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Abstract In this work we deal with a general class of spatially distributed periodic

SIS epidemic models with two time scales. We let susceptible and infected indi-

viduals migrate between patches with periodic time dependent migration rates. The

existence of two time scales in the system allows to describe certain features of the

asymptotic behavior of its solutions with the help of a less dimensional, aggregated,

system. We derive global reproduction numbers governing the general spatially

distributed nonautonomous system through the aggregated system. We apply this

result when the mass action law and the frequency dependent transmission law are

considered. Comparing these global reproductive numbers to their non spatially

distributed counterparts yields the following: adequate periodic migration rates

allow global persistence or eradication of epidemics where locally, in absence of

migrations, the contrary is expected.

Keywords Nonautonomous differential equations � SIS model � Two patches

model � Two time scales system approximate aggregation

1 Introduction

In nature, individuals are affected by different processes, each of them evolving

within its own characteristic time scale. Therefore, sometimes we are faced to
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consider models coupling two (or more) dynamics evolving at different time scales.

For instance, populations suffer seasonal or yearly epidemics, while individuals

move around very often, even if the corresponding migration rates do not change

very much in the short term. As contacts between individuals is a crucial aspect in

the spread of many diseases, it is of full interest considering two time scales systems

coupling fast migrations with slow epidemics.

Many authors have studied autonomous spatial models of epidemics spread

where the environment is represented as a set of discrete patches connected by

migrations (Arino et al. 2005, 2007; Auger et al. 2008c; Lloyd and Jansen 2004). In

most of these works migration and epidemic processes are assumed to act at the

same time scale. A work were time scales are explicitly considered is Kouokam

et al. (2008): a spatial SIRS model with migrations being faster than disease

transmission and recovery. In the present work we also study a two time scales

model coupling migrations and local disease spread but letting migration,

transmission and recovery rates to be represented by periodic functions of time.

An important problem in the analysis of nonautonomous epidemic models is

defining the reproduction number (the expected number of secondary cases caused

by a primary case in a fully susceptible population) which value, greater or lower

than 1, characterizes in the autonomous case the existence of an epidemic or the

disease eradication, respectively. In Thieme (2000), Ma and Ma (2006), and

Martcheva (2009) it is suggested defining the reproduction numbers of different

periodic epidemics models through the reproduction numbers of the corresponding

averaged systems (the autonomous systems obtained by replacing the time-varying

parameters with their long-term time averages). This definition of reproductive

numbers does not work as clearly as in the autonomous case but in some cases

(Martcheva 2009) it is useful to characterize the global stability of the disease-free

equilibrium and of the endemic periodic solution.

The model treated in this work is at the same time nonautonomous and spatially

distributed. We take advantage of the existence of two time scales to reduce the

system to a nonautonomous but spatially implicit one. In this way, the asymptotic

results based on reproduction numbers for periodic systems can be applied. The

reproduction numbers so obtained can be considered as extension of the usual ones

to a patchy environment.

There are different methods to try to simplify complex models involving many

variables. One of such method is the so-called aggregation of variables which was

first introduced in the field of economy and imported to the field of population

dynamics (Iwasa et al. 1987, 1989). These methods consist in deriving simplified

global models governing a few global variables that allow to study to a certain

extent the asymptotic behavior of the original system. A review of approximate

aggregation methods based on time scales separation can be found in Auger et al.

(2008a, b). Those aggregation techniques are particularly well developed for

autonomous ordinary differential equations, the Fenichel center manifold theorems

(Fenichel 1971) and the geometric singular perturbation theory (Verhulst 2005,

2007) being their mathematical basis, but they do not apply directly to our model

because they only consider autonomous systems. To reduce, or aggregate, the

nonautonomous system presented in this work we use the results on quasistatic-state
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approximation for nonlinear initial-value problems, due to Hoppensteadt (1966,

1993, 2010), that are summarized in Sect. 6.1.

The aim of the work is analyzing the influence of fast periodic migrations on

disease dynamics. In particular, it is motivated by the results presented in McCallum

et al. (2001) where it is discussed how to model pathogen transmission. There, with

the help of non spatially distributed autonomous models, it is claimed that

epidemics behave the same whether transmission follows the mass action law or the

frequency dependent law. We are interested in studying if epidemic dynamics are

sensitive to these transmission laws in more complex situations as the one including

fast periodic migrations of individuals affected by a periodic SIS. For that, we

derive global reproductive numbers and, subsequently, we compare them with their

local counterparts (those that were to be obtained in absence of migrations). This

comparison yields that considering fast periodic migrations may change drastically

the outcome of the model.

The paper is organized as follows. In Sect. 2, we present the complete two time

scales spatial model with two patches. Section 3 is devoted to the reduction of the

model, based on these results summarized in Appendices 1 and 2. In Sect. 4 we

analyze the general SIS model by means of the reduced system. Two important

cases are investigated by considering the mass action law and the frequency

dependent transmission law. We particularly focus on the derivation of reproduction

numbers for these models and on the effects of migrations on disease dynamics.

Reproduction numbers allow to make suitable predictions about the spread of the

epidemic and the appearance of an endemic situation. Section 5 contains the

conclusions and the aforementioned appendices can be found in Sect. 6.

2 Spatially Distributed SIS Epidemics Model

Consider a population inhabiting a two patches environment. Individuals are

affected by two processes; migrations between patches and a SIS-epidemic process.

Let us note Sk(t) and Ik(t) the susceptible and infected individuals at time t and patch

k = 1, 2, respectively.

Susceptible and infected individuals can remain or leave a given patch. Let us

note the corresponding migration rates from patch k = 1, 2 by mk
S(t) [ 0 and

mk
I(t) [ 0, which are assumed to be periodic.

At local scale, we consider a general SIS epidemic process. Fertility and

mortality rates are the same and represented by the periodic functions lk(t) for patch

k = 1, 2, thus population can be considered to be globally constant. Periodic

functions bk(t) and ck(t) stand for the transmission and recovery rates at patch k = 1,

2. The epidemic process affecting susceptible individuals at patch k = 1, 2 is

represented by the general function Wkðlk; bk; ck; Sk; IkÞ and so the corresponding

function for the infected individuals is �Wkðlk; bk; ck; Sk; IkÞ: We assume that

Wkð�; �; �; �; 0Þ ¼ 0 for k = 1, 2, what reflects the fact that infected individuals

cannot spontaneously appear in the population. Functions Wk are taken to be C2 on

their respective domains for technical reasons.
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The model coupling fast migrations and slow local SIS-epidemic dynamics reads

as follows:

e dS1

dt ¼ �mS
1ðtÞS1 þ mS

2ðtÞS2 þ eW1ðl1ðtÞ; b1ðtÞ; c1ðtÞ; S1; I1Þ;
e dS2

dt ¼ mS
1ðtÞS1 � mS

2ðtÞS2 þ eW2ðl2ðtÞ; b2ðtÞ; c2ðtÞ; S2; I2Þ;
e dI1

dt ¼ �mI
1ðtÞI1 þ mI

2ðtÞI2 � eW1ðl1ðtÞ; b1ðtÞ; c1ðtÞ; S1; I1Þ;
e dI2

dt ¼ mI
1ðtÞI1 � mI

2ðtÞI2 � eW2ðl2ðtÞ;b2ðtÞ; c2ðtÞ; S2; I2Þ:

8
>>><

>>>:

ð1Þ

Positive small parameter � represents the ratio between time scales. All periodic

function appearing in the model are assumed to have a common period x and to be

C2ðRÞ: The period is related to the slow time scale, the underlying idea is that

coefficients exhibit periodic patterns and we expect small changes of the value of

these functions in the short term but which may become larger as the time passes by.

For instance, if the period is yearly, the value of a given migration rate should be

more or less the same in a time interval of few days, but can experiment large

variations after several months. Besides, individual displacements are related with

encounters but, for not so contagious diseases, it is a plausible hypothesis that

several encounters are needed for a single transmission event. These assumptions

support the existence of different time scales.

The total population given by N(t) = S1(t) ? S2(t) ? I1(t) ? I2(t) verifies dN/

dt = 0. Then, we can assume from now on that the total population size is constant

and rescaled to 1, so that we consider system (1) on the set

X ¼ ðS1; S2; I1; I2Þ 2 R
4
þ : NðtÞ ¼ 1

� �

which is positively invariant.

3 Reduction of Model (1)

The results we are presenting here are derived from Hoppensteadt results on

quasistatic-state approximation for nonlinear initial-value problems, Hoppensteadt

(1966, 1993, 2010). For the convenience of the reader, we have summarized these

results in Sect. 6 and, in particular, in Theorem 2 (Appendix 1).

Model (1) couples two different processes acting at different time scales and it

fits in the general form (22) presented in Appendix 2. Thus, we proceed to write it

into the so-called slow-fast form so that we get the associated reduced system.

To transform system (1) into slow-fast form we seek for an appropriate change of

variables making emerge the slow variables of the model. In this case, the natural

choice is the total number of susceptible and infected individuals because these

variables are kept constant through migrations (the fast dynamics) and so they evolve

at the slow time scale, the one that infectious process acts at. We denote them by

S ¼ S1 þ S2 and I ¼ I1 þ I2:

According to Appendix 2 notation, the change of variables

n ¼ ðS1; S2; I1; I2Þ7!TðnÞ :¼ ðx; yÞ;

where x = (S1, I1) and y = (S, I), leads system (1) into the desired slow-fast form.
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e dS1

dt ¼ �mS
1ðtÞS1 þ mS

2ðtÞðS� S1Þ � eW1ðl1ðtÞ; b1ðtÞ; c1ðtÞ; S1; I1Þ;
e dI1

dt ¼ �mI
1ðtÞI1 þ mI

2ðtÞðI � I1Þ þ eW1ðl1ðtÞ; b1ðtÞ; c1ðtÞ; S1; I1Þ;
dS
dt ¼ �W1ðl1ðtÞ; b1ðtÞ; c1ðtÞ; S1; I1Þ �W2ðl2ðtÞ; b2ðtÞ; c2ðtÞ; S� S1; I � I1Þ;
dI
dt ¼ W1ðl1ðtÞ; b1ðtÞ; c1ðtÞ; S1; I1Þ þW2ðl2ðtÞ; b2ðtÞ; c2ðtÞ; S� S1; I � I1Þ:

8
>><

>>:

ð2Þ

We define also the transformations Tx (n) : = x and Ty (n) : = y, and denote

XT ¼ TðXÞ;Xx
T ¼ TxðXÞ and Xy

T ¼ TyðXÞ: First we proceed to construct the

reduced model and for that we need to prove that system (2) fulfills hypotheses H1,

H2 and H3 stated in Appendix 1.

The fact that XT is positively invariant for system (2) ensures that Hypothesis H1

is met.

To find function x ¼ Uðt; yÞ of Hypothesis H2 we have to solve for x = (S1,I1)

the following system:

�mS
1ðtÞS1 þ mS

2ðtÞðS� S1Þ ¼ 0;
�mI

1ðtÞI1 þ mI
2ðtÞðI � I1Þ ¼ 0:

�

ð3Þ

we note

ðS�1ðt; SÞ; I�1ðt; SÞÞ ¼
mS

2ðtÞS
mS

1ðtÞ þ mS
2ðtÞ

;
mI

2ðtÞI
mI

1ðtÞ þ mI
2ðtÞ

� �

¼ S�1ðtÞS;I�1ðtÞI
� �

¼ Uðt; S; IÞ:
ð4Þ

Straightforward calculations also give that det(fx(t, x, y)) [ 0 for x ¼ Uðt; S; IÞ
where f ðt; x; yÞ ¼ �mS

1ðtÞS1 þ mS
2ðtÞðS� S1Þ;�mI

1ðtÞI1 þ mI
2ðtÞðI � I1Þ

� �
: Thus,

Hypothesis H2 is also met.

To verify Hypothesis H3 we need to prove that the fast equilibrium Uða; bÞ are

asymptotically stable uniformly in the parameters ða; bÞ 2 R� Xy
T ; b = (b1, b2), for

system

dS1

ds ¼ �mS
1ðaÞS1 þ mS

2ðaÞðb1 � S1Þ;
dI1

ds ¼ �mI
1ðaÞI1 þ mI

2ðaÞðb2 � I1Þ:

�

ð5Þ

The global asymptotic stability of Uða; bÞ ¼ S�1ða; b1Þ; I�1ða; b2Þ
� �

is straightforward

as equations in (5) are uncoupled and each of them is linear. The uniformity follows

from the fact that Xy
T is compact and the functions appearing in the system are

periodic on a. Furthermore, the domain of attraction of the equilibrium Uðt0; y0Þ; for

each t0 C 0 and each y0 2 Xy
T ; includes all x0 2 Xx

T :
Now that hypotheses H1, H2 and H3 are verified we can write the reduced system

(21) (see Hypothesis 4) with variables �y ¼ ð�S; �IÞ and defined in the domain
�X ¼ ð�S; �IÞ 2 R

2
þ : �Sþ �I ¼ 1

� �
; associated to system (2):

d �S
dt ¼ W1 l1ðtÞ; b1ðtÞ; c1ðtÞ; S�1ðt; �SÞ; I�1ðt; �IÞ

� �

þW2 l2ðtÞ; b2ðtÞ; c2ðtÞ; �S� S�1ðt; �SÞ; �I � I�1ðt; �IÞ
� �

;

d�I
dt ¼ �W1 l1ðtÞ; b1ðtÞ; c1ðtÞ; S�1ðt; �SÞ; I�1ðt; �IÞ

� �

�W2 l2ðtÞ; b2ðtÞ; c2ðtÞ; �S� S�1ðt; �SÞ; �I � I�1ðt; �IÞ
� �

:

8
>>>><

>>>>:

ð6Þ
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A further reduction in system (6) is still possible having in mind that �SðtÞ þ �IðtÞ is

constant and we have normalized it to 1. The equation for �I equivalent to system

(6) is:

d�I
dt ¼ �W1 l1ðtÞ; b1ðtÞ; c1ðtÞ; S�1ðt; 1� �IÞ; I�1ðt; �IÞ

� �

�W2 l2ðtÞ; b2ðtÞ; c2ðtÞ; 1� �I � S�1ðt; 1� �IÞ; �I � I�1ðt; �IÞ
� �

¼ Wðl1ðtÞ; l2ðtÞ; b1ðtÞ; b2ðtÞ; c1ðtÞ; c2ðtÞ; S�1ðtÞ; I�1ðtÞ; IÞ:
ð7Þ

4 Analysis of the Model: Global Reproductive Numbers

In this section we address the analysis of the general model (1) (a 4 dimensional)

through the aggregated system (7) (a scalar equation) using Theorem 2. The study of

the aforementioned reduced system yields criteria predicting persistence or

eradication of epidemics for the general two time scales system (1).

Besides, a deeper analysis is carried out for two important epidemiological

models by considering the mass action law and the frequency transmission law

(McCallum et al. 2001). As a result, we define global reproductive numbers �R for

these two time scales spatially distributed SIS models. �R is a threshold for the

global persistence of epidemics; whenever �R\1; epidemics globally disappear,

while �R[ 1 allows epidemics globally to persists (according to Theorem 2). Global

reproductive numbers are defined in terms of local parameters and migration rates.

Finally, we compare these global reproductive numbers with their local counter-

parts. Doing so, we get knowledge on the influence of considering migrations and

time scales in these epidemic processes.

Equation (7) is a scalar periodic one and its solutions are confined in the [0,1]

interval. We already know about the existence of the trivial solution I0(t) = 0

(disease free state) of (7) and we seek for the existence of non trivial periodic

solutions. Thanks to the fact that the solutions of (7) are bounded, we can derive the

existence of positive asymptotically stable solutions of (7) when the trivial solution

I0(t) is unstable. In terms of Floquet’s theory (see, for instance, Farkas 1994) the

stability of a periodic solution of a periodic system can be established in terms of the

sign of the corresponding characteristics exponents (noted by a0 in the following

result). Using these ideas along with Theorem 2 (see Appendix 1) we get the

following information on the complete system (1) through the reduced system (7).

Theorem 1 Let us note

a0 :¼
Zt0þx

t0

o

oI
Wðl1ðtÞ; l2ðtÞ; b1ðtÞ; b2ðtÞ; c1ðtÞ; c2ðtÞ; S�1ðtÞ; I�1ðtÞ; IÞ
� �	

	
I¼0

dt; ð8Þ

which is the characteristic exponent of the zero solution of system (7). We consider
neðtÞ ¼ ðSe

1ðtÞ; Se
2ðtÞ; Ie

1ðtÞ; Ie
2ðtÞÞ the solution of system (1) with initial values

neðt0Þ ¼ ne
0 2 X: Let us recall that the total population size has been rescaled to 1.

Then,
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1. If a0 \ 0, then the trivial solution I0
*(t) = 0 of system (7)is uniform asymptot-

ically stable. Besides, if neðtÞ is such that Ie
1ðt0Þ þ Ie

2ðt0Þ ¼ n0 is in the domain of
attraction of I0

*(t) then, for any d[ 0, there exist ed [ 0 and td [ t0 such that

jneðtÞ � S�1ðtÞ; ð1�S�ðtÞÞ; 0; 0
� �

j\d

for every e� ed and every t C td, where S�1 was defined in (4).

2. If a0 [ 0, then there exists a positive periodic uniform asymptotically stable
solution I*(t) of system (7). If neðtÞ is such that Ie

1ðt0Þ þ Ie
2ðt0Þ ¼ n0 is in the domain

of attraction of I*(t) then, for any d[ 0, there exist ed [ 0 and td [ t0 such that

jneðtÞ � S�1ðtÞð1� I�ðtÞÞ; ð1�S�1ðtÞÞð1� I�ðtÞÞ;I�1ðtÞI�ðtÞ;
�

1�I�1ðtÞÞI�ðtÞ
� �

j\d

for every e� ed and every t C td, where S�1 and I�1 were defined in (4).

Proof We are proving the existence of uniformly asymptotically stable solutions

of (7) and that Hypothesis H4 holds. Doing so, 1. and 2. in the theorem will be direct

consequence of Theorem 2.

We already know that I0
*(t): = 0 for all t C t0 is a solution of (7). It is known that

a periodic solution of a periodic scaler equation is asymptotically stable it the

corresponding characteristic multiplier is less than 0. Otherwise, I0
*(t) is unstable.

Let us assume the later condition. In this case, solutions are bounded away from

I0
*(t). In addition, I(t) varies in the compact set [0, 1], so that every solution of (7) is

bounded. In this case, there exists an asymptotically stable periodic solution I*(t) of

(7) (see, for instance, Theorem 4.11 in Chow and Hale 1982). As I0(t) is unstable

when a0 [ 0, then I*(t) is positive.

Finally, in Chow and Hale (1982) it is also proved that a bounded solution of a

periodic scalar equation monotonically converges to a periodic solution. Thus, in

case of being stable, the aforementioned solutions I0
*(t) and I*(t) are, in fact,

uniformly asymptotically stable. h

It is now apparent that expression a0 is the key for studying the outcome of

epidemics and we will use it for defining the global reproductive numbers. In the

sequel, we apply the previous general results to study the effect of fast migrations

when considering the mass action law and the frequency dependent transmission law.

4.1 Mass Action Transmission Law

In this case we consider

Wkðlk; bk; ck; Sk; IkÞ ¼ �bkðtÞSkIk þ ðlkðtÞ þ ckðtÞÞIk; k ¼ 1; 2: ð9Þ

Straightforward calculations yield the corresponding reduced system

dS
dt ¼ �b�ðtÞSI þ ðl�ðtÞ þ c�ðtÞÞI;
dI
dt ¼ b�ðtÞSI � ðl�ðtÞ þ c�ðtÞÞI;

�

ð10Þ

where
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b�ðtÞ ¼ b1ðtÞI�1ðtÞS�1ðtÞ þ b2ðtÞð1�I�1ðtÞÞð1�S�1ðtÞÞ;
l�ðtÞ ¼ l1ðtÞI�1ðtÞ þ l2ðtÞð1�I�1ðtÞÞ; c�ðtÞ ¼ c1ðtÞI�1ðtÞ þ c2ðtÞð1�I�1ðtÞÞ;

and S�1ðtÞ;I�1ðtÞ were defined in (4). Keeping in mind (7), system (10) can be

studied by means of the scaler equation

dI

dt
¼ �ðl�ðtÞ þ c�ðtÞÞI þ b�ðtÞð1� IÞI: ð11Þ

If function f(t) is x-periodic on t, we note hf ðtÞi ¼ 1
x

R t0þx
t0

f ðsÞds: In addition, direct

calculations yield that, in the present case,

a0 ¼
Zt0þx

t0

b�ðtÞ � l�ðtÞ þ c�ðtÞð Þds:

If we define the global reproductive number as

�R :¼ hb�ðtÞi
hl�ðtÞi þ hc�ðtÞi ð12Þ

it is apparent that the relation between a0 and �R is as follows

Proposition 1 If holds that

�R\1, a0\0 and �R[ 1, a0 [ 0:

Proof It can be easily checked by direct calculations. h

Formally, expression (12) is that defined in Martcheva (2009), where a non

spatially distributed SIS epidemic model with multiple strains was addressed.

Nevertheless, coefficients involved in (12) depend on the equilibrium of the fast

dynamics (5) as well as on local epidemic parameters, extending those defined in

Martcheva (2009). In particular, it turns out that migration rates are relevant when

computing the value of the global reproductive numbers.

Next, we accomplish the analysis of the effect of fast migrations in two

different scenarios. On the one hand we let coefficients describing epidemics to be

equal in both regions. On the other hand, we set epidemic coefficients so that local

disease behavior is asymmetric, being epidemics stronger in one of the regions. In

both cases the behavior of infected individuals is determined by the solutions of

equation

dIk

dt
¼ �ðlkðtÞ þ ckðtÞÞIk þ bkðtÞð1� IkÞIk; k ¼ 1; 2; ð13Þ

having normalized the total population at each patch up to 1. We compare the global

reproductive number �R with the local reproductive numbers

Rk ¼
hbkðtÞi

hlkðtÞi þ hckðtÞi
; k ¼ 1; 2; ð14Þ
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which are obtained in a similar way as we got (12) and determine the outcome of the

epidemic process at patch k = 1,2 in absence of migrations.

We recall also that

Proposition 2 Under the assumptions in Sect. 4.1,

1. If �R\1 (resp. Rk\1; k ¼ 1; 2), then the trivial solution of (11) (resp. (13))

whose existence follows from the proof of Theorem 1 is globally uniformly
asymptotically stable.

2. If �R[ 1 (resp. Rk [ 1; k ¼ 1; 2), then the positive periodic solution of (11)

(resp. (13)) whose existence follows from the proof of Theorem 1 is globally
uniformly asymptotically stable.

Proof

1. Consider, for instance, (13). It follows easily from the fact that solutions of (13)

are bounded from above by the solutions of equation

dzk

dt
¼ �ðlkðtÞ þ ckðtÞÞzk þ bkðtÞzk;

which converge to zero when Rk\1; k ¼ 1; 2: A similar reasoning is valid for

(11).

2. Equations (11) and (13) are the periodic Bernoulli equation, which has received

much attention. Different proofs of the existence of an unique periodic positive

solution can be found in Thieme (2003) and Martcheva (2009). Therefore, b)

follows from the proof of Theorem 1.

Remark In particular, Proposition 2 implies that these results in Theorem 1 are

global, meaning that any 0 = n0 is in the domain of attraction of the corresponding

solution in the statement of Theorem 1.

4.1.1 Effect of Migrations: Symmetric Regions

Let us assume that disease parameters are the same in both patches. Namely

Proposition 3 Assume that b1 = b2, c1 = c2 and l1 = l2:l. It follows that

�R�Rk k ¼ 1; 2;

where �R and Rk are these given by (12) and (14), resp.

Proof It can be easily established directly comparing �R and Rk; k ¼ 1; 2: h

Therefore, it may happen either �R ¼ Rk or �R\Rk for k = 1, 2. In the first case,

the output of epidemics is the same globally and locally, meaning that it does not

matter considering migrations in the final outcome of the epidemic process. On the

contrary, the second case allows

�R\1\Rk k ¼ 1; 2;

so that epidemics will be globally eradicated while, in absence of migration, the

contrary was expected at each patch.
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4.1.2 Asymmetric Regions

We consider now that the epidemic process has stronger incidence in one of the

regions, for instance, at patch one. The following result holds

Proposition 4 Let us set b1 \ b2, c2 \ c1 and we let l1 = l2:l. If

hb1ðtÞð1�I�1ðtÞS�1ðtÞÞi\hb2ðtÞð1�I�1ðtÞÞð1�S�1ðtÞÞi

then

R1\ �R\R2;

where �R and Rk are these given by (12) and (14), resp.

Proof On the one hand, it is clear that

�R\
hb2ðtÞI�1ðtÞS�1ðtÞ þ b2ðtÞð1�I�1ðtÞÞð1�S�1ðtÞÞi

hlðtÞi þ hc2ðtÞi
\R2

because

hb2ðtÞ I�1ðtÞðS�1ðtÞ � 1Þ þS�1ðtÞðI�1ðtÞ � 1Þ

 �

i\0:

On the other hand,

hb1ðtÞI�1ðtÞS�1ðtÞ þ b2ðtÞð1�I�1ðtÞÞð1�S�1ðtÞÞi
hlðtÞi þ hc1ðtÞi

\ �R:

Comparing R1 with the left hand side quotient in the previous expression finishes

the proof. h

As particular cases,

R1\1\ �R\R2

or

R1\ �R\1\R2

produce global behaviors which are different of those expected at local level. This

analysis is not exhaustive and do not exclude the case Rk [ �R for k = 1, 2, which

was addressed in the symmetric regions case.

4.2 Frequency Dependent Transmission Law

Following the schema of the previous Sect. 4.1, we turn our attention to the

case

Wkðlk; bk; ck; Sk; IkÞ ¼ ðlkðtÞ þ ckðtÞÞIk � bkðtÞ
SkIk

Sk þ Ik
; k ¼ 1; 2: ð15Þ

Reasoning as before we define the corresponding global reproductive number

as
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123



�R :¼
b1ðtÞ
S�1ðtÞ

D E
þ b2ðtÞ

1�S�1ðtÞ

D E

hl�ðtÞi þ hc�ðtÞi : ð16Þ

As we did in the case of mass action transmission law, we finish this section

analyzing the effect of fast migrations in epidemics outcome in two different cases

considering again epidemiological symmetric and asymmetric regions. Hence, we

compare the global reproductive number (16) with the corresponding local

reproductive numbers. In absence of migrations, local epidemic process (15)

simplifies in

dSk

dt ðlkðtÞ þ ckðtÞÞIk � bkðtÞ SkIk

SkþIk
;

dIk

dt ¼ �ðlkðtÞ þ ckðtÞÞIk þ bkðtÞ SkIk

SkþIk
;

(

k ¼ 1; 2:

In addition, hypothesis Sk(t) ? Ik(t) = 1 yields the following expression for the

local reproductive numbers

Rk ¼
hbkðtÞi

hlkðtÞi þ hckðtÞi
; k ¼ 1; 2: ð17Þ

4.2.1 Effect of Migrations: Symmetric Regions

Proposition 5 In case of b1 = b2 = b, c1 = c2 = c and l1 = l2 = l, it follows
that

Rk\ �R; k ¼ 1; 2;

where �R and Rk are these given by (16) and (17), respectively.

Proof Simple calculations yield

�R ¼
bðtÞ

S�1ðtÞð1�S�1Þ

D E

hl�ðtÞi þ hc�ðtÞi

and the fact that S�1ðtÞ 2 ð0; 1Þ for all t finishes the proof.

Surprisingly, concrete migratory schemes may let epidemics to persist whether

eradication was expected at local level. This result is, in any sense, the ‘‘converse’’

of that obtained for the mass action transmission law.

4.2.2 Asymmetric Regions

We consider now that epidemics has stronger incidence in one of the regions, for

instance, at patch one. Thus, we set b1 \ b2, c2 \ c1 and we let l1 = l2.

It is straightforward that R1\ �R:
On the other hand, it is not possible to find out a general relation between R2 and

�R: In fact, it may happen R2\ �R; R2 ¼ �R or R2 [ �R: Therefore, once more time,

the outcome of the model can change drastically depending on the migratory

scheme.
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5 Discussion and Conclusions

In this work we deal with a general two time scales periodic nonautonomous

spatially distributed system coupling fast migrations with a slow SIS epidemic

process. As pointed out in the introduction, the purpose of the study is twofold. On

the one hand, we seek for defining global reproduction numbers and, on the other

hand, we want to contrast those results presented in McCallum et al. (2001) in a

more complex realistic scenario, as that described by the aforementioned

hypotheses.

Under these general settings and using approximate aggregation methods, we are

able to derive a reduced model and a threshold quantity a0 describing whether

epidemics become globally endemic or are globally eradicated. Obviously, dealing

with a system as general as (1), with no explicit expression describing epidemics,

does not allow to do deeper analysis. Then, we carry on analyzing the

aforementioned pathogen transmission laws (McCallum et al. 2001): the mass

action law and the frequency dependent transmission law. We derive global

reproductive numbers �R based on a0 for models considering each of these

transmission laws. Then, we compare these global reproductive numbers to the local
reproductive numbers, that is, the reproductive numbers corresponding with isolated

patches (those calculated for each patch in absence of migration). Our results are the

following:

1. In the symmetric case, i.e. when the two patches are the same from an

epidemiological point of view, an interesting result holds for the mass action

transmission law: the global reproductive number is smaller than the local ones.

This result is similar to that obtained in Kouokam et al. (2008) for a two patch

SIRS autonomous model with fast migration, which was extended in that

contribution to a set of N [ 2 patches. On the contrary, considering the

frequency dependent transmission law yields global reproduction number

greater than local ones.

2. The asymmetric patches case leads to more complex results in both the mass

action law and the frequency dependent transmission law. Namely, global

reproduction number can be greater or smaller than local ones according to the

set of parameter values.

The analysis performed in Sect. 4 yields evidences of the importance of

identifying heterogeneous clusters on the epidemiological behavior of a disease

within a population, identifying individual displacement patterns and/or choosing an

appropriate pathogen transmission law. Namely, an appropriate combination of the

previous factors may allow epidemics to globally persist whether at local level (that

is, in absence of migrations) the contrary was expected, and conversely. For

instance, let us consider an homogeneous environment. Compared to the local

reproductive numbers, the global reproductive number is smaller for the mass action

law and larger for the frequency dependent law. Then, the outcome of the model can

be completely different depending on how transmission in modeled. Summing up,

we have achieved the proposed aims.
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Our results point out fast periodic migrations as a suitable mechanism for

promoting disease eradication/endemicity. In general, the relation between the

global reproduction numbers and the local ones is sophisticated. Paying attention to

these relations may help to getting knowledge on how individual displacements may

lead to epidemics eradication/persistence. In particular, once the local epidemio-

logical and demographic parameters are estimated, a control of epidemics can be

considered by an adequate management of individual displacements.

Considering just periodic fast migrations with respect to the dynamics of the

epidemics, the present model could be quite easily extended to a series of N [ 2

patches using aggregation methods. It would also be very interesting to study the

effects of the migration connection graph for infected as well as susceptible

individuals on the global dynamics of the epidemics, leading either to eradication or

to an endemic situation.

We also believe that these models could be applied to some concrete epidemics

in an heterogeneous environment which can be represented by a set of patches

connected by fast migrations and we expect to achieve this goal in a future

contribution.
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Appendix 1: Quasistatic-State Approximation for Nonlinear Initial-Value
Problems

We summarize here the results on quasistatic-state approximation for nonlinear

initial-value problems, due to Hoppensteadt (1966, 1993, 2010), that allow to extend

aggregation methods, see Auger et al. (2008a, b), to some two time scales

nonautonomous systems of ordinary differential equations, in particular to system (1).

We consider the initial-value problem

e dx
dt ¼ f ðt; x; y; eÞ; xðt0Þ ¼ g0;

dy
dt ¼ gðt; x; y; eÞ; yðt0Þ ¼ n0;

�

ð18Þ

where x 2 R
n; y 2 R

m and e is a small positive parameter. We define the domain

X̂ ¼ I � X� ½0; e0� where I ¼ ft : t0� t� T �1g;X ¼ BR � BR0 ;BR ¼ fx 2 R
n :

jxj �Rg;BR0 ¼ fy 2 R
m : jyj �R0g; and e0 is a fixed constant. In what follows, the

balls BR and BR’ can be replaced by any sets that are diffeomorphic to them.

Hypothesis H1 Functions f and g are C2ðX̂Þ and any solution of the system (18)

beginning in BR 9 BR’ remains there for t 2 IT

Setting e ¼ 0 in (18) we obtain the so-called reduced problem:

0 ¼ f ðt; x; y; 0Þ;
dy
dt ¼ gðt; x; y; 0Þ; yðt0Þ ¼ n0:

�

ð19Þ

Hypothesis H2 There is a function x ¼ Uðt; yÞ such that f ðt;Uðt; yÞ; y; 0Þ ¼ 0 for

t 2 IT and y 2 BR0 : Moreover U 2 C2ðIT � BR0 Þ and detðfxðt;Uðt; yÞ; y; 0ÞÞ 6¼ 0 for
ðt; yÞ 2 IT � BR0 :
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Hypothesis H3 The system of equations

dX

ds
¼ f ða;X; b; 0Þ ð20Þ

has X ¼ Uða; bÞ as an equilibrium for each ða; bÞ 2 IT � BR0 that it is asymptoti-
cally stable uniformly in the parameters ða; bÞ 2 IT � BR0 ; and the initial condition
g0 is in the domain of attraction of the equilibrium Uðt0; n0Þ for system (20) with
a = t0 and b = n0.

Hypothesis H4 The system of equations

dy0

dt
¼ gðt;Uðt; y0Þ; y0; 0Þ ð21Þ

has a solution for t0� t\1; say y*(t), that it is uniformly asymptotically stable and
n0 is in the domain of attraction of y*(t).

Theorem 2 Let hypothesis H1, H2, H3 and H4 be satisfied and let y0(t) be the
solution of 21 for y0(t) = n0. Then, for sufficiently small values of e the solution of
problem (18), (x(t), y(t)), exists for t0� t\1 and it satisfies

xðtÞ ¼ Uðt; y0ðtÞÞ þ oð1Þ; yðtÞ ¼ y0ðtÞ þ oð1Þ

as e! 0þ uniformly on any interval of the form t0\t1� t\1:

Appendix 2: Approximate Aggregation Methods: Nonautonomous Case

System (1) belongs to a class of two time scales systems of the form

e
dn

dt
¼ f ðt; nÞ þ esðt; nÞ; ð22Þ

with n 2 R
m
þ and where f and s represent the fast and slow dynamics, respectively.

This kind of systems with f and s not depending on t have been extensively

studied and applied to different biological models, see Auger et al. (2008a, b) for

recent reviews, using approximate aggregation methods. The first step in applying

these methods is to transform the system into slow-fast form by means of an

appropriate change of variables. To reproduce this step with the nonautonomous

system (22) we assume that it exists a change of variables n 2 R
m ! ðx; yÞ 2

R
m�q � R

q that yields the following system:

e dx
dt ¼ Fðt; x; yÞ þ eHðt; x; yÞ;

dy
dt ¼ Gðt; x; yÞ;

�

ð23Þ

where x and y stand for the fast and the slow variables, respectively. It is not always

easy to find the appropriate transformation leading to the slow-fast form (23) of

system (22). Nevertheless, in some applications, the context gives a natural way to

define the slow variables, also called global variables, which are the key of the

transformation. In system (1) the obvious candidates for slow variables are the total
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number of susceptible and of infected individuals, which are kept constant by fast

dynamics (movements among patches) and so they evolve at the slow time scale.

The autonomous case of the slow-fast system (23) is reduced by means of

Fenichel center manifold theorems (Auger et al. 2008a, b). The asymptotic behavior

of the complete initial system is then studied with the help of a reduced system for

the global variables called aggregated system. Here, for the nonautonomous case,

we notice that system (23) is a particular case of system (18) taking

f ðt; x; y; eÞ ¼ Fðt; x; yÞ þ eHðt; x; yÞ and gðt; x; y; eÞ ¼ Gðt; x; yÞ

so we are using the Hoppensteadt results summarized in Theorem 2. System (21)

plays a similar role to the aggregated system of the nonautonomous case in the sense

that some features of its asymptotic behavior can be translated in terms of system

(23) asymptotic behavior via Theorem 2.
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