði¼ 1;2Þ: ð5Þ
3. Model analysis

In Zavala et al. (2007) it treated the case of light competition in
the growth and mortality rates but not in recruitment rate. Here,
before developing the case of two species, we study the particu-
larization of systems (3)–(5) to a single population, that is when
intra-specific competition acts on recruitment.

3.1. Intra-competition in recruitment and mono-species stand
structure

We can write systems (3)–(5), for a single population in the
following form:

utðx; tÞ þ ðgðxÞuðx; tÞÞx ¼−μuðx; tÞ; ðx0oxoxM ; t40Þ; ð6Þ

gðx0Þuðx0; tÞ ¼ RðtÞ; ðt40Þ; ð7Þ

uðx;0Þ ¼ u0ðxÞ; ðx0≤x≤xMÞ; ð8Þ
where RðtÞ ¼ ρ expð−fBðtÞÞBðtÞ and BðtÞ ¼ R xM

x0
π
4 s

2uðs; tÞ ds.
We begin by studying the evolution of the total population

UðtÞ ¼ R xM
x0

uðs; tÞ ds, see Appendix A.
We get the following equation for U(t):

U′ðtÞ−ρ expð−fBðtÞÞBðtÞ ¼−μUðtÞ; ð9Þ
from which we can deduce that U(t) is decreasing whenever
UðtÞ≥ρ=ef μ and that the total population, as well as the total basal
area, are bounded for any solution of systems (6)–(8).

We also obtain sufficient conditions for extinction and non-
extinction of the population. The non-extinction condition can be
expressed as follows in terms of parameters μ, ρ and x0:

μo π

4
x20

� �
ρ ð10Þ

while the extinction condition is

μ≥
π

4
x2M

� �
ρ; ð11Þ

in this case we also have UðtÞ≤Uð0Þ.
In both conditions (10) and (11) parameter f plays no role and,

though they are just sufficient conditions, this is always the case
because if we call v1ðx; tÞ and v2ðx; tÞ the solutions of Eqs. (6) and
(7) for two different values of parameter f, f1 and f2, it is
straightforward to prove that they verify f 1v1ðx; tÞ ¼ f 2v2ðx; tÞ, i.e.
they are related at any time by the same proportionality constant.

3.1.1. Logistic individual tree growth
Here we consider a particular growth rate, the logistic growth

rate (1), gðxÞ ¼ rxð1−x=xMÞ, that allows sharpening the sufficient
conditions on extinction and non-extinction of the population.
To get them we follow with the total basal area B(t) the reasoning
done in the previous section with U(t). We can obtain, see
Appendix A, the following equation for B(t):

B′ðtÞ− π

4
x20ρ expð−fBðtÞÞBðtÞ−2rBðtÞ

þ2r
xM

Z xM

x0
s
π

4
s2uðs; tÞ ds¼−μBðtÞ ð12Þ

and then deduce the sufficient non-extinction condition that
coincides with (10), μoððπ=4Þx20Þρ, and the sufficient extinction
condition that, in most cases, is much sharper than (11)

μ≥
π

4
x20

� �
ρþ 2r 1−

x0
xM

� �
: ð13Þ

3.1.2. Stand stationary distribution
In the study of systems (6)–(8) we can also look for the

existence of stationary size distributions of trees as reported in
Kohyama (1991). If we call unðxÞ the stationary distribution, it must
be a solution of the following initial value problem:

ðgðxÞunðxÞÞ′¼ −μunðxÞ; ð14Þ

gðx0Þunðx0Þ ¼ Rn; ð15Þ
where we denote

Bn ¼
Z xM

x0

π

4
s2unðsÞ ds and Rn ¼ ρ expð−fBnÞBn: ð16Þ

Integrating Eq. (14) we get

unðxÞ ¼ gðx0Þunðx0Þ
1

gðxÞ exp −μ
Z x

x0

ds
gðsÞ

� �
;

and using (15) and (16) we get

unðxÞ ¼ ρ expð−fBnÞBn 1
gðxÞ exp −μ

Z x

x0

ds
gðsÞ

� �
; ð17Þ

Now if we multiply Eq. (17) by ðπ=4Þx2 and integrate on ½x0; xM�
with respect to x we obtain the following equation for the total
basal area Bn of the stationary solution unðxÞ:

Bn ¼ ρ expð−fBnÞBn

Z xM

x0

π

4
s2

1
gðsÞ exp −μ

Z s

x0

dβ
gðβÞ

� �
ds;

and denoting

C ¼ ρ

Z xM

x0

π

4
s2

1
gðsÞ exp −μ

Z s

x0

dβ
gðβÞ

� �
ds; ð18Þ

we finally get

Bn ¼ expð−fBnÞBnC: ð19Þ
This equation has the 0 solution and

Bn ¼ ln C=f : ð20Þ
So, the necessary and sufficient condition for the existence of a
positive stationary size distribution unðxÞ of systems (6)–(8) is that
C41, which allows Bn ¼ ln C=f 40 to be its total basal area. In this
case we have

unðxÞ ¼ ρ ln C
fC

1
gðxÞ exp −μ

Z x

x0

ds
gðsÞ

� �
: ð21Þ

From Eq. (14), it is easy to see that ðd=dtÞunðxÞ ¼ ð−μ−g′ðxÞÞ
unðxÞ=gðxÞ, and so its sign depends on the sign of −μ−g′ðxÞ.

In the case of logistic growth the stationary size distribution is

unðxÞ ¼ ρ ln C
fCr

x0xM
xM−x0

� �μ=r

x−ð1þ
μ
rÞ 1−

x
xM

� �μ=r−1

;

and −μ−g′ðxÞ ¼ −μ−r þ 2rx=xM , so it is straightforward to infer
that if μ≥r then unðxÞ is decreasing in ðx0; xMÞ and if μor then
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unðxÞ is decreasing in ðx0; ððμþ rÞ=2rÞxMÞ and increasing in ðððμþ rÞ=
2rÞxM ; xMÞ.

Constant C can be interpreted as the mean basal area by which
a unit basal area of new recruits will be replaced by the end of
their life-span without taking into account the competition part in
the recruitment rate (expð−fBðtÞÞ). As we illustrate in Section 4, C
can be taken as a measure deciding between extinction (Co1) and
non-extinction (C41) of the population. In the former case the
population is not able to grow in absence of competition so it gets
extinct and in the latter case there exists an equilibrium distribu-
tion whose total basal area Bn can be taken as a sort of specific
stand carrying capacity.

Constant C is proportional to ρ, the potential recruitment rate
per basal area unit (i.e. in absence of shading or predation). C as a
function of ρ could be as large as fertility allows. Also, if we assume
C as a function of μ, the mortality rate, turns to be decreasing. On
the other hand, it is not so evident how C depends on the growth
rate g(x). Considering the logistic growth rate (1), gðxÞ ¼ rxð1−
x=xMÞ, it is obtained the following expression for C (see (A.3) in
Appendix A):

C ¼ πρx20
4μ

þ πρ

2μ

Z xM

x0
s

x0ðxM−sÞ
sðxM−x0Þ

� �μ=r

ds: ð22Þ

The parameter r in the logistic growth represents the slope of the
growth rate with respect to size or growing speed until growth
slows down as size approaches the maximum diameter xM (i.e.,
larger r values implies faster growth rates). Taking C as a function
of r, denoted C(r), we show in Appendix A that it is increasing and
bounded. A faster growing rate decreases the likelihood of the
species extinction as well as increases the total basal area Bn of its
stationary distribution unðxÞ.

3.2. The two-species stand model

In the case of the two-species stand model described by
systems (3)–(5) we can develop a similar analysis to that per-
formed in the case of one species for each one of the two species.
So, to study the evolution of the total i population we use Eq. (3),
ðuiÞtðx; tÞ þ ðgiðxÞuiðx; tÞÞx ¼ −μiuiðx; tÞ, to obtain (see Appendix A)

U′iðtÞ−ρi expð−f i1B1ðtÞ−f i2B2ðtÞÞBiðtÞ ¼−μiUiðtÞ; ð23Þ
which yields, as in the one species case, that Ui(t) is bounded with
the following upper bound

UiðtÞ≤max Uið0Þ;
ρi

ef iiμi

� �
: ð24Þ

A straightforward consequence of Eq. (23) is inequality

U′iðtÞoρi expð−f iiBiðtÞÞBiðtÞ−μiUiðtÞ;
which proves that a population that gets extinct alone also does
when competing with another population.

To obtain conditions of extinction and non extinction analo-
gous to those found in Section 3.1 for each one of the two species
we could follow similar arguments. If i represents the index of one
of the species let j represents the other one. In Appendix A are
proved sufficient conditions on extinction and non extinction for
any form of the growth rate gi(t). In these conditions we use the
following three constants, gi ¼maxx∈½x0 ;xM �2giðxÞ=x, which exists
due to the continuity of gi, and bj and Bj, lower and upper bounds
of Bj(t), bj ≤BjðtÞ≤Bj for every t40, which existence has already
been proved.

A sufficient condition for the extinction of species i is

μi4gi þ
π

4
x20ρi expð−f ijbjÞ; ð25Þ

and a sufficient condition for the non extinction of species i reads
as follows:

μio
π

4
x20ρi expð−f ijBjÞ: ð26Þ

This last inequality give us a partial answer to the following
question concerning extinction and persistence, what is the result
of competition between two populations for which, in absence of
competitors, the first one persists and the second one gets extinct.
We already know that the second one will also get extinct under
competition. From inequality (26), we can deduce that if the first
population verifies the sufficient condition of persistence (10),
μio ððπ=4Þx20Þρi, then it also persists when competing with a
population that gets extinct without competition.

We noticed in the single species case that parameter f repre-
senting intra-species competition plays no role in the asymptotic
extinction or persistence of the population. To analyze this ques-
tion in the two-species case we can perform a change of variables
in systems (3)–(5), v1 ¼ f 11u1 and v2 ¼ f 22u2, that yields a new
systemwith the same form but for the competition coefficients, fij.
Now the intra-specific competition coefficients, f11 and f22, are
equal to 1 while the inter-specific ones read f 12=f 22 and f 21=f 11.
The values of these two ratios decide the result of competition,
coexistence or exclusion.

3.2.1. Stand stationary distribution
In this section we find conditions for a positive stationary

distribution to exist and compare the results with those obtained
in Section 3.1.2.

We denote, as done in Section 3.1.2,

Ci ¼ ρi

Z xM

x0

π

4
s2

1
giðsÞ

exp −μi
Z s

x0

dβ
giðβÞ

� �
ds i¼ 1;2;

and it is proved in Appendix A that, under some conditions, a
positive stationary distribution of both species exists, that means
coexistence with fixed densities and size structures.

The conditions to be met are of two types. First,

C141 and C241 ð27Þ
what means that each one of the two species verifies the necessary
and sufficient condition for the existence of a positive stationary
size distribution when growing alone without interspecific com-
petition. To reach a coexistence equilibrium when competing both
species must be able to attain an equilibrium on their own.
Second,

f 22 ln C1−f 12 ln C2

f 11f 22−f 12f 21
40 and

f 11 ln C2−f 21 ln C1

f 11f 22−f 12f 21
40: ð28Þ

These two quantities represent the total basal areas of both species
at equilibrium and obviously they need to be positive.

The form of the positive stationary distribution is the following:

un

1ðxÞ ¼
ρ1
C1

f 22 ln C1−f 12 ln C2

f 11f 22−f 12f 21
1

g1ðxÞ
exp −μ1

R x
x0

ds
g1ðsÞ

� �

un

2ðxÞ ¼
ρ2
C2

f 11 ln C2−f 21 ln C1

f 11f 22−f 12f 21
1

g2ðxÞ
exp −μ2

R x
x0

ds
g2ðsÞ

� �
8>>><
>>>:

ð29Þ

The first question that we notice is that the size structure of both
species does not change with competition. The difference between
the expression of unðxÞ in (21) and un

i ðxÞ in (29) is a constant. The
ratio ln C=f in (21) becomes ðf jjln Ci−f ijln CjÞ=ðf 11f 22−f 12f 21Þ in (29)
(for i,j¼1,2 and i≠j), the rest being identical. So, we can do similar
precisions on the form of either un

1ðxÞ or un

2ðxÞ to those we did in the
case of one species. Competition at the regeneration state does not
affect size structure when a coexistence equilibrium is attained.

Numerical simulations show that solutions of systems (3)–(5)
tend to the stationary distribution (29) when (27) and (28) hold,
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existence of stationary distributions, and f 11f 22−f 12f 2140. The
latter condition together with (28) is equivalent to

f 12 ln C2

f 22 ln C1
o1 and

f 21 ln C1

f 11 ln C2
o1; ð30Þ

so that we can take as coexistence conditions (27), C141 and
C241, and (30).

Calling B1 ¼ ln C1=f 11 and B2 ¼ ln C2=f 22, the stationary stand
basal areas for each of the two species when living alone, inequal-
ities (30) read as follows:

f 12
f 11

B2

B1
o1 and

f 21
f 22

B1

B2
o1;

and coincide with the conditions of coexistence in the classical
Lotka–Volterra competition model, see Murray (2002, pp. 9499), if
considering B1 and B2 as carrying capacities of each species, and
f 12=f 11 and f 21=f 22 as the corresponding coefficients measuring
the competitive effect of the second species on the first one and of
the first one on the second, respectively.

Assuming (27), conditions (30) can be used to make clear the
trade-offs involved in species coexistence. Let us consider a shade
intolerant species (species-1) and a shade tolerant species (spe-
cies-2), what can be represented in our model by taking large
depression coefficients on species-1, f11 and f12, relative to depres-
sion coefficients on species-2, f21 and f22. Equivalently, we can
assume that both fractions f 11=f 21 and f 12=f 22 are large.

To describe the tradeoff between shade tolerance and fecundity
let us call

Hi ¼
Z xM

x0

π

4
s2

1
giðsÞ

exp −μi
Z s

x0

dβ
giðβÞ

� �
ds i¼ 1;2;

thus we have

Ci ¼ ρiHi i¼ 1;2;

and conditions (30) can be expressed in the following form:

1
H1

Cf 12=f 22
2 oρ1o

1
H1

Cf 11=f 21
2 : ð31Þ

We first notice that as f 11f 22−f 12f 2140 implies that
f 12=f 22o f 11=f 21 and C241 there always exist values of ρ1 ensur-
ing coexistence. In particular, however large fraction f 12=f 22 be
there are high enough values of ρ1 yielding coexistence.

To analyze the tradeoff between shade tolerance and growing
speed we can express conditions (30) as follows:

Cf 12=f 22
2 oC1oCf 11=f 21

2 ;

and consider logistic growing, gðxÞ ¼ rxð1−x=xMÞ, so that C1 can be
taken as a function of parameter r representing the growing speed.
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Fig. 1. Evolution of the total basal area of the population in systems (6)–(8) with logistic
extinction; right side, μ¼ 0:5875, extinction.
In Appendix A it is shown that C1ðrÞ is an increasing function such
that, (A.4),

lim
r-∞

C1ðrÞ ¼
πρ1x2M
4μ1

;

what implies that growing speed can compensate shade intoler-
ance to give rise to coexistence provided that

Cf 12=f 22
2 o πρ1x2M

4μ1
;

because in that case there exist large enough values of r ensuring

Cf 12=f 22
2 oC1ðrÞ: ð32Þ
4. Numerical simulations

Systems (3)–(5) cannot, in general, be solved analytically and
the same happens to systems (6)–(8) associated to the mono-
specific model. In Section 3.1 we have obtained, for this latter
system, some sufficient conditions for the extinction, (11) and (13),
and non-extinction, (10), of the population, as well as a necessary
and sufficient condition for the existence of a stand stationary
distribution, in terms of constant C defined in (18), C41.

We next use the efficient numerical method introduced in
Appendix B to study the asymptotic behavior of systems (6)–(8)
with logistic individual tree growth, Section 3.1.1, where we set the
following parameters values: x0 ¼ 1, xM¼51, r¼0.1 and ρ¼ 0:5.

In a first experiment, setting f ¼ 10−8, we look for the threshold
between extinction and non-extinction making parameter μ to
vary. Condition (13) tells us that a sufficient extinction condition is
μ≥π=8þ 10=51≈0:588775 which turns out to be fairly accurate
because as we see in Fig. 1 for μ¼ 0:5875 there is extinction.
To illustrate that constant C can be taken as a measure deciding
between extinction (Co1) and non-extinction (C41) of the
population we calculate it in terms of μ in (18)

CðμÞ ¼ 0:5
Z 51

1

πx2

0:4xð1−x=51Þ exp −μ
Z x

1

1
0:1sð1−s=51Þ ds

� �
dx

¼ 51π2−10μ−251−20μ
Z 51

1
ð51=x−1Þ10μ−1 dx

and solving equation CðμÞ ¼ 1 we obtain the value μn≈0:5874989
which seems to be much more accurate than the one we get out of
condition (13).

In a second experiment we try to study further the long-term
behavior of the population. In Fig. 2 we see the evolution of the
total basal area of the population for different values of μ (f¼0.01)
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growth rate: x0 ¼ 1, xM¼51, r¼0.1, ρ¼ 0:5 and f ¼ 10−8. Left side, μ¼ 0:5870, non-
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Fig. 2. Evolution of the total basal area of the population in systems (6)–(8) with logistic growth rate: x0 ¼ 1, xM¼51, r¼0.1, ρ¼ 0:5 and f¼0.01. Different values of μ, left–right
and up–down: μ¼ 0:05 and μ¼ 0:09 undamped oscillations; μ¼ 0:125, damped oscillations; μ¼ 0:59 monotonically decreasing to extinction.
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and we notice that the non-extinction cases (μ¼ 0:05;0:09;0:125)
give oscillatory behavior which tend to be damping as the
mortality rate increases while in the extinction case (μ¼ 0:59)
the trivial equilibrium is attained monotonically.

The good stability properties of the numerical method we use,
Appendix B, allow us to study in more detail for which values of μ
the stand stationary distribution, whose existence is proved in
Section 3.1.2 for μoμn≈0:5874989, is stable. In Fig. 3 we extend the
represented interval of time and we see that for μ¼ 0:12 the total
basal area tends to stationary oscillations while for μ¼ 0:13 the
oscillations are damped and the total basal area of the stand
stationary distribution is attained.

The last experiment illustrates the issue of coexistence in the
two-species stand model. In Section 3.2.1 are found conditions,
(30), for the existence of a coexistence stand stationary distribu-
tion which can be translated into those ones ensuring coexistence
in the classical Lotka–Volterra competition model. We show that
the stationary distribution is attained in most of the cases that it
exists.

Let us consider in systems (3)–(5) two populations with logistic
individual tree growth and with the same parameters values:
x0 ¼ 1, xM¼51, r¼0.1, μ¼ 0:2 and ρ¼ 0:5. The fact that μ¼ 0:2
implies that both populations if living alone would tend to a
stationary stand distribution. We distinguish between the two
species through the depression coefficients fij where recruitment
competition is reflected. We set f 11 ¼ 0:01 and f 22 ¼ 0:02, what
means that population 1 would double the size of population
2 considering both living alone. Coexistence conditions (30)
reduce in this case to f 12o0:02 and f 21o0:01, so we explore
the long-term behavior of the system on the parameters values
range f 12∈ð0;0:02Þ and f 21∈ð0;0:01Þ. The results in Section 3.2.1 say
that there exists the coexistence stand stationary distribution and
that population 1 attains a larger size than population 2 if
f 214 f 12−0:01 and the contrary happens if f 21o f 12−0:01.
Fig. 4 shows that in the parameters range f 12∈ð0;0:02Þ and
f 21∈ð0;0:01Þ where the coexistence stand stationary distribution is
attained, in the dark (red) domain population 1 is larger than
population 2 while in the light (blue) domain population 2 is the
largest one. In the rest of the parameters range, the white domain
where either f12 is very close to 0.02 or f21 to 0.01, it seems that the
proven existence of the coexistence stand stationary distribution
does not entail its stability at least globally.
5. Discussion

Understanding the mechanisms underlying tree species coex-
istence is a central topic in current ecology. The development of
simple analytically tractable models of forest dynamics is critical
for understanding the role of a specific mechanism in generating a
given pattern. In this study we introduce an analytical size-
structured forest dynamics model in which species interactions
take place at the regeneration stage and are the result of multiple
interacting processes; chiefly competition but also differential
seed predation, fecundity, etc. Species differ in their growth and
mortality rates but, in contrast to regeneration, they are not
differentially influenced by competition. We show that species
specific differences and competitive interactions at the regenera-
tion stage can explain stand species coexistence even in the
absence of competition at later stages. Also tradeoffs among
potential recruitment rate and speed of growth rate allow for
coexistence.

In our model the condition for the non-extinction of an isolated
species can be summarized in constant C that reflects the mean
basal area by which a unit basal area of new recruits will be
replaced by the end of their life-span in the absence of competi-
tion at the recruitment stage, i.e. potential replacement in terms of
basal area. If Co1 the species gets extinct when growing in
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Fig. 3. Evolution of the total basal area of the population in systems (6)–(8) with logistic growth rate: x0 ¼ 1, xM¼51, r¼0.1, ρ¼ 0:5 and f¼0.1. Left side, μ¼ 0:12, undamped
oscillations; μ¼ 0:13, stable stand stationary distribution.

Fig. 4. Values range of parameters f12 and f21 for stable coexistence equilibrium in
systems (3)–(5). Both species with logistic growth rate: x0 ¼ 1, xM¼51, r¼0.1,
μ¼ 0:2 and ρ¼ 0:5. Depression coefficients: f 11 ¼ 0:01, f 22 ¼ 0:02, f 12∈ð0;0:02Þ and
f 21∈ð0;0:01Þ. Colored range corresponds to stable coexistence equilibrium, in the
dark (red) part population 1 attains a larger size than population 2 and the contrary
happens in the light (blue) part. (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this article.)
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isolation, and consequently also when sharing the overstory with
other species. On the other hand, a species with C41 will survive
alone and reach a steady stand distribution. The coexistence of
two species with C141 and C241 depends on the comparison of
some given ratios of intra- vs interspecific competition. These
ratios are defined through the depression coefficients fij and
constants Ci, i,j¼1,2 (30).

An interesting result is that coexistence is possible in the
absence of one-sided competition and suggests that differences
alone in the recruitment processes can induce coexistence. These
differences can be due to a number of factors not necessarily
associated with resource competition and shade tolerance but also
to other stages influencing the recruitment process such as seed
predation, germination, seedling establishment and seedling mor-
tality. Coexisting species have been shown to differ in these rates in
temperate forests (e.g. Pérez-Ramos et al., 2008) and tropical forests
(e.g. Janzen–Connell effects, see Wright, 2002) so this mechanism
alone can explain coexistence even in the absence of spatial
heterogeneity or an storage effect. Species with lower recruitment
(e.g. shade intolerant or one that suffers relatively higher predation
rates or herbivory levels) can compensate this disadvantage with a
higher fecundity or with higher growth rates (independently of its
shade tolerance as a sapling). This mechanism of coexistence is
plausible in oak dominated temperate forests in which interspecific
differences in seed size can underlie differential recruitment stra-
tegies (e.g. Pérez-Ramos et al., 2012).

Previous analytical models of tree coexistence generally fall
between two broad categories; those in which species coexistence
results from the fluctuation-mediated, non-equilibrium processes,
the so-called lottery models (Warner and Chesson, 1985) and models
implying tradeoffs at different ontogenetic stages (see review in
Nakashizuka, 2001). The former approximation emphasizes coex-
istence due to dispersal limitation resulting from competition
colonization tradeoffs (Hurtt and Pacala, 1995). In the first case
dominant species limited recruitment allows inferior competitors
to win some sites by forfeit. Recruitment limitation lessens the effect
of competitive asymmetries and slows population and community
dynamics. This effect is expected to be more pronounced in highly
diverse communities because of the rarity of many species, thus
these authors suggest that there is no conflict between the hypoth-
esis that species-rich plant communities are more influenced by
chance and history than regulated by competition. The latter type of
models typically introduces a rather different view of species coex-
istence from the fluctuation-mediated, non-equilibrium coexistence,
and locally involve one-sided competition (Kohyama, 1992); chiefly
tradeoffs between the ability to grow or to die at low light versus
maximal growth rate (Purves et al., 2008; Cammarano, 2011) or a
tradeoff between potential maximum size and potential recruitment
rate (Kohyama, 1992).

Both the autogenic effect of spatial architecture and the
stochastic effect of recruitment fluctuation can contribute to
coexistence (e.g. the shifting mosaic Kohyama, 1993) and extend
further the possibility of coexistence through species differentia-
tion on the basis of stand age. Fast-growing, less-tolerant species
and slow-growing, more-tolerant species can coexist stably even
without differentiation in maximum size and recruitment rate.
Both the stochastic view and the forest architecture hypothesis
(sensu Kohyama, 1992) can be reconciled as spatial architecture
provides the ‘storage effect’ in lottery models.

More recently, emphasis has been given to the convergence
among stochastic individual based models and size-structured
models (Strigul et al., 2008). These studies suggest that under
the premise of a perfectly plastic allometry (i.e. individual cano-
pies fill out the open space), “perfect plasticity approximation”
(PPA) or ideal tree distribution (ITD) (Adams et al., 2007), the tree
population can be structured in two classes, suppresses and
dominant (see also Cammarano, 2011). Under this premise the
PPA approximation results in predictions which are consistent
with the predictions with long-term successional dynamics in
different soil types data, and predictions from a data defined IBM
of forest succession (SORTIE) (Purves et al., 2008).
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Species coexistence in cool temperate and tropical forests
(Nakashizuka, 2001) has been widely explained by colonization
strategies and by sapling performance, yet the mechanisms under-
lying coexistence in other forest types in which light competition
is not the primary driving force remains largely unexplored.
In water limited forests with sparse canopies and in which species
filtering takes place mostly at the regeneration stage, inter-specific
differences in recruitment are of paramount importance for
explaining niche diversification and coexistence (Clark et al.,
2003). Differential species establishment during stand recovery
following disturbances or during colonization events may be
driven by differential responses to seed predation (Pérez-Ramos
et al., 2008, 2012), germination, establishment and survivorship
during the dry season (Pérez-Ramos et al., 2012).

Our results suggest that stand diversity can be explained by
recruitment inter-specific differences, providing a given set of
conditions in species reciprocal influences on recruitment.
Previous studies have reported specific cases that fit within this
general result. For example a particular case in which the proposed
coexistence conditions are met is reported in Woods (1979) where
beech-maple co-dominance is explained by reciprocal replace-
ment. This mechanism translates in our model by considering very
small values for the depression coefficients f12 and f21 which entail
that coexistence conditions (30) hold. These results are very
similar to what is expected from classical competition theory
which states that two species can coexist if none of them at its
carrying capacity can prevent the other from growing (Murray,
2002). Our result however stems from a size-structured non-
aggregated model that considers explicitly size heterogeneities
within the population and time scales more realistic in terms of
stand dynamics.
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Appendix A. Proofs

(Section 3.1): Integrating on ½x0; xM � with respect to x in Eq. (6):Z xM

x0
utðs; tÞ dsþ

Z xM

x0
ðgðsÞuðs; tÞÞs ds¼ −μ

Z xM

x0
uðs; tÞ ds

U′ðtÞ−gðx0Þuðx0; tÞ ¼ −μUðtÞ
If we now use Eq. (7) we obtain Eq. (9): U′ðtÞ−ρ exp
ð−fBðtÞÞBðtÞ ¼ −μUðtÞ. This last equation, having in mind that, for
β40; x expð−βxÞ≤1=ðeβÞ, yields the following inequality:

U′ðtÞ þ μUðtÞ≤ ρ

ef

which implies that U(t) is decreasing whenever UðtÞ≥ρ=ef μ. If we
write the inequality in the form d=dtðeμtUðtÞÞ≤ðρ=ef Þeμt and inte-
grate on ½0; t� we deduce that

UðtÞ≤ ρ

efμ
þ Uð0Þ− ρ

ef μ

� �
e−μt ; t≥0:

This inequality assures the boundedness of the solutions for any
form of the growth rate g(x), provided that gðxMÞ ¼ 0, and any
values of the parameters μ, ρ and f. In particular we have the
following upper bound for the total population
UðtÞ≤max Uð0Þ; ρ=ef μ� 	

and the asymptotic bound
limt-∞UðtÞ≤ρ=ef μ.

To obtain conditions of extinction (11) and non-extinction (10)
of the population we look for upper and lower bounds of U′ðtÞ.
First we notice that ðπ=4Þx20UðtÞ≤BðtÞ≤ðπ=4Þx2MUðtÞ and thus

exp −f
π

4
x2MUðtÞ

� � π
4
x20UðtÞ≤expð−fBðtÞÞBðtÞ≤exp −f

π

4
x20UðtÞ

� � π
4
x2MUðtÞ;

that substituted into Eq. (9) give the next two inequalities

U′ðtÞ≥−μ UðtÞ þ ρ
π

4
x20

� �
UðtÞ exp − f

π

4
x2M

� �
UðtÞ

� �
;

U′ðtÞ≤−μ UðtÞ þ ρ
π

4
x2M

� �
UðtÞ exp − f

π

4
x20

� �
UðtÞ

� �
:

Some consequences of the asymptotic behavior of U(t) can be
inferred from these two inequalities with the help of the straight-
forward qualitative analysis of the scalar autonomous equation
y′¼ −ayþ by expð−cyÞ where a, b and c are positive parameters: if
aob then for yð0Þ40 the corresponding solution y(t) verifies
limt-∞yðtÞ ¼ ðln b−ln aÞ=c, while if a≥b we have limt-∞yðtÞ ¼ 0.

Now the first inequality yields the non-extinction condition
(10), μo ððπ=4Þx20Þρ, which implies that

UðtÞ≥ min Uð0Þ; ln ðπ4 x20Þρ

 �

−ln μ
π
4 x

2
M


 �
f

( )
for every t≥0;

and limt-∞UðtÞ≥
lnðððπ=4Þx20ÞρÞ−lnμ

ððπ=4Þx2MÞf
.

And the second inequality in turn leads to the extinction
condition (11), μ≥ððπ=4Þx2MÞρ, implying that UðtÞ≤Uð0Þ; for every
t≥0; and limt-∞UðtÞ ¼ 0.

(Section 3.1.1): To obtain Eq. (12) for B(t) we multiply Eq. (6) by
ðπ=4Þx2 and integrate on ½x0; xM � with respect to xZ xM

x0

π

4
s2utðs; tÞdsþ

Z xM

x0

π

4
s2ðgðsÞuðs; tÞÞs ds

¼−μ
Z xM

x0

π

4
s2uðs; tÞ ds;

B′ðtÞ− π

4
x20 gðx0Þuðx0; tÞ−

Z xM

x0

π

2
sgðsÞuðs; tÞ ds¼ −μBðtÞ:

Now using Eq. (7) we obtain

B′ðtÞ− π

4
x20ρ expð−fBðtÞÞBðtÞ

−
Z xM

x0

π

2
srs 1−

s
xM

� �
uðs; tÞ ds¼−μBðtÞ;

which yields Eq. (12)

B′ðtÞ− π

4
x20ρ expð−fBðtÞÞBðtÞ−2rBðtÞ

þ2r
xM

Z xM

x0
s
π

4
s2uðs; tÞ ds¼ −μBðtÞ:

The next two inequalities follow

B′ðtÞ≤− μ−2r þ 2r
x0
xM

� �
BðtÞ þ π

4
x20ρ expð−fBðtÞÞBðtÞ; ðA:1Þ

B′ðtÞ≥−μBðtÞ þ π

4
x20ρ expð−fBðtÞÞBðtÞ; ðA:2Þ

and reasoning with them as done in the case of U(t) we get the
non-extinction condition (10), μo ððπ=4Þx20Þρ, which also implies
that limt-∞BðtÞ≥ðlnððπ=4Þx20ρÞ−lnðμÞÞ=f , and the extinction condition
(13), μ≥ððπ=4Þx20Þρþ 2rð1−x0=xMÞ.



Ó. Angulo et al. / Journal of Theoretical Biology 333 (2013) 91–101 99
To study the dependence of C on g(x) we first take its definition (18)

C ¼ ρ

Z xM

x0

π

4
s2

1
gðsÞ exp −μ

Z s

x0

dβ
gðβÞ

� �
ds;

and integrating by parts we obtain

C ¼ πρx20
4μ

−
πρx2M
4μ

lim
s-x−M

exp −μ
Z s

x0
þ dβ
gðβÞ

� �

þ πρ

2μ

Z xM

x0
s exp −μ

Z s

x0

dβ
gðβÞ

� �
ds;

Now, using the logistic growth rate gðxÞ ¼ rxð1−x=xMÞ, the expression
for C takes the following form:

C ¼ πρx20
4μ

þ πρ

2μ

Z xM

x0
s

x0ðxM−sÞ
sðxM−x0Þ

� �μ=r

ds; ðA:3Þ

It is straightforward to see that

hðsÞ ¼ x0ðxM−sÞ
sðxM−x0Þ

is a decreasing function with hðx0Þ ¼ 1 and hðxMÞ ¼ 0. This yields that
for

0or1or2

we have

hðsÞμ=r1 ohðsÞμ=r2 ; for every s∈ðx0; xMÞ
and so that C as a function, C(r), of parameter r is increasing. Moreover,
it can be proved that C(r) is bounded for r40. In fact

lim
r-∞

CðrÞ ¼ lim
r-∞

πρx20
4μ

þ πρ

2μ

Z xM

x0
s

x0ðxM−sÞ
sðxM−x0Þ

� �μ=r

ds

 !

¼ πρx20
4μ

þ πρ

2μ

Z xM

x0
s ds¼ πρx2M

4μ
¼ C∞ ðA:4Þ

(Section 3.2): To obtain the conditions of extinction (25) and
non extinction (26) for each one of the two populations we begin
writing the equation for Bi(t) analogous to Eq. (12) in the case of
one species but keeping a general growth rate gi(t). From Eq. (3)
we get

B′iðtÞ−
π

4
x20ρi exp −f i1B1ðtÞ−f i2B2ðtÞ


 �
BiðtÞ

−
Z xM

x0

2giðsÞ
s

π

4
s2uiðs; tÞ ds¼ −μiBiðtÞ; ðA:5Þ

and denoting gi ¼maxx∈½x0 ;xM �2giðxÞ=x we deduce the next two
inequalities

B′iðtÞ−
π

4
x20ρi expð−f i1B1ðtÞ−f i2B2ðtÞÞBiðtÞ−giBiðtÞ≤−μiBiðtÞ

and

B′iðtÞ−
π

4
x20ρi expð−f i1B1ðtÞ−f i2B2ðtÞÞBiðtÞ≥−μiBiðtÞ;

which assuming, for j≠i, that bj ≤BjðtÞ≤Bj for every t40, yield, on
the one hand,

B′iðtÞ≤−ðμi−giÞBiðtÞ þ
π

4
x20ρi expð−f ijbjÞ expð−f iiBiðtÞÞBiðtÞ;

which gives the extinction condition (25): μi4gi þ ðπ=4Þx20ρi
expð−f ijbjÞ, and, on the other hand

B′iðtÞ≥−μiBiðtÞ þ
π

4
x20ρi expð−f ijBjÞ expð−f iiBiðtÞÞBiðtÞ;

which gives the non extinction condition (26): μio π
4 x

2
0ρi

expð−f ijBjÞ.
(Section 3.2.1): To study the existence of stationary size

distributions of systems (3)–(5), ðun

1ðxÞ;un

2ðxÞÞ, we must solve the
following initial value problem:

ðg1ðxÞun

1ðxÞÞ′¼−μ1un

1ðxÞ g1ðx0Þun

1ðx0Þ ¼ Rn

1 ¼ ρ1 expð−f 11Bn

1−f 12B
n

2ÞBn

1

ðg2ðxÞun

2ðxÞÞ′¼−μ2un

2ðxÞ g2ðx0Þun

2ðx0Þ ¼ Rn

2 ¼ ρ2 expð−f 21Bn

1−f 22B
n

2ÞBn

2

(

where Bn

i ¼
R xM
x0

ðπ=4Þs2un

i ðsÞ ds (i¼1,2). Integrating the system we
obtain

un

1ðxÞ ¼ ρ1 expð−f 11Bn

1−f 12B
n

2ÞBn

1
1

g1ðxÞ
exp −μ1

R x
x0

ds
g1ðsÞ

� �

un

2ðxÞ ¼ ρ2 expð−f 21Bn

1−f 22B
n

2ÞBn

2
1

g2ðxÞ
exp −μ2

R x
x0

ds
g2ðsÞ

� �
8>>><
>>>:
and multiplying both equations by ðπ=4Þx2 and integrating on
½x0; xM � with respect to x we get the following system for the total
basal areas ðBn

1;B
n

2Þ of the stationary solution ðun

1ðxÞ;un

2ðxÞÞ:

Bn

1 ¼ ρ1 expð−f 11Bn

1−f 12B
n

2ÞBn

1

R xM
x0

π
4 s

2 1
g1ðsÞ

exp −μ1
R s
x0

dβ
g1ðβÞ

� �
ds

Bn

2 ¼ ρ2 expð−f 21Bn

1−f 22B
n

2ÞBn

2

R xM
x0

π
4 s

2 1
g2ðsÞ

exp −μ2
R s
x0

dβ
g2ðβÞ

� �
ds

8>>><
>>>:
which denoting

Ci ¼ ρi

Z xM

x0

π

4
s2

1
giðsÞ

exp −μi
Z s

x0

dβ
giðβÞ

� �
ds i¼ 1;2; ðA:6Þ

gives a simple system to be hold by ðBn

1;B
n

2Þ
Bn

1 ¼ expð−f 11Bn

1−f 12B
n

2ÞBn

1C1

Bn

2 ¼ expð−f 21Bn

1−f 22B
n

2ÞBn

2C2

(

This system has the solution ð0;0Þ, if C141 the non-negative
solution ðln C1=f 11;0Þ, if C241 the non-negative solution
ð0; ln C2=f 22Þ, and a possible positive solution ðBn

1;B
n

2Þ verifying
f 11B

n

1 þ f 12B
n

2 ¼ ln C1

f 21B
n

1 þ f 22B
n

2 ¼ ln C2

(

so that necessary and sufficient conditions for the existence of a
positive stationary size distribution ðun

1ðxÞ;un

2ðxÞÞ of systems (3)–(5)
are C141 and C241 together with

Bn

1 ¼
f 22 ln C1−f 12ln C2

f 11f 22−f 12f 21
40

Bn

2 ¼
f 11 ln C2−f 21 ln C1

f 11f 22−f 12f 21
40

8>>><
>>>:
and the positive stationary size distribution (29) reads as follows

un

1ðxÞ ¼
ρ1
C1

f 22 ln C1−f 12 ln C2

f 11f 22−f 12f 21
1

g1ðxÞ
exp −μ1

R x
x0

ds
g1ðsÞ

� �

un

2ðxÞ ¼
ρ2
C2

f 11 ln C2−f 21 ln C1

f 11f 22−f 12f 21
1

g2ðxÞ
exp −μ2

R x
x0

ds
g2ðsÞ

� � :

8>>><
>>>:
Appendix B. Numerical method

The increase in biological realism in size-structured population
models is achieved at the expense of a loss in mathematical
tractability. We should point out here that, without other restric-
tive assumptions, these kinds of models cannot be solved analy-
tically. Moreover, when such models include nonlinearities and
environmental dependence on the different physiological rates,
the use of efficient methods which provide a numerical approach
is the most suitable mathematical tool for studying the problem
and, indeed, it is often the only available one. It also allows us to
make a complete study of its asymptotic behavior. Nevertheless,
the numerical approach to these equations has important draw-
backs because they are usually nonlinear equations and the
nonlinearities of the PDE and the nonlocal boundary condition
are caused by nonlocal terms. During the last decades different
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numerical schemes have been proposed for solving size-structured
models, we refer to Abia et al. (2004) and the references there in
for a review and a description of numerical methods applied to
solve this kind of models. Besides, numerical methods has been
successfully applied to structured models to replicate available
field and/or laboratory data for a variety of different systems (e.g.
recently references Abia et al., 2010a, 2010b; Angulo et al., 2012,
2011a, 2011b, 2013a, 2013b).

In order to describe the schemes we present here, we begin
rewriting the partial integro-differential equations in a more
suitable form for their numerical treatment. So we define

μn

i ðx; tÞ ¼ μiðx; tÞ þ ðgiÞxðx; tÞ; i¼ 1;2;

thus (3) has the form

ðuiÞtðx; tÞ þ giðx; tÞðuiÞxðx; tÞ ¼ −μn

i ðx; tÞ uiðx; tÞ; i¼ 1;2; ðB:1Þ
x0oxoxM , t40. Next, we denote by xiðt; tn; xnÞ, i¼1,2, the
characteristic curve of equations given by (B.1) that take the value
xn at time tn. This is the solution of the next initial value problem

x′iðt; tn; xnÞ ¼ giðxiðt; tn; xnÞ; tÞÞ; t≥tn;
xiðtn; tn; xnÞ ¼ xn;

(
ðB:2Þ

i¼1,2. Note that xiðt;0; xMÞ ¼ xM , t≥0, i¼1,2; because we are
assuming that giðxM ; tÞ ¼ 0, t40, i¼1,2. Then, we define the
function

wiðt; tn; xnÞ ¼ uiðxiðt; tn; xnÞ; tÞ; t≥tn; i¼ 1;2; ðB:3Þ
that satisfies the next initial value problem

d
dt wiðt; tn; xnÞ ¼ −μn

i ðxiðt; tn; xnÞ; tÞÞ wiðt; tn; xnÞ; t≥tn;
wiðtn; tn; xnÞ ¼ uiðxn; tnÞ;

(
ðB:4Þ

i¼1,2; and therefore, it can be represented with the next formula

wiðt; tn; xnÞ ¼ uiðxn; tnÞexp −
Z t

tn
μn

i ðxiðτ; tn; xnÞ; τÞÞ dτ
� �

; i¼ 1;2:

ðB:5Þ
We suppose that uiðxM ;0Þ ¼ 0 and then uiðxM ; tÞ ¼ 0, t≥0, i¼1,2. We
shall use this property in our numerical methods, however, they
can be easily modified to cover other cases.

Now, we present the numerical scheme we employ for the
solution of the two species model. Note that it includes the
difficulty of considering two different grids which are computed
independently of each other. Therefore, in each level of time we
will have to calculate two different grids. The numerical method
integrates the model along the characteristic curves, it uses an
open composite quadrature rule to approximate the nonlocal term
and keeps constant the number of nodes, in both grids, by means
of a selection of them at each time level.

Let J and N be positive integers, we define the spatial and time
discretization parameters as h¼ xM−x0=J and k¼ T=N, respectively.
The discrete time levels are tn ¼ n k, 0≤n≤N, and the initial grid
nodes are iX0

j ¼ jh, 0≤ j≤ J, i¼1,2. We suppose that the approxima-
tions to the theoretical solution in such nodes are known, iU0

j ,
0≤ j≤ J, i¼1,2. Thus, we denote

iX
0 ¼ ffiX0

0 ¼ x0;
iX0

1 ;…; iX0
J−1 ;

iX0
J ¼ xMgg;

iU
0 ¼ ffiU0

0 ;
iU0

1 ;…; iU0
J−1 ;

iU0
J ¼ 0gg;

i¼1,2. Note that with iUn
j , we consider a numerical approximation

to uðiXn
j ; tnÞ, and iXn

j is the grid corresponding to the species i,
0≤ j≤ J, 0≤n≤N, i¼1,2.

First, we define the grid nodes at the time level t1, by the
numerical integration of (B.2) as follows:

iX1
0 ¼ x0;

iX1
jþ1 ¼ iX0

j þ kgi
iX1=2

jþ1 ; t0 þ
k
2

� �
;

0≤ j≤ J−1; iX1
Jþ1 ¼ xM ; i¼ 1;2; ðB:6Þ

where

iX1=2
0 ¼ x0;

iX1=2
jþ1 ¼ iX0

j þ k
2
giðiX0

j ; t0Þ;

0≤ j≤ J−1; iX1=2
Jþ1 ¼ xM ; i¼ 1;2:

Now, we calculate the corresponding approximations to the
theoretical solution by means of the following discretization of
(B.5)

iU1
jþ1 ¼ iU0

j exp −kμn

i
iX1=2

jþ1 ; t0 þ
k
2

� �� �
;

0≤ j≤ J−1; iU1
Jþ1 ¼ 0; i¼ 1;2; ðB:7Þ

where

iU1=2
i;jþ1 ¼ iU0

j exp −
k
2
μn

i
iX0

j ; t0
� �� �

;

0≤ j≤ J−1; iU1=2
Jþ1 ¼ 0; i¼ 1;2:

In addition, we derive the approximation iU1
0 to uiðx0; t1Þ, i¼1,2,

from a discrete version of the boundary condition (5)

iU1
0 ¼ Rðt1Þ þ Q ðiX1

; iαðiX1
; iU

1 ÞiU1 Þ
giðx0; t1ÞÞ;

ðB:8Þ

where iαjðiX
1
; iU

1 Þ ¼ αiðiX1
j ;Q ðiX1

; γðiX1 ÞiU1 ÞÞ, 0≤ j≤ J þ 1, i¼1,2,

Q ðY;VÞ ¼ ðY1−Y0ÞV1 þ ∑
J

j ¼ 1

Yjþ1−Yj

2
ðVj þ Vjþ1Þ; Y;V∈RJþ2; ðB:9Þ

and γjðiX
1 Þ ¼ π=4ðiX1

j Þ2, 0≤ j≤ J þ 1, i¼1,2. In (B.8) and henceforth,
we denote the componentwise product of the pair of vectors

αðiX1
; iU

1 Þ and iU
1

and γðiX1 Þ and iU
1

by αðiX1
; iU

1 ÞiU1
and

γðiX1 ÞiU1
, respectively, i¼1,2.

Now, we have J+2 nodes at the time level t1 and we want to
keep constant the number of nodes, therefore we select one
characteristic curve and we do not compute the approximations
at such curve. Then, we eliminate the first grid node iX1

li
that

satisfies

jiX1
liþ1−

iX1
li−1 j ¼ min

1≤ j ≤ J
jiX1

jþ1−
iX1

j−1 j; i¼ 1;2: ðB:10Þ

Note that these values could be different because the growth rate
functions of both populations are different, this reason is enough
for considering different grids, one for each population. We point
out that all the equations in our scheme are completely explicit.

Next, we describe the general time step tnþ1, 0≤n≤N−1. Now,
we suppose that the numerical approximations at the previous
time level tn are known

iXn
0 ¼ x0;

iXn
1 ;…; iXn

J−1 ;
iXn

J ¼ xM
n o

; iUn
0 ;

iUn
1 ;…; iUn

J−1 ;
iUn

J ¼ 0
n o

;

i¼1,2. We recall that iXn
j and iXnþ1

jþ1 , 0≤ j≤ J−1, i¼1,2, are (numeri-
cally) in the same characteristic curve. First, we compute the grid
values at the time level tnþ1 by means of the numerical integration
of (B.2)

iXnþ1
0 ¼ x0;

iXnþ1
jþ1 ¼ iXn

j

þ k gi
iXnþ1

2
jþ1 ; tn þ

k
2

� �
; 0≤ j≤ J−1; iXnþ1

Jþ1 ¼ xM ; ðB:11Þ

i¼1,2, and the approximations to the theoretical solution in these
nodes at such time level using the discretization of (B.5)

iUnþ1
jþ1 ¼ iUn

j exp −kμn

i
iXnþ1=2

jþ1 ; tn þ k
2

� �� �
;

0≤ j≤ J−1; iUnþ1
Jþ1 ¼ 0; i¼ 1;2: ðB:12Þ



Ó. Angulo et al. / Journal of Theoretical Biology 333 (2013) 91–101 101
We complete the equations at the time level tnþ1 with the
approximation iUnþ1

0 to uiðx0; tnþ1Þ, i¼1,2, using a discretization
of the boundary condition (4)

iUnþ1
0 ¼ Rðtnþ1Þ þ Q ðiXnþ1

; iαðiXnþ1
; iU

nþ1 ÞiUnþ1 Þ
giðx0; tnþ1Þ;

ðB:13Þ

where

iXnþ1=2
0 ¼ x0;

iXnþ1=2
jþ1 ¼ iXn

j

þ k
2
giðiXn

j ; tnÞ; 0≤ j≤ J−1; iXnþ1=2
Jþ1 ¼ xM;

iUnþ1=2
jþ1 ¼ iUn

j exp −
k
2
μn

i ðiXn
j ; tnÞ

� �
; 0≤ j≤ J−1; iUnþ1=2

Jþ1 ¼ 0;

i¼1,2, where iαjðiXnþ1; iU
nþ1 Þ ¼ αiðiXnþ1

j ;Q ðiXnþ1
; γðiXnþ1 ÞiUnþ1 ÞÞ,

0≤ j≤ J þ 1, i¼1,2, Q is defined in (B.9), and γjðiX
nþ1 Þ ¼ π

4 ðiXnþ1
j Þ2,

0≤ j≤ J þ 1, i¼1,2.
Now, we have J+2 nodes at the time level tnþ1 and we want to

keep constant the number of nodes therefore we select one
characteristic curve and we do not compute the approximations
at such curve. Then, we eliminate the first grid node iXnþ1

li
that

satisfies

jiXnþ1
liþ1−

iXnþ1
li−1 j ¼ min

1 ≤ j ≤ J
jiXnþ1

jþ1 −iXnþ1
j−1 j; ðB:14Þ

and the corresponding value in the vector iU
nþ1

, i¼1,2. We again
point out that our scheme is completely explicit. We also have to
note that, in this case, the problems (B.(2) and B.5) are not coupled
as in Angulo and López-Marcos (2004); Zavala et al. (2007) and the
grid could be performed first and defined at every time step by
means of Eqs. (B.(6) and B.11) and the selection procedures (B.(10)
and B.14). However, when we compute the approximations to the
solution with (B.(7), B.8), (B.12) and (B.13), we need to know the
nodes to employ and, therefore, to manage a necessary control of
the eliminated nodes.

The numerical experiments presented in Section 4 have been
developed with small enough parameter values (h¼0.03125 and
k¼0.15625) and for initial conditions with compact support in the
interval defined by ½x0; xM �, what ensures the compatibility
between initial and boundary conditions. This is done to preserve
the good behavior of the numerical scheme.
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