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This work deals with the approximate reduction of a nonautonomous two time scales
ordinary differential equations system with periodic fast dynamics. We illustrate this
technique with the analysis of two models belonging to different fields in ecology. On the
one hand, we deal with a two patches periodic predator–prey model with a refuge for
prey. Considering migrations between patches to be faster than local interaction allows
us to study a three-dimensional system by means of a two-dimensional one. On the
other hand, a two time scales periodic eco-epidemic model is addressed by considering
two competing species, one of them being affected by a periodic SIR epidemic process
which is faster than inter-species interactions. The difference between time scales allows
us to study the asymptotic behavior of the four-dimensional system by means of a planar,
reduced one. Furthermore, we propose a methodology straightforwardly applicable to a
very large class of two time scales periodic systems.
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1. Introduction

The description of ecological systems in terms of mathematical models makes those
latter to be complex and thus requiring some reduction to be analytically tractable.
This complexity arises from the fact that a detailed model necessarily includes dif-
ferent observations and processes, each of them related to a specific scale. A sim-
plification of this situation needs to translate model processes from one scale to
another one by transferring information between them, what it is called scaling.
Hierarchy theory provides the conceptual framework of how processes and compo-
nents of an ecological system inter-relate and how they can be ordered, see Refs. 22
and 26. Considering models coupling two different processes always comes along
with an assumption concerning the time scales corresponding with each process.
In other words, the question is: do these processes evolve on different time scales?
And, if so, how does the difference between the time scales affect the behavior of
the complete system?

In mathematical terms a system including several interacting organization levels
can be seen as a system with different time scales. Each organization level consists
of interacting entities with their own dynamics. Those entities belonging to a given
level with strong or fast interactions can be grouped giving rise to the entities at next
level. Mathematically the process of up-scaling consists in deriving global variables
and their dynamics from the lower level based on the existence of different time
scales. Roughly, this is done by considering those events occurring at the fastest scale
as being instantaneous with respect to the slower ones, which entails a reduction
of the number of variables and parameters needed to describe the evolution of the
system at the upper level.

An example of this general framework is the so-called aggregation methods which
study the relationship between a large class of two time scales complex systems and
their corresponding aggregated or reduced ones. A review on these methods in dif-
ferent mathematical settings with updated bibliography can be found in Refs. 3
and 4. Aggregation techniques are particularly well developed for autonomous ordi-
nary differential equations, the Fenichel center manifold theorems13 and the geo-
metric singular perturbation theory28,29 being their mathematical basis. In short,
an autonomous system of ordinary differential equations with two time scales can
be expressed in the following form:

dn

dτ
= f(n) + εs(n), (1.1)

with n ∈ R
m, where maps f and s represent the fast and slow dynamics, respec-

tively, and ε is the small positive parameter measuring the time scales ratio when
it is possible. To perform its approximate aggregation, system (1.1) is firstly
converted into slow–fast form by means of an appropriate change of variables
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n ∈ R
m → (x, y) ∈ R

m−k × R
k:

dx

dτ
= F (x, y) + εS̄(x, y),

dy

dτ
= εS(x, y),

(1.2)

where x represents the fast variables and y the slow variables. Finding the trans-
formation n �→ (x, y) which yields the slow–fast form (1.2) of system (1.1) could be
a difficult task and the construction of general algorithms solving this problem is
presently an active research line. On the other hand, in some applications, as we
will see later, the context gives a natural way to define the so-called global variables
y and thus to express system (1.1) in slow–fast form.

The reduction process now consists in taking ε = 0 in the first equation of the
slow–fast form (1.2), dx/dτ = F (x, y), and assuming, for constant y, that there
exists asymptotically stable equilibrium x∗(y), in building up an aggregated system
for the global variables with the following form:

dy

dt
= S(x∗(y), y), (1.3)

where t = ετ represents the slow time variable. Under certain hypotheses the asymp-
totic behavior of system (1.1) can be studied through system (1.3).

The purpose of this work is extending these reduction techniques to systems
of nonautonomous ordinary differential equations. In various situations, these sys-
tems represent more realistic population models compared with autonomous ones
due to the flexibility to include time-varying features of the environment (light,
temperature, relative humidity or resources availability) as well as demographic
characteristics of the involved populations (migrations or reproduction) which are
usually subjected to daily or seasonal variations. A particular and very relevant
case of nonautonomous system is the periodic one, which is frequently found as
model of natural systems.

We develop in Sec. 2 the approximate reduction of a general class of two time
scales systems of periodic ordinary differential equations of the form:

ε
dn

dt
= f(t, n) + εs(t, n).

To our knowledge the only result of approximate aggregation of a nonautonomous
system is found in Ref. 25. In this work, the fast dynamics is considered nonau-
tonomous and assumed to tend to a stationary periodic solutions depending on
global variables; averaging techniques together with the aforementioned Fenichel
center manifold theorems allow to proceed to the reduction of the system. There is
no overlap with our results since we introduce periodic time-dependent fast dynam-
ics together with nonautonomous slow dynamics and we use Hoppensteadt theorems
on singular perturbations Ref. 19 to justify the suggested reduction.
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In Sec. 3 we illustrate the aggregation techniques developed in Sec. 2 applying
them to a two patches prey–predator model where prey can migrate between the
patch where predators are and a refuge. These terms describing predator and prey
behavior are considered to be periodic and, furthermore, local predator–prey inter-
actions are described according to the functional response presented in Ref. 30 (now
with periodic coefficients). Prey migrations are assumed to be fast when compared
with predator–prey interactions. We obtain the reduced system and study with its
help the asymptotic behavior of solutions of the initial system. Section 4 contains
another application to eco-epidemics model and, finally, Sec. 5 is devoted to out-
line further perspectives and applications of these techniques presented herein. For
the convenience of the reader we have included a brief summary of Hoppensteadt
results in Appendix A as well as some technical results in Appendix B and C.

2. Reduction Theorem

In this section we present the reduction of the following class of nonautonomous
two time scale systems:

ε
dn

dt
= f(t, n) + εs(t, n), (2.1)

with n ∈ R
m and where f and s represent the fast and slow dynamics, respectively.

This kind of systems with f and s not depending on t have been extensively
studied and applied to different biological models using approximate aggregation
methods, see Refs. 3 and 4 for recent reviews, which first step is to transform the
system into slow–fast form by means of an appropriate change of variables. To
reproduce this step with the nonautonomous system (2.1) we assume that it exists
a change of variables n ∈ R

m → (x, y) ∈ R
m−k × R

k that yields the following
system: 


ε
dx

dt
= F (t, x, y) + εS̄(t, x, y),

dy

dt
= S(t, x, y),

(2.2)

where x and y stand for the fast and the slow variables, respectively. Though it
might be difficult to find the appropriate transformation leading to the slow–fast
form (2.2) of system (2.1), in some applications, like the prey–predator model (3.2)
in next section, it is straightforwardly done. The search for the slow variables, those
ones kept constant by fast dynamics, yields the key of the transformation. In system
(3.2) the obvious candidates for slow variables are the total number of prey and
predators, which do not change through fast dynamics (prey movements between
patches) and so they evolve at the slow time scale.

The autonomous case of the slow–fast system (2.2) is reduced by means of
Fenichel center manifold theorems.3,4 The asymptotic behavior of the complete
initial system is then studied with the help of a reduced system for the global
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variables called aggregated system. Here, for the nonautonomous case, we notice
that system (2.2) is a particular case of system (A.1) in Appendix A taking

f(t, x, y, ε) = F (t, x, y) + εS̄(t, x, y) and g(t, x, y, ε) = S(t, x, y),

so, provided the hypotheses hold, we can apply the Hoppensteadt results summa-
rized in Theorem A.1. System (A.4), that in this case takes the form

dȳ

dt
= S(t,Φ(t, ȳ), ȳ), with Φ(t, y) satisfying F (t,Φ(t, y), y) = 0,

plays a similar role to the aggregated system in the autonomous case, in the sense
that some features of its asymptotic behavior can be translated in terms of system
(2.2) via Theorem A.1.

We next present a particular version of Theorem A.1 for system (2.2) where
we consider F to be periodic. The use of this reduction result is illustrated in the
following sections.

Theorem 2.1. Let us consider system (2.2) with F periodic on t and let Ω =
[t0,∞)×KR ×KR′ , where KR = {x ∈ R

m−k
+ : |x| ≤ R} and KR′ = {y ∈ R

k
+ : |y| ≤

R′}, satisfying:

(1) Functions F, S and S̄ are C2(Ω) and any solution of the system (2.2) beginning
in KR ×KR′ remains there for t ∈ [t0,∞).

(2) There is a function Φ(t, y) ∈ C2([t0,∞) × BR′) such that for any (t, y) ∈
[t0,∞) ×KR′ the following hold:

(a) F (t,Φ(t, y), y) = 0.
(b) The real part of the eigenvalues of JxF (t,Φ(t, y), y) is negative.

(3) The system of equations

dȳ

dt
= S(t,Φ(t, ȳ), ȳ) (2.3)

has a solution for t0 ≤ t < ∞ (say, y∗(t)) that it is uniformly asymptotically
stable.

If y0 is in the domain of attraction of y∗(t) and x0 is in the domain of attraction of
the equilibrium Φ(t0, y0) for system dx̄

dt̄ = F (t0, x̄, y0), then the solution (x(t), y(t))
of system (2.2) with x(t0) = x0 and y(t0) = y0 and the solution of system (2.3) with
ȳ(t0) = y0 satisfy

x(t) = Φ(t, ȳ(t)) + o(1), y(t) = ȳ(t) + o(1),

as ε→ 0+ uniformly on any interval of the form t0 < t1 ≤ t <∞.

Proof. The only point that we need to justify is that condition (2b) implies
Hypothesis H3 of Appendix A, the rest of conditions being mere translations of
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Hypotheses H1, H2 and H4 to the present case. So, we need to prove that equilib-
rium Φ(α, β), α ∈ [t0,∞) and β ∈ KR′ , of system

dX

dt
= F (α,X, β) (2.4)

is asymptotically stable uniformly in (α, β). The fact that F is periodic in its first
argument, α, implies that we only need to prove the result for (α, β) in the compact
set K = [t0, t0 + ω] ×KR′ where ω is the period of F .

Let us consider ϕ(t, α, β), any solution of system (2.4), we define z(t) =
ϕ(t, α, β) − Φ(α, β) and linearize around Φ(α, β) to get that

dz

dt
= A(α, β)z + f(α, z, β), (2.5)

where A(α, β) = JxF (α,Φ(α, β), β) and f(α, z, β) = o(|z|) uniformly in (α, β) ∈ K,
that is, for any ε > 0 there is δ > 0 such that

|f(α, z, β)| ≤ ε|z|, (2.6)

for |z| < δ.
The fact that all eigenvalues of A(α, β) have negative real part with (α, β) taking

values in the compact set K implies that there exist two positive constants γ and
M such that for every t ≥ 0 and every (α, β) ∈ K

|etA(α,β)| ≤Me−γt.

The variation of constants formula applied to system (2.5) yields

z(t) = e(t−t0)A(α,β)z(t0) +
∫ t

t0

e(t−s)A(α,β)f(α, z(s), β)ds.

Let us choose ε such that εM < γ and let δ be chosen so that (2.6) is satisfied,
we have

|z(t)| ≤Me−γ(t−t0)|z(t0)| +
∫ t

t0

εMe−γ(t−s)|z(s)|ds, t ≥ t0.

Setting g(t) = eγt|z(t)| this inequality implies

g(t) ≤Mg(t0) +
∫ t

t0

εMg(s)ds, t ≥ t0.

An application of Gronwall’s inequality yields

g(t) ≤MeεM(t−t0)g(t0), t ≥ t0,

which in turn implies

|z(t)| ≤Me−(γ−εM)(t−t0)|z(t0)|, t ≥ t0 (2.7)
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for all values of t ≥ t0 for which |z(t)| < δ. Since γ − εM > 0, this inequality
implies |z(t)| < δ for all t ≥ t0 as long as |z(t0)| < δ

M . Consequently (2.7) holds for
all t ≥ t0 provided |z(t0)| < δ

M , which implies the uniform asymptotic stability we
needed to prove.

3. Periodic Predator–Prey Model with Fast Migrations

In this section we present a two time scales predator–prey model including a refuge
for prey. Using the method developed in Sec. 2 a reduced model is derived and stud-
ied. Finally, from Theorem 2.1 we obtain some results on the behavior of solutions
of the initial model.

We consider a predator–prey community inhabiting a heterogeneous habitat. We
simulate heterogeneity by considering a patchy environment and letting individuals
migrate between patches. For the sake of simplicity we consider a two patches envi-
ronments, one of them being (say, the first one) a predator-free region, i.e. a refuge
for prey. Prey population at patch i = 1, 2 is noted by ni and p stands for predator
population at the second region. Prey migrate from patch i at a constant rate mi.
Migrations are understood as individual movements between different zones of the
habitat, so that we consider migrations to be faster than local dynamics. Demo-
graphic processes and predator–prey interactions are supposed to be periodic func-
tions of time with the same period T . In the first patch, the refuge, prey evolve
under a logistic law with net growth rate r1(t) and carrying capacity K1(t). In
the second patch, the interaction zone, predator–prey dynamics are described as
follows: Logistic growth for prey in absence of predators, r2(t) and K2(t) being the
net growth rate and the carrying capacity respectively, predator exponential decay
in absence of prey, with mortality rate µ(t), and the following functional response:

ϕ(t)n2

1 + γ(t)p
. (3.1)

This functional response type was first used in Ref. 30 (although the model consid-
ered therein is autonomous). It is inspired on the observation that in Nature, prey
and predator are not always interacting. Far from these, any group of prey is at
any moment in different “vulnerability states” with respect to predator, depending
on spatial position (e.g. in hiding places) and activity (e.g. resting versus actively
feeding). These states can be simplified into “vulnerable” and “invulnerable”. Fur-
thermore, the authors assumed that changing the vulnerability state is a faster
process than predator–prey interactions. Then, a mechanistic-type argument gives
rise to the functional response (3.1) (see the Appendix section in Ref. 30 for a
detailed explanation). From a different point of view, the functional response (3.1)
can be thought to describe predator interference, being a particular case of the
well-known Beddington7 DeAngelis11 predator–prey model.

Clearly, the existence of a refuge is linked with the “invulnerable state”. Besides,
prey migrations between the refuge and the interaction arena are related with the
change of vulnerability state. Thus, using the functional response given by (3.1)
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is fully compatible (and suitable) with our settings. The proposed model is repre-
sented by the following system of nonautonomous ordinary differential equations
with periodic coefficients:



ε
dn1

dt
= −m1n1 +m2n2 + εr1(t)n1

(
1 − n1

K1(t)

)
,

ε
dn2

dt
= m1n1 −m2n2 + ε

(
r2(t)n2

(
1 − n2

K2(t)

)
− ϕ(t)n2

1 + p
p

)
,

dp

dt
= −µ(t)p+

ϕ̄(t)n2

1 + p
p,

(3.2)

where the functions r1, r2, K1, K2, µ, ϕ and ϕ̄ are positive, bounded away from
zero, periodic with the same period T and C2(R). The small positive parameter ε
represents the ratio of time scales. Periodic variations are considered to occur on
the slow time scale (say, yearly) meaning the following. We do not expect large
variations in these parameters describing population dynamics in the short term
(e.g. within a week), but these large variations are allowed in the long term (e.g.
after several months).

3.1. Reduction of the system

Though system (3.2) seems to be in slow–fast form (2.2), setting ε = 0, the manifold
of equilibria for the fast dynamics does not verify condition (2c) of Theorem 2.1

because the Jacobian is the constant matrix
(−m1 m2

m1 −m2

)
that has an eigenvalue equal

to 0. This happens because it is hidden another slow variable: the total number of
preys that we note

n = n1 + n2. (3.3)

To obtain the appropriate slow–fast form (2.2) of system (3.2) we change variables
(n1, n2, p) into (n1, n, p) in system (3.2), which yields


ε
dn1

dt
= m2n− (m1 +m2)n1 + εr1(t)n1

(
1 − n1

K1(t)

)
,

dn

dt
= r1(t)n1

(
1 − n1

K1(t)

)
+ r2(t)(n− n1)

(
1 − n− n1

K2(t)

)
− ϕ(t)(n − n1)

1 + p
p,

dp

dt
= −µ(t)p+

ϕ̄(t)(n − n1)
1 + p

p.

(3.4)

To prove that system (3.4) verifies condition (1) of Theorem 2.1, as the regularity
assumption obviously holds, we justify that it exists and appropriate positively
invariant set. In system (3.2) it is straightforward to see that the positive octant is
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positively invariant and so the same is true for {(n1, n, p) ∈ R
3
+ : n1 ≤ n} in system

(3.4). Now, from the second equation of system (3.4) we have that

dn

dt
≤ r1(t)n1

(
1 − n1

K1(t)

)
+ r2(t)(n− n1)

(
1 − n− n1

K2(t)

)
and calculating the maximum of the second term as a function of n1 ∈ [0, n] we
can find a constant Mn such that, for every n ≥ Mn, dn

dt < 0 in n1 ∈ [0, n] and
for any p ≥ 0. Finally, from the third equation of system (3.4) we can obtain a
constant Mp such that dp

dt < 0 for every p ≥ Mp and n1 ≤ n ≤ Mn. Thus, the set
{(n1, n, p) ∈ R

3
+ : n1 ≤ n ≤Mn, p ≤Mp} is positively invariant for system (3.4).

To obtain function Φ of condition (2) of Theorem 2.1, i.e. the fast equilibrium,
we need to solve for n1 equation

m2n− (m1 +m2)n1 = 0

and, thus, we define

Φ(t, n, p) =
m2

m1 +m2
n = ν∗n. (3.5)

It is straightforward to prove that Φ(t, n, p) verifies condition (2b) of Theorem 2.1
and that the equilibrium Φ(t0, n0, p0) is globally asymptotically stable for equation

dn̄1

dt̄
= m2n0 − (m1 +m2)n̄1.

The reduced system (2.3) has in this case the following form:

dn̄

dt
= (a(t) − b(t)n̄)n̄− c(t)n̄

1 + p̄
p̄,

dp̄

dt
= −µ(t)p̄+

c̄(t)n̄
1 + p̄

p̄,

(3.6)

where

a(t) = r1(t)ν∗ + r2(t)(1 − ν∗), b(t) =
r1(t)(ν∗)2

K1(t)
+
r2(t)(1 − ν∗)2

K2(t)
,

c(t) = ϕ(t)(1 − ν∗) and c̄(t) = ϕ̄(t)(1 − ν∗).

Now Theorem 2.1 applies to system (3.2) provided we can find a uniformly
asymptotically stable solution of system (3.6) as stated in next theorem.

Theorem 3.1. Let (n1(t), n2(t), p(t)) be the solution of the initial value problem


ε
dn1

dt
= −m1n1 +m2n2 + εr1(t)n1

(
1 − n1

K1(t)

)
, n1(t0) = n0

1,

ε
dn2

dt
= m1n1 −m2n2 + ε

(
r2(t)n2

(
1 − n2

K2(t)

)
− ϕ(t)n2

1 + p
p

)
, n2(t0) = n0

2,

dp

dt
= −µ(t)p+

ϕ̄(t)n2

1 + p
p, p(t0) = p0.

(3.7)
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If the reduced system (3.6) has a solution for t0 ≤ t < ∞ that it is uniformly
asymptotically stable with (n0

1 + n0
2, p0) in its domain of attraction and (n̄(t), p̄(t))

is the solution of (3.6) for (n̄(t0), p̄(t0)) = (n0
1 + n0

2, p
0) then

n1(t) = ν∗n̄(t) + o(1), n2(t) = (1 − ν∗)n̄(t) + o(1), p(t) = p̄(t) + o(1),

as ε→ 0+ uniformly on any interval of the form t0 < t1 ≤ t <∞.

3.2. Analysis of the reduced system

In this section we provide with sufficient conditions for the existence and the sta-
bility of periodic solutions of system (3.6) entailing predator–prey coexistence or
predator extinction. Straightforward calculations reveal that system (3.6) has no
equilibrium points, so that we seek for T -periodic solution. From now on, we note ′

for d
dt .
For further purposes, we recall that the coefficients of the reduced system are

periodic, positive and bounded away from zero. Thus, they achieve strictly positive
minimum and maximum, which we note as

aL ≤ a(t) ≤ aM , bL ≤ b(t) ≤ bM , cL ≤ c(t) ≤ cM ,

µL ≤ µ(t) ≤ µM , c̄L ≤ c̄(t) ≤ c̄M .
(3.8)

We recall also the following known results, which will be used in the proof of
Proposition 3.3.

Proposition 3.1. Let

z′ = h(t, z) (3.9)

be a T -periodic system on t, where h ∈ C1(R × R
m). The existence of a convex

bounded compact positively invariant region R ⊂ R
m for system (3.9) implies the

existence of a periodic solution for system (3.9).

Proof. Let us note z(t, t0, z0) the solution system (3.9) such that z(t0) = z0 and
consider the Poincaré operator ψT : R → R defined by

ψT (z0) = z(t0 + T, t0, z0),

which maps each initial value z0 ∈ R on the region R into the value at time
t = t0 + T of the solution of problem (3.6) which starts at z0 in t = t0. This is a
continuous map and R is convex and by the Brouwer’s fixed-point theorem9 this
operator has a fixed point, which means that there exists a solution z∗(t, t0, z∗0) of
the problem (3.6) such that

z∗(t0, t0, z∗0) = z∗(t0 + T, t0, z
∗
0).

Then z∗(t, t0, z∗0) is a periodic solution due to the uniqueness of solutions of
system (3.9).
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In case of the reduced system (2.3) being T -periodic on t and having found a
T -periodic solution y∗(t) of this system, the uniformly asymptotic stability of y∗(t)
can be established using Floquet’s theory.

Proposition 3.2. Assume that the system z′ = h(t, z) is T -periodic on t and let
z∗(t) be an T -periodic solution. Consider also the linearized system around z∗

z′ = hz(t, z∗(t))z. (3.10)

Then, any of the following conditions assures that z∗(t) is uniformly asymptotically
stable:

(1) The characteristic multipliers of system (3.10) have modulus less than one.
(2) The zero solution of system (3.10) is uniformly asymptotically stable and the

linear system (3.10) has no periodic solutions different from the zero solution.

Proof. It follows from the considerations done in Sec. 4.2 in Ref. 12 (in particular,
Theorem 4.2.1).

Proposition 3.3. If condition

0 <
µM

c̄L
<
aL − cM
bM

(3.11)

holds, then there exists a positive periodic solution (n∗(t), p∗(t)) of system (3.6)
which is uniformly asymptotically stable.

Proof. The proof is accomplished in several steps: first we find a convex invariant
region R for system (3.6). Applying Proposition 3.1 we get the existence of at
least one positive periodic solution for system (3.6) within R. Then, we linearize
system (3.6) around such a positive periodic solution to prove that it is uniformly
asymptotically stable.

Step 1: Existence of a positive periodic solution. Let us assume that n·p �= 0.
Using bounds (3.8) and system (3.6) it is straightforward that


aL − bMn− cMp

1 + p
≤ n′ ≤ aM − bLn− cMp

1 + p
,

−µM +
c̄Ln

1 + p
≤ n′ ≤ −µL +

c̄Mn

1 + p
.

(3.12)

Using (3.12), direct calculations yield curves

n′
+(n) :=

aL − bMn

cM − aL + bMn
, n′

−(n) :=
aM − bLn

cL − aM + bLn
,

p′−(n) :=
c̄M
µL

n− 1, p′+(n) :=
c̄L
µM

n− 1,
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Fig. 1. Left and right: regions where the sign of n′ and p′ is constant. The curves are noted, from
left to right, n′

+(n), n′
−(n), p′−(n) and p′+(n).

delimiting regions of the first quadrant where the sign of n′ and p′ are constant, as
shown in Fig. 1.

Depending on the relative position of the nulclines (3.13) we can find different
scenarios. We seek for a positively invariant, convex region R bounded away from
the axes. R is a rectangular region. Thus, we shall find ri ∈ R, i = 1, . . . , 4 such that
R := [r1, r2] × [r3, r4]. Keeping in mind the configuration of the nulclines, vertex
(r1, r3) is defined by the intersection of curves n = (aL−cM)

bM
and p′+(n). Besides, it is

needed r2 > aM

bL
and r4 is given by the intersection of curves n = r2 and p′−(n). From

the bounds for the derivatives of (n(t), p(t)) given by Eq. (3.12), the comparison
theorem and the construction of the rectangle, it follows that R = [r1, r2]× [r3, r4]
is the region we were looking for. Figure 2 shows the rectangular closed invariant

Fig. 2. The invariant region R.
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region R and from Proposition 3.1 we get the existence of a positive T -periodic
solution (n∗(t), p∗(t)) for system (3.6).

Step 2: The periodic solution is uniformly asymptotically stable. In order
to assure the attraction of the periodic solution, according to Proposition 3.2
we study the stability of the zero solution of the variational problem of (3.6) at
(n∗(t), p∗(t)) (i.e. we linearize the problem at the periodic solution, see Ref. 12).
Thus, we deal with the system

X ′ = A(t)X, (3.13)

where

A(t) =



a(t) − 2b(t)n∗(t) − c(t)p∗(t)

1 + p∗(t)
−c(t)n∗(t)
(1 + p∗(t))2

c̄(t)p∗(t)
1 + p∗(t)

−µ(t) +
c̄(t)n∗(t)

(1 + p∗(t))2


 , (3.14)

X = (x1, x2)T (super-index T stands for transposition) and n∗(t), p∗(t) are the
components of the periodic solution. Keeping in mind the fact that


n∗′

(t)
n∗(t)

= a(t) − b(t)n∗(t) − c(t)p∗(t)
1 + p∗(t)

,

p∗
′
(t)

p∗(t)
= −µ(t) +

c̄(t)n∗(t)
1 + p∗(t)

,

the change of variables y1 = x1
n∗ , y2 = x2

p∗ transforms the system (3.14) into

Y ′ = B(t)Y, (3.15)

where Y = (y1, y2)T and

B(t) = (bij(t)) =



−b(t)n∗(t)

−c(t)p∗(t)
(1 + p∗(t))2

c̄(t)n∗(t)
1 + p∗(t)

−c̄(t)p∗(t)n∗(t)
(1 + p∗(t))2


 , (3.16)

which is equivalent to (3.14). Applying Appendix B.1 finishes the proof.

Proposition 3.4. If condition (3.11) holds, then there exists a unique T -periodic
positive solution of problem (3.6) within region R.

Proof. It follows from an application of the topological degree and the details can
be found in Appendix C.

In fact, the positive periodic solution whose existence is guaranteed by Propo-
sition 3.3 is a global attractor. The proof of this result is related with the stability
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of the semi-trivial solution of system (3.6). Namely, if we let p(t) = 0, then system
(3.6) simplifies in

n′ = (a(t) − b(t)n)n, n(t0) = n0, (3.17)

which can be explicitly solved and was studied, for instance, in Ref. 14. In this
paper, it was shown that if a(t) > 0 and b(t) > 0 are periodic functions with
common period T then there exists a unique positive periodic solution n∗

0(t) for
(3.17) which is globally asymptotically stable and such that

aL

bM
≤ n∗

0(t) ≤
aM

bL
, (3.18)

where aL, aM , bL, bM stand for the maximum and the minimum of functions a(t)
and b(t). We refer to (n∗

0(t), 0) as the semi-trivial solution of system (3.6). Besides,
both positive semi-axes are invariant sets for system (3.6). The following results
concern the stability of the semi-trivial solution of the reduced system.

Proposition 3.5. Let (n∗
0(t), 0) be the semi-trivial solution of the reduced system

(3.6) and

a1 :=
∫ t0+T

t0

(−µ(t) + c̄(t)n∗
0(t))dt. (3.19)

Then

(1) If a1 < 0 then, (n∗
0(t), 0) is uniformly asymptotically stable.

(2) If a1 > 0 then, (n∗
0(t), 0) is unstable.

Proof. Linearizing the reduced system (3.6) around the semi-trivial solution yields(
x′1
x′2

)
=

(
a(t) − 2b(t)n∗

0(t) −c(t)n∗
0(t)

0 −µ(t) + c̄(t)n∗
0(t)

)(
x1

x2

)
. (3.20)

This is a linear periodic system and we need to calculate the Floquet exponents in
order to study its stability. System (3.20) is an upper-triangular one and can be
explicitly solved. The second equation in (3.20) is

x′2 = (−µ(t) + c̄(t)n∗
0(t))x2

and its solution is given by

x2(t) = x2(t0) exp
(∫ t

t0

−µ(s) + c̄(s)n∗
0(s)ds

)
.

Replacing this expression into the first equation and solving it we get a fundamental
system:

Φ(t) =




exp

(∫ t

t0

(a(s) − 2b(s)n∗
0(s))ds

)
Φ12(t)

0 exp

(∫ t

t0

−µ(s) + c̄(s)n∗
0(s)ds

)

,
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where Φ12(t) is a complex expression. Moreover, the Floquet exponents are given by

λ1 = exp

(∫ t0+T

t0

(a(s) − 2b(s)n∗
0(s))ds

)
,

λ2 = exp

(∫ t0+T

t0

−µ(s) + c̄(s)n∗
0(s)ds

)
.

On the one hand, |λ2| < 1 because of condition (3.19). On the other hand, |λ1| < 1
because b(s)n∗

0(s) > 0 and∫ t0+T

t0

(a(s) − b(s)n∗
0(s))ds = 0.

Corollary 3.1. The semi-trivial solution (n∗
0(t), 0) is a global attractor for the

solutions of system (3.6) if
aM

bL
<
µL

c̄M
. (3.21)

Proof. It follows from the proof of Proposition 3.5 that condition (3.21) implies
a0 < 0, i.e. the semi-trivial solution (n∗

0(t), 0) is uniformly asymptotically stable.
Thanks to (3.18), there exists ε0 > 0 such that for each 0 < ε < ε0 every solution
of (3.6) with initial values within

Wε :=
[
aL

bM
− ε,

aM

bL
+ ε

]
× [0, ε]

is attracted by the semi-trivial solution. Let ρ be a positive constant such that
0 < ρ < min{ε, (aL−cM)

bM
} and n′

+,ρ(n) = n′
+(n) − ρ. For a fixed ε, we note the

region bounded by the curves n′
+,ρ(n) and n = aM

bL
by Q (including those points on

the curves). Moreover, we define

Q2 := Q∪Wε,

Q1 =
{

(n, p) ∈ R
2; 0 < n <

aL

bM
; 0 < p

}∖
Q2,

Q3 =
{

(n, p) ∈ R
2;
aM

bL
< n; 0 < p

}∖
Wε.

As µL

c̄M
≥ aM

bL
, from Eq. (3.12) we notice that there exist positive constants δ1 and

δ3 such that n′(t) < −δ3 < 0 in Q3 and n′(t) > δ1 > 0 in Q1. Thus, solutions
starting in both regions Q1 and Q3 will leave them (and so, reach Q2 and stay in)
after a transient time. The same reason implies that solutions starting within Q2

will remain in Q2. Moreover, there exists δ2 > 0 such that p′(t) < −δ2 < 0 in Q2.
Thus, every positive solution (n(t), p(t)) in Q2 is strictly decreasing and

lim
t→+∞(n(t), p(t)) ∈ Wε,

which finishes the proof.
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Corollary 3.2. If condition (3.11) holds, then the positive periodic solution whose
existence is guaranteed by Proposition 3.3 is a global attractor to system (3.6).

Proof. The proof is similar to that of Corollary 3.1.

3.3. Analysis of the complete model

In this section we analyze the complete system (3.2) by means of Theorem 3.1
along with these results achieved for the reduced system (3.6) in the previous sec-
tion. Conditions (3.11) and (3.21) are sufficient conditions entailing predator–prey
coexistence or predator extinction. Nevertheless, these conditions do not cover all
the possible cases, and numerical simulations illustrate the uncovered cases. First,
let us summarize all the previous results in the following theorem.

Theorem 3.2. Let ν∗ and n∗
0(t) be the fast equilibrium (3.5) and the periodic

solution of Eq. (3.17), respectively. Consider (n1(t), n2(t), p(t)) the solution of the
initial value problem (3.7) with initial values (n0

1, n
0
2, p0) ∈ R

3
+ and (n̄(t), p̄(t))

the solution of the reduced system (3.6) starting at (n0
1 + n0

2, p0). Then, if any of
conditions (3.11) or (3.21) hold,

n1(t) = ν∗n̄(t) + o(1), n2(t) = (1 − ν∗)n̄(t) + o(1), p(t) = p̄(t) + o(1),

as ε→ 0+ uniformly on any interval of the form t0 < t1 ≤ t <∞. We recall that:

(1) If condition (3.11) holds, then

lim
t→∞(n̄(t), p̄(t)) = (n∗(t), p∗(t))

uniformly, where (n∗(t), p∗(t)) is the periodic positive solution of Proposi-
tion 3.3.

(2) If condition (3.21) holds, then

lim
t→∞(n̄(t), p̄(t)) = (n∗

0(t), 0)

uniformly.

Proof. It is a direct consequence of all the previous analysis.

Now, we turn our attention to the uncovered cases, namely, we consider that
aL − cM
bM

<
µM

c̄L
and

µL

c̄M
<
aM

bL
. (3.22)

This case cannot be analyzed analytically. Numerical experiments show that, within
this case, we can have either a positive solution (coexistence) or a semi-trivial omega
limit (predators exclusion) for system (3.2). Let us illustrate this fact through the
following numerical simulations.

Case 1: Coexistence. We consider a set of parameter (see Fig. 3) which leads
to condition (3.22). For these parameters, we represent, on the one hand, the state
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Fig. 3. Left: state variables versus time: a positive periodic orbit exists. Right: phase portrait
of the reduced model illustrating the positive periodic orbit. Parameter values: m1 = 1, m2 = 1,
r1L = 1, r2L = 0.1, r1M = 3, r2M = 2.1, φL = 0.1, φ̄L = 0.8 ∗ φL, φM = 2.1, φ̄M = φM ∗ 0.8,
µL = 0.01, µM = 1.01, T = 5, ε = 0.02, K1L = 5, K2L = 1, K1M = 9, K2M = 5.
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Fig. 4. Comparison of the total prey density (left) and total predator density (right) simulated
with the full and the reduced model. Parameter values are these stated in Fig. 3.

variables versus time showing that a positive periodic orbit exists and, on the other
hand, a phase portrait illustrating the positive periodic orbit (see Fig. 3). In addition
we have included a comparison of the total prey/predator density simulated with
the full and the reduced model (see Fig. 4).

Let us assume that there exists a positive solution for the reduced system (3.6)
for the parameter values listed in Fig. 3. We can go through Step 2 in the proof of
Proposition 3.3 to ensure that, in fact, every positive periodic solution is uniformly
asymptotically stable.

Case 2: Predators exclusion. We consider now the parameter set values in Fig. 5,
which fulfill condition (3.22). Again, for these parameter values, Fig. 5 represents
the state variables as function of time and the corresponding phase portrait, showing
that the predator can be excluded. In this case, we could not establish analytically
the stability of the semi-trivial. Nevertheless, the simulation in Fig. 6 shows that
results obtained with the parameter values stated in Fig. 5 for the general and
reduced system are coherent.

3.4. Summary of results

As a result of the previous analysis, we have set threshold quantities for predator–
prey coexistence and predator extinction in terms of the relative shape of certain
“vital parameters” of the reduced system, namely, a(t), b(t) and µ(t), c̄(t).

In a non-spatially distributed system, a(t)
b(t) stands for the carrying capacity of

the corresponding ecosystem, in the sense of (3.18) (and comments made there).

1250025-17



3rd Reading

May 25, 2012 14:12 WSPC/103-M3AS 1250025
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Fig. 5. Left: state variables versus time: prey permanence; predators extinction. Right: phase
portrait of the reduced model illustrating predators exclusion. Parameter values: m1 = 1, m2 = 1,
r1L = 1, r2L = 0.1, r1M = 3, r2M = 2.1, φL = 0.1, φ̄L = 0.2 ∗ φL, φM = 2.1, φ̄M = 0.2 ∗ φM ,
µL = 0.6, µM = 1.6, T = 5, ε = 0.02, K1L = 5, K2L = 1, K1M = 9, K2M = 5.
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Fig. 6. Comparison of the total prey density (left) and total predator density (right) simulated
with the full and the reduced model. Parameter values are these stated in Fig. 5.

According to the definition of the coefficients of the reduced system (3.6), it follows
that

a(t)
b(t)

=
(r1(t)ν∗1 + r2(t)(1 − ν∗1 ))K1(t)K2(t)

r1(t)(ν∗1 )2K2(t) + r2(t)((1 − ν∗1 ))2K1(t)
,

which is the carrying capacity for the spatially distributed prey population when
we consider fast migrations and periodic coefficients at each region.

On the other hand, µ(t)
c̄(t) stands for the ratio between predator’s mortality rate

and benefits of captures for predators.
Thus, we have stated condition (3.11) ensuring the existence of a coexistence

state and condition (3.21) implying the exclusion of predators in terms of the coef-
ficients of the system. Summing up:

• There exists an attracting periodic coexistence state if µM

c̄L
< aL−cM

bM
.

• Predators die out at low population densities when aM

bL
< µL

c̄M
.

• There exists a range of intermediate cases (see condition (3.22)) which are indef-
inite, meaning that both predators exclusion or coexistence can arise.

In the context of the system we are dealing with, coefficients a(t), b(t) and c̄(t)
depend on ν∗1 , which is related with prey migrations. In fact, from Corollary 3.1
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and the definition of the coefficients (3.8), small changes in ν∗1 may entail a change
in the stability of the semi-trivial solution of the reduced system and thus, induce
the extinction of predators.

4. Further Applications: Eco-Epidemics Models

In this section we briefly describe another example of a nonautonomous two time
scales model. Now, fast dynamics are considered also to be time-dependent.

Eco-epidemiology is a research area that studies the interactions between com-
munity and epidemic processes. Despite its youth, it is rapidly becoming a field of
study in its own rights. Anderson and May2 were the first to consider a predator–
prey model where prey species was infected by some disease. Since then, many
authors have proposed and studied different predator–prey models in the pres-
ence of disease, mainly affecting preys8,10,24,18 but also affecting predators.15,17,27

Recently, Bairagi and Chattopadhyay6 have summarized the state-of-the-art in eco-
epidemiology. Among other questions, they pointed out the interest of dealing with
(nonautonomous) periodic eco-epidemiological systems, which, to the best of our
knowledge, have still not been treated.

Besides, in many cases, epidemics rapidly spread. If the model couples epidemics
with other process, it may be necessary to take into account the different time
scales, as pointed out in Ref. 27. There, the authors suggested delayed differential
equations as a possible tool to analyze this feature. Anyhow, a natural alternative
consists in considering two time scale systems, as done for autonomous models in
Ref. 5.

Therefore, this section fulfills that gap pointed out in Ref. 6 and contributes an
alternative approach to that set out in Ref. 27.

We present a classical periodic Lotka–Volterra competition model coupled with
a SIRS epidemic process affecting one of the species. Epidemic and community
parameters are assumed to vary at the slow time scale (say, yearly). Considering
that epidemic evolves faster than community interactions yields the following two
time scales model:



ε
dS

dt
= γ(t)R− β(t)SI

S + I
+ εS(b1(t) − a11(t)S − a12(t)w),

ε
dI

dt
=
β(t)SI
S + I

− δ(t)I + εI(b1(t) − a11(t)I − a12(t)w),

ε
dR

dt
= δ(t)I − γ(t)R+ εR(b1(t) − a11(t)R − a12(t)w),

dw

dt
= εw(b2(t) − a21(t)(S + I +R) − a22(t)w),

(4.1)

where all the parameters are strictly positive T -periodic functions of class C2(R).
In particular, β and γ stand for the infection rate and the recovery rate, respec-
tively, and parameters a1j , bi have the usual meaning in the classical Lotka–Volterra
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competition model. We recall that, from the point of view of applying approximate
aggregation techniques, there is no loss of generality in considering the same coef-
ficients for susceptible, infected or recovered individuals.

In order to write system (4.1) in an appropriate slow–fast form we define the slow
variable v := S+ I +R and change variables in (4.1) according with (S, I,R,w) �→
(S, I, v, w). The resulting system is like (2.2), that is


ε
dx

dt
= F (t, x, y) + εS̄(t, x, y),

dy

dt
= S(t, x, y).

In order to build up the reduced system, we must check Hypotheses H1 up to H4.
Hypothesis H1 holds because the non-negative cone of R

4 is positively invariant
for system (4.1).

For Hypothesis H2 we seek for a function x = φ(t, y) such that 0 =
F (t, φ(t, y), y, 0) (see Appendix A). Direct calculations yield the aforementioned
function φ such that (S∗, I∗) = φ(t, v, w) ∈ R

2
+ (we note with a subindex ∗ the

corresponding values of S, I), namely:

• If β(t) > δ(t), ∀ t ∈ [t0, t0 + T ] then

S∗(t, v) =
γ(t)δ(t)v

γ(t)β(t) + (β(t) − δ(t))δ(t)
= σ∗(t)v,

I∗(t, v) =
γ(t)(β(t) − δ(t))v

γ(t)β(t) + (β(t) − δ(t))δ(t)
= ι∗(t)v,

which corresponds with the disease-endemic state. Besides, we define R∗(t, v) :=
v − σ∗(t, v) − ι∗(t, v) = ρ∗(t)v.

• If β(t) < δ(t), ∀ t ∈ [t0, t0 + T ] then S∗ = v and I∗ = 0 (thus, v − S∗(t) − I∗(t) =
R∗(t) = 0), which is related with the disease-free state.

Direct calculations show that det(Fx(t, φ(t, y), y) �= 0 for all (t, y) ∈ [t0,∞) × BR′

in both cases, β(t) > δ(t) and β(t) < δ(t).
Regarding Hypothesis H3, it is known (see, for instance, Ref. 5) that, for each

(α, β) ∈ [t0,∞) × BR′ , X = φ(α, β) is an asymptotically stable equilibrium of
dX
dτ = F (α,X, β) uniformly in (α, β) ∈ [t0,∞) × BR′ . Finally, the corresponding
reduced system written in terms of slow variables is


dv

dt
= v(b1(t) − a∗11(t)v − a12(t)w),

dw

dt
= w(b2(t) − a21(t)v − a22(t)w),

(4.2)

where a∗11(t) = a11(t)(σ2
∗(t) + ι2∗(t) + ρ2

∗(t)), σ∗(t) + ι∗(t) + ρ∗(t) = 1 and
σ∗(t), ι∗(t), ρ∗(t) ∈ [0, 1]. System (4.2) matches with that studied in Ref. 14 and
the methodology developed herein allows us to get asymptotic information about
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the complete model (4.1) in terms the solutions of system (4.2). We obtain the
following result from Ref. 14.

Proposition 4.1. Given any T -periodic function c we note cl := min{c(t), t ∈
[0, T ]} and cu := max{c(t), t ∈ [0, T ]}. If condition

bl1 >
au
12b

u
2

al
22

, bl2 >
au
21b

u
1

a∗l
11

(4.3)

holds, then there exists a positive periodic solution (v∗(t), w∗(t)) for system (4.2).
In addition, if there exists δ > 0 such that condition

a∗l
11 > au

21 + δ, al
22 > au

12 + δ (4.4)

holds, then (v∗(t), w∗(t)) is globally asymptotically stable.

Proof. For the proof, see Ref. 14.

Proposition 4.2. Consider that conditions (4.3) and (4.4) hold. Let n(t) =
(S(t), I(t), R(t), w(t)) be the solution of system (4.1) with initial values (S0, I0,

R0, w0) such that (S0, I0) are in the domain of attraction of φ(t0, S0 + I0 + R0).
Consider also (v̄(t), w̄(t)) the solution of the aggregated system (4.2) with initial
values (S0 + I0 +R0, w0). If β(t) > δ(t) or β(t) < δ(t) hold, then

n(t) = (σ∗(t)v̄(t), ι∗(t)v̄(t), ρ∗(t)v̄(t), w̄(t)) + o(1),

as ε→ 0+ uniformly on any interval of the form t0 < t1 ≤ t <∞, where

• If β(t) > δ(t) then σ(t), ι(t), ρ(t) > 0.
• If β(t) ≤ δ(t) then σ(t) = 1, ι(t) = 0, ρ(t) = 0.

Proof. As Hypotheses H1, H2, H3 and H4 hold, it follows from Theorem 2.1.

We point out that these coefficients involved in conditions (4.3) and (4.4) depend
on the coefficients of the fast dynamics, so that these conditions may fail as a
consequence of a change in the fast time scale process. A deeper analysis of this
model could be done in different ways. On the one hand, investigating the relation
between the existence of positive coexistence state and the stability of the semi-
trivial solutions of system (4.2) as we did for the predator–prey model. On the other
hand, considering different population parameter values for susceptible, infected or
susceptible individuals. Also different values could be considered for the competition
term in the disease-free species equation. All these insights are of interest and
deserve being investigated.

5. Perspectives

The methodology presented herein states the basis for future applications in a wide
range of fields, for instance, examples in spatially distributed predator–prey models
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or eco-epidemics models have been presented in this paper. Applications in coex-
istence in spatially structured habitats and epidemics in implicit meta-population
models are also of great interest.

In Ref. 23 the authors review the basic assumptions of the patch occupancy
meta-population theory (POT), which is a key theoretical framework for studying
population persistence and species coexistence in fragmented landscapes.21 This
theory is based on the so-called competition–colonization trade-off; one the most
common and simple theoretical explanation for the coexistence of species in mosaic
habitats. According to this mechanism, poorer competitors can stably coexist with
competitively superior species thanks to their greater colonizing ability (e.g. migra-
tions). The POT focuses on whether populations occupy patches but it does not
consider local dynamics. Besides, implicit to POT there is an assumption that
competition operates at a much faster time scale than colonization–extinction pro-
cesses. All these assumptions preclude in fact local coexistence and imply that
migration cannot influence local competitive interactions. However, empirical stud-
ies have revealed a pattern that is at odds with this assumption, chiefly widespread
presence of colonizers species and local coexistence. Amarasekare and Nisbet1 have
shown that the mismatch between patch occupancy theory and data may arise from
the separation of time scales inherent in the patch occupancy framework. Thus, it
follows that the need to revisit POT underlying assumptions to incorporate a more
realistic description of the temporal scales at which key ecological processes operate,
as was recently done in Ref. 23 in the framework of autonomous ordinary differ-
ential equations. Subsequently, the techniques presented in this paper should allow
extending these results to nonautonomous systems, which provide an even more
accurate description of reality.

Epidemiology is another important field where to apply the result presented
herein, as periodic patterns in epidemics are well documented. In addition, diseases
in, for instance, human settlements does not evolve homogeneously. We may dis-
tinguish population clusters according with epidemic behavior, which may evolve
different within the whole population, for instance, due to spatial heterogeneity of
environmental conditions (different salubriousness conditions, infrastructures, . . .).
We represent these clusters by patches which can be distant from each other and,
typically, are not isolated. When individuals cannot be confined within clusters, the
interest relies in understanding how epidemic behavior depends on the exchange of
individuals between patches and if any class of control on population flow can con-
tribute to handle epidemic. Thus, models should incorporate individual displace-
ments (migrations) between patches, which can be assumed also to be periodic.
The model couples processes of different nature and we distinguish between local
(individual)–global (population) scales in order to tune our model. Individual dis-
placements between patches happen at global scale while epidemic takes place at
individual level, despite of how high the infection/recovery rates are. Therefore, the
spread of an epidemic within each patch has small impact on the whole population
and migrations is considered to be a faster process than epidemic.
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Appendix A. Quasistatic-State Approximation for Nonlinear
Initial Value Problems

We summarize here the results on quasistatic-state approximation for nonlinear
initial value problems, due to Hoppensteadt,19−21 that allow to extend aggregation
methods (see Refs. 3 and 4) to some two time scales nonautonomous systems of
ordinary differential equations, in particular to system (3.4).

We consider the initial value problem

ε
dx

dt
= f(t, x, y, ε), x(t0) = ξ0,

dy

dt
= g(t, x, y, ε), y(t0) = η0,

(A.1)

where x ∈ R
n, y ∈ R

m and ε is a small positive parameter. We define the domain
Ω̂ = Ω × [0, ε0] where Ω = I × BR × BR′ , I = {t : t0 ≤ t ≤ T ≤ ∞}, BR = {x ∈
R

n : |x| ≤ R}, BR′ = {y ∈ R
m : |y| ≤ R′}, T and ε0 are fixed constants. In what

follows, the balls BR and BR′ can be replaced by any sets that are diffeomorphic
to them.

Hypothesis H1. Functions f and g are C2(Ω) and any solution of the system (A.1)
beginning in BR ×BR′ remains there for t0 ≤ t ≤ T .

Setting ε = 0 in (A.1) we obtain the so-called reduced problem:


0 = f(t, x, y, 0),
dy

dt
= g(t, x, y, 0), y(t0) = η0.

(A.2)

Hypothesis H2. There is a function x = Φ(t, y) such that f(t,Φ(t, y), y, 0) = 0
for (t, y) ∈ I × BR′ . Moreover Φ ∈ C2(I × BR′) and det(fx(t,Φ(t, y), y, 0)) �= 0 for
(t, y) ∈ I ×BR′ .

Hypothesis H3. The system of equations
dX

dτ
= f(α,X, β, 0) (A.3)

has X = Φ(α, β) as an equilibrium for each (α, β) ∈ I ×BR′ that is asymptotically
stable uniformly in the parameters (α, β) ∈ I × BR′ , and the initial condition ξ0
is in the domain of attraction of the equilibrium Φ(t0, η0) for system (A.3) with
α = t0 and β = η0.

Hypothesis H4. The system of equations
dy0
dt

= g(t,Φ(t, y0), y0, 0) (A.4)

has a solution for t0 ≤ t < ∞, say y∗(t), that it is uniformly asymptotically stable
and η0 is in the domain of attraction of y∗(t).

Theorem A.1. Let Hypotheses H1, H2, H3 and H4 be satisfied and let y0(t) be
the solution of (A.4) for y0(t0) = η0. Then, for sufficiently small values of ε the
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solution of problem (A.1), (x(t), y(t)), exists for t0 ≤ t <∞ and it satisfies

x(t) = Φ(t, y0(t)) + o(1), y(t) = y0(t) + o(1),

as ε→ 0+ uniformly on any interval of the form t0 < t1 ≤ t <∞.

Appendix B. Lemma

Lemma B.1. Let bij(t) > 0, where i, j = 1, 2, be strictly positive periodic functions
with period T . Then, the zero solution of system{

z′1 = −b11(t)z1 − b12(t)z2,

z′2 = b21(t)z1 − b22(t)z2

is uniformly asymptotically stable.

Proof. We recall that bij(t), for i, j = 1, 2, are periodic positive functions. Let us
note the minimum and the maximum of each bij(t), for i, j = 1, 2, as 0 < bLij and
0 < bMij , respectively. Before proceeding, we recall a simple fact.

Remark B.1. Consider system

Z ′(t) = BZ(t), (B.1)

where B is given by (−b11 −b12
b21 −b22

)
, (B.2)

with bij > 0, i, j = 1, 2 are positive real numbers. It is straightforward that the real
part of the eigenvalues of (B.2) is strictly negative. Thus, the zero solution of system
(B.1) is uniform asymptotically stable uniformly with respect to the initial values.
We mean that, given initial values Z0, there exist positive constants K,α ∈ R+

such that

‖eBtZ0‖ ≤ Ke−αt ∀Z0; Z0 ≤ K. (B.3)

Getting back to our problem, let us note

Y (t) =

(
y1(t)

y2(t)

)
, Z(t) =

(
z1(t)

z2(t)

)
.

The study of the stability of the zeroth solution of system (3.15) is carried out
by means of a comparison method. Namely, given a solution of system (3.15) we
build up appropriate bounding linear systems with constant coefficient similar to
(B.2). The solutions of these bounding systems are upper and lower bounds for the
solution of system (3.15).

For this purpose, we use appropriate choices of bLij and bMij for constructing each
bounding system, depending on the sign of y1 and y2. Without loss of generality,

1250025-24



3rd Reading

May 25, 2012 14:12 WSPC/103-M3AS 1250025

Reduction of Slow–Fast Periodic Systems

let us begin by assuming that y1(t0) = y0
1 > 0 and y2(t0) = y0

2 > 0. Then, in a
neighborhood of t0, it follows that

−bM11y1(t) − bM12y2(t) ≤ y′1(t) = −b11(t)y1(t) − b12(t)y2(t) ≤ −bL11y1(t) − bL12y2(t),

bL21y1(t) − bM22y2(t) ≤ y′2(t) = b21(t)y1(t) − b22(t)y2(t) ≤ bM21y1(t) − bL22y2(t).

(B.4)

Let us consider the following bounding systems:

Z ′(t) = BLZ(t),
z1(t0) = y0

1 ,

z2(t0) = y0
2 ,



Y ′(t) = B(t)Y (t),
y1(t0) = y0

1 ,

y2(t0) = y0
2 ,



W ′(t) = BMW (t),
w1(t0) = y0

1 ,

w2(t0) = y0
2 ,

(B.5)

where B(t) is that of Eq. (3.16) and BL and BM are given by

BL =

(
−bM11 −bM12
bL21 −bM22

)
, BM =

(
−bL11 −bL12
bM21 −bL22

)
, (B.6)

the comparison theorem yields

z1(t) ≤ y1(t) ≤ w1(t), z2(t) ≤ y2(t) ≤ w2(t), t ≥ t0, (B.7)

at least while z1(t), z2(t), w1(t), w2(t) are kept positive (say, in an interval I0 :=
[t0, t∗)), with t∗ > t0 (it may happen that t∗ = +∞).

Having in mind Remark B.1, it follows that Z(t) and W (t) decrease exponen-
tially fast, and so does Y (t) in I0. It may happen that one of the components
becomes zero after a transient time, that is, t∗ < +∞. Let us assume, without loss
of generality, that y1(t∗) = 0 and y2(t∗) > 0. We recall that ‖Y (t∗)‖ < ‖Y (t0)‖. To
carry on approaching the zero solution, let us replace the bounding systems (B.5)
by another ones from t∗ on.

It is straightforward that there exists ε > 0 such that y1(t) < 0, y2(t) > 0 and
‖Y (t)‖ < ‖Y (t0)‖ for all t ∈ [t∗, t∗ + ε

2 ]. Thus, let us note

t1 = t∗ +
ε

2
, y1

1 = y1(t1), y1
2 = y2(t1).

Considering

Z ′(t) = BLZ(t),
z1(t1) = y1

1 ,

z2(t1) = y1
2 ,



Y ′(t) = B(t)Y (t),
y1(t1) = y1

1 ,

y2(t1) = y1
2 ,



W ′(t) = BMW (t),
w1(t1) = y1

1 ,

w2(t1) = y1
2 ,

(B.8)

where B(t) is that of Eq. (3.16) and BL and BM are now given by

BL =

(
−bL11 −bM12
bM21 −bM22

)
, BM =

(
−bM11 −bL12
bL21 −bL22

)
. (B.9)

Despite of the change in the coefficients corresponding with z1 and w1, the left-
and right-hand side systems (B.8) fit in Remark B.1. Therefore, we can repeat the
previous argument, so that Y (t) keeps approaching zero for t ∈ [t∗, t∗ + K) for
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certain K > 0. Remark B.1 is general enough to hold whatever super-index M or
L we use in the bij coefficient for i, j = 1, 2.

Summing up, previous argument is independent on the sign of y1(t) and y2(t),
so that it holds whatever the sign of y1(t) and y2(t) is. On the other hand, Y (t)
approaches uniformly exponentially fast the zero solution because of the nature of
the bounding solutions.

Appendix C. Proof of Proposition 3.4

Proof of Proposition 3.4. Consider the ϕT operator defined in the proof of
Proposition 3.3. Let us define

F := I − ϕ : R
2
+ → R

2
+, (C.1)

(r, s) �→ F (r, s) := (r − n(T, r, s), s− p(T, r, s)), (C.2)

where n and p stand for the solutions of the (P0) problem such that n(0) = r and
p(0) = s. We already know that ϕT maps ∂R into Int(R), therefore F (r, s) �= (0, 0)
for all (r, s) ∈ ∂R. Moreover, for (r1, s1) ∈ Int(R) we define

N(r, s, ξ) := (r1 + ξ[n(T, r, s) − r1]; s1 + ξ[p(T, r, s) − s1]), (r, s) ∈ R̄.

As N(r, s, 0) = (r1, s1) ∈ Int(R), N(r, s, 1) = (n(T, r, s), p(T, r, s)) ∈ Int(R) and R
is convex, it is clear that

(r, s, ξ) −N(r, s, ξ) �= (0, 0) ∀ (r, s) ∈ ∂R, ξ ∈ [0, 1].

Therefore, N establishes an admissible homotopy between

F (r, s) = (r, s) −N(r, s, 0) and (r − r1, s− s1) = (r, s) −N(r, s, 1)

and

d[F,R2, 0] = d[(r − r1, s− s1), R2, 0] = 1.

We must show that |JF (P0, p0)| > 0 for each positive T -periodic solution (n0, p0):

|JF (P0, p0)| =

∣∣∣∣∣
1 − n′

n(T, n0, p0) −n′
p(T, n0, p0)

−p′n(T, n0, p0) 1 − p′p(T, n0, p0)

∣∣∣∣∣
and the eigenvalues of the matrix(

n′
n(T, n0, p0) n′

p(T, n0, p0)

p′n(T, n0, p0) p′p(T, n0, p0)

)

are the characteristic multipliers λ1 and λ2 of the linearization of the reduced
system (3.6) at the positive periodic solution. We already know that system (3.13)
has no periodic solutions different from the zero solution. Then, neither 1 nor −1
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is characteristic multiplier of system (3.13). In fact, such a solution is attractive,
which implies that |λi| < 1 for i = 1, 2. Now, it is clear that

|JF (n0, p0)| = (1 − λ1)(1 − λ2) > 0,

which concludes with the proof of the uniqueness.
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