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Mathematical models used in ecology often inherit the complexity found in nature and
thus are governed by a large number of variables. Aggregation of variables methods is
used to make such models mathematically tractable by building an approximate system
governing fewer variables. We extend here aggregation methods for linear discrete
models with processes occurring at different time scales. In practical cases, some
processes that occur at a fast time scale are often only measured at a slow time scale,
like mortality. We present a general class of models with two time scales involving
such kind of processes. We show how they should be re-scaled in order to be taken into
account at the fast time scale in a more realistic approach. The approximate aggregation
of these models is undertaken and justified in mathematical terms. We also provide an
application to a model of a structured population in a two-patch environment.

Keywords: aggregation of variables; time scales; population dynamics; linear discrete
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1. Introduction

The representation of complex ecological systems by means of mathematical models

makes the latter to be also complex and thus requiring some reduction to be

mathematically tractable. This complexity arises from the fact that observations and model

predictions are all related to a certain scale and a detailed model necessarily includes

several different scales. To avoid incompatibility of ecological data and to translate model

processes from one to another scale, we need transferring information between scales,

what is called scaling. Hierarchy theory provides the conceptual framework of how the

involved processes and components interrelate and how they can be ordered [10,16].

It deals with a ranking of levels, each consisting of interacting entities with their own

dynamics, being the strength of the interactions among the entities, expressed by the size

of process rates, what is most helpful for scaling issues. The entities of a given level with

strong or fast interactions can be grouped giving rise to the entities at next level. In this

context, the process of up-scaling consists in deriving aggregated variables and their

dynamics from the lower level.

From a mathematical point of view, aggregation of variables was introduced in the

field of economics and was made prevalent in ecology in Ref. [8]. The concept was further

extended to approximated aggregation in Ref. [9]. Approximate aggregation techniques
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have been widely studied in the context of models with different time scales, see the

reviews in Refs. [1,2]. In this work, we are interested in linear discrete models. In Refs.

[3,13–15], linear discrete models with two time scales are studied. The models include

two processes acting at different time scales and the analysis makes profit of the fast

process (strong interactions) to find the global (aggregated) variables and build up the

reduced system governing approximately their dynamics. It is proved that the elements

defining the asymptotic behaviour of the complete and the aggregated systems are equal up

to a certain order. In Ref. [3], the time unit of the complete system is the one associated

with the fast dynamics, while in Ref. [13], it is the one corresponding to the slow process.

In the construction of a discrete model with two time scales, it is not always possible to

choose as time unit the fast one because it may happen that during a fast time unit, the

action of the slow process is not describable while, on the other hand, if the system is

expressed in the slow time unit, the fast process can be represented by letting it act a

number k of times reflecting the ratio between time scales. If we represent the slow process

by matrix S and the fast process by matrix F, then the matrix of the complete system is

SF k. This generic form has been used to model the dynamics of an age or stage-structured

population inhabiting a patchy environment, e.g. multi-regional Leslie models (trouts in a

river network in Ref. [5], insects in Brittany landscape in Ref. [12]) where matrix F

corresponds to the migration process and gathers dispersal matrices for every age class,

and matrix S that places together the patch-specific survival and migration rates of a

classical Leslie matrix for each patch. It is further assumed that migration is fast in

comparison to local demographic processes (reproduction, mortality and ageing) which

can happen once a year while individuals could migrate from one to another patch

every week. By supposing that k tends to infinity, i.e. the fast dynamics is instantaneous

with respect to the slow one, the model reduces to a classical Leslie model with the

equilibria of the migration process reflected in its parameters. In Ref. [13], it is proved that

the eigen-elements defining the asymptotic behaviour of the complete system can be

approximated from the corresponding elements of the aggregated system.

A drawback of the described slow–fast multi-regional Leslie model is that it may be

unrealistic in some ecological situations. It is assumed that individuals at first perform a

series of k dispersal events, and then reproduction and survival occur according to the

arrival patch, that is, individuals move frequently from patch to patch but nothing happens

concerning reproduction or mortality meanwhile. Though the assumption is realistic for

reproduction, because discrete models are mainly used for species having offspring once

every time unit, it is not so in the case of mortality, since individuals may die at any time

with different survival rates playing a role. It is more realistic to take into account survival

together with migration at the fast time scale and reproduction and ageing at the slow time

scale. Let L and M be the matrices representing the demographic and migration processes,

respectively. The matrix associated to the described slow–fast multi-regional Leslie

model is LM k. If we write L ¼ RS where R is a matrix representing ageing and

reproduction and S is survival, the more realistic model that we propose has the following

associated matrix: RðS1=kMÞk. Because a survival matrix is usually a diagonal matrix, we

have denoted S 1/k the diagonal matrix whose diagonal elements are the fractional powers

of the diagonal elements of S for a better understanding. We have re-scaled survival to fit

at the fast scale in the form S1=k.

The aim of this work is to extend the results in Ref. [13] to a larger class of models

encompassing situations where it is needed to re-scale a part of the slow process at the fast

scale. In general, the aggregation of a system consists in defining a small number of global

variables, functions of all state variables and to derive a system describing their dynamics.
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A linear discrete system can be perfectly aggregated whenever the associated matrix of

order N can be written as the product of two matrices of dimensions N £ q and q £ N,

respectively, with q , N. If this is the case, a new system with q variables can be defined

and the dynamics of both systems can be obtained from each other. We are interested in

approximate aggregation and so, from an abstract point of view, we are treating linear

discrete systems which are closed to systems that admit perfect aggregation. Section 2

includes the presentation of a general reducible linear discrete system, defined by means of

a sequence of matrices whose limit when k tends to infinity admits perfect aggregation,

together with the construction of its aggregated system and the relationship between their

corresponding asymptotic elements. In Section 3, we apply the general framework of

Section 2 to a linear discrete population model whose dynamics is driven by two

processes, slow and fast, whose corresponding characteristic time scales are very different

from each other. It is also presented as a particular case a model that includes the situations

where we have to re-scale a part of the slow process at the fast scale. Section 4 illustrates

this latter case applying the aggregation method to a simple model of a population

structured into juvenile and adult classes and migrating between two patches. After the

conclusions, there is an appendix where a nice result is proved on the convergence of a

matrix sequence which shows that the general method applies to the models presented at

the end of Section 3 and in Section 4.

2. Reducible linear discrete population models

In this section, we present a general discrete population model, let us call it complete

model, which will be susceptible to being reduced.

The model evolves in discrete time and is defined by a convergent sequence of

non-negative matrices Hk [ RN£N
þ , with k [ N. Denoting by Xk;n ¼ ðx1k;n; . . . ; xN

k;nÞ [ RN

the vector of state variables at time n, the complete system is defined by

Xk;nþ1 ¼ HkXk;n: ð1Þ

In order to reduce the system (1), we will suppose that k is large enough and we impose

some conditions which are specified in the two following hypotheses:

Hypothesis 2.1. There exists a matrix �H which is the limit of Hk

lim
k!1

Hk ¼ �H:

In the second hypothesis, we use the concept of allowability of a non-negative matrix

in Ref. [17]. A non-negative matrix is called row allowable (column allowable) if it has, at

least, one positive entry in each row (column).

Hypothesis 2.2. There exist q [ N, q , N, and two non-negative matrices G [ Rq£N
þ

column allowable and D [ RN£q
þ row allowable such that �H can be expressed as

�H ¼ DG:

In what follows, we suppose that Hypotheses 2.1 and 2.2 are met. Hypothesis 2.2 is

usually met when dealing with iterations of primitive stochastic matrices. In that case, the

Perron–Frobenius theorem is useful to determine the decomposition of matrix �H.

Journal of Difference Equations and Applications 623
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Then, we proceed to reduce system (1) in two steps. First, we define the so-called

auxiliary system which approximates (1) when k !1. Denoting its vector of variables at

time n by Xn, this auxiliary system reads

Xnþ1 ¼ �HXn ¼ DGXn: ð2Þ

Secondly, we define the so-called global variables, which will play the role of state

variables of the reduced, or aggregated, system

Yn U GXn [ Rq:

Multiplying both sides of (2) by G, we obtain

Ynþ1 ¼ GXnþ1 ¼ GDGXn ¼ GDYn;

which is the linear discrete system for the global variables Yn that we use as approximation

of system (1). Defining A ¼ GD, the aggregated system reads

Ynþ1 ¼ AYn: ð3Þ

Notice that, through the previous procedure, we have constructed an approximation of

(1) that allows us to reduce a system with N variables to a new system with q variables. In

most practical applications, q will be much smaller than N.

2.1 Relationships between the complete and the aggregated system

This section is devoted to the study of the relationships between the aggregated (3) and the

original (1) systems. We will start relating the spectral properties of matrices �H and A,

associated to auxiliary (2) and aggregated (3) systems, and then we will compare the

elements governing the asymptotic behaviours of complete (1) and auxiliary (2) systems

by considering matrix Hk as a perturbation of matrix �H.

Let us notice first that the relationship between the auxiliary and the aggregated

systems is an example of perfect aggregation in the sense of Ref. [8]. To be precise, if

{Xn}n[N is the solution of auxiliary system (2) associated to the initial condition X0

and {Yn}n[N the solution of aggregated system (3) for Y0 ¼ G X0, then they verify

Xn ¼ DYn21 and Yn ¼ GXn.

To compare the asymptotic behaviour of the auxiliary and the aggregated systems, we

assume that matrix A of the aggregated system is primitive, what implies, theorem of

Perron–Frobenius [17], that there exists lA . 0 which is its strictly dominant eigenvalue,

with corresponding positive right column eigenvector vA and positive left row eigenvector

uA. These eigen-elements characterize the asymptotic behaviour of the aggregated system

(3) in the following sense: for every initial state, we have that, in the long term, the

population size grows exponentially at a rate lA, the population reaches a stable structure

given by the vector vA, and the reproductive values [4] associated to the different

population classes or stages are given by vector uA.

We can now establish in the following theorem the relationship of the eigen-elements

characterizing the asymptotic behaviour in the auxiliary and the aggregated systems.

Proposition 2.3. If matrix A is primitive then

(1) Matrix �H is also primitive and lA is its strictly dominant eigenvalue.

(2) Vector v �H ¼ DvA is a positive right column eigenvector of �H associated to lA.

(3) Vector u �H ¼ uAG is a positive left row eigenvector of �H associated to lA.

T. Nguyen-Huu et al.624
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Proof.

(1) A primitive implies (Ref. [7], Theorem 8.5.2) that there exists a p [ N such that

Ap . 0. We have now that ð �HÞpþ1 ¼ DA pG is positive due to Hypothesis 2.2 and

so �H is primitive.

Once we prove that lA is an eigenvalue of �H with a positive associated

eigenvector, Corollary 8.1.30 in Ref. [7] implies that lA ¼ rð �HÞ and thus its

strictly dominant eigenvalue.

(2) Matrix D being row allowable (Hypothesis 2.2) ensures that v �H ¼ DvA is positive

and to show that it is an eigenvector associated to lA:

�Hv �H ¼ DGDvA ¼ DAvA ¼ DlAvA ¼ lAv �H:

(3) Matrix G being column allowable (Hypothesis 2.2) ensures that u �H ¼ uAG . 0

and we also have

u �H
�H ¼ uAGDG ¼ uAAG ¼ lAuAG ¼ lAu �H;

i.e. u �H is a left row eigenvector of �H associated to lA.

A

Matrix Hk of the complete system can be considered as a perturbation of matrix �H of

the auxiliary system

Hk ¼ �H þ ðHk 2 �HÞ; ð4Þ

where matrix Hk 2 �H converges to zero as k tends to infinity (Hypothesis 2.1). Therefore,

the higher the value of k, the closer are the eigenvalues and eigenvectors of Hk and �H.

Thus, if k is large enough we know about the asymptotic behaviour of the complete

system from that of the auxiliary one and, through Proposition 2.3, from that of the

aggregated one.

Theorem 2.4. Suppose that Hypotheses 2.1 and 2.2 are verified, and that matrix A of the

aggregated system (3) is primitive, lA being its strictly dominant eigenvalue, and vA and

uA its corresponding positive right column and left row eigenvectors, respectively. Then,

we can conclude that, for k large enough, matrix Hk of the complete system (1) is primitive

and, for k !1 and any consistent norm k·k, its strictly dominant eigenvalue lHk
, and its

corresponding positive right column and left row eigenvectors vHk
and uHk

verify:

(1) lHk
¼ lA þ uAGðHk2 �HÞDvA

lAuAvA
þ OðkHk 2 �Hk

2
Þ:

(2) vHk
¼ DvA þ OðkHk 2 �HkÞ:

(3) uHk
¼ uAG þ OðkHk 2 �HkÞ:

Proof. Proposition 2.3 establishes the primitivity of matrix �H that together with Hypothesis

2.1 implies that, for k large enough, matrix Hk has, at least, the same positive entries that �H

and so that it is also primitive (Ref. [7], Theorem 8.5.3).

The rest of the proof is a direct consequence of Proposition 2.3, considering Hk a

perturbation of �H, (4), and using the results on matrix perturbations in Ref. [18] (pp. 183

and 240). A
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We have shown that we can get essential information about the asymptotic behaviour

of the complete system (growth rate, stable distribution and reproductive values) through

the study of the aggregated system.

3. Linear discrete population models with two time scales

In this section, we apply the general framework of Section 2 to a linear discrete population

model whose dynamics is driven by two processes, slow and fast, whose corresponding

characteristic time scales are very different from each other. The population considered is

divided into q groups, and each group i (i ¼ 1; . . . ; q) divided into N i subgroups, with

N ¼ N 1 þ · · ·þ N q. This population structure, as we will see below, is directly related to

the two different processes and their different associated time scales. We represent the

state of the population at time n by vector Xn U ðx1n; . . . ; x
q
nÞ

T [ RN
þ, where T denotes

transposition. Every vector xi
n U ðxi1

n ; . . . ; xiN i

n Þ [ RN i

þ represents the state of the i group.

The slow process is defined by the non-negative projection matrix S [ RN£N
þ , which

we consider divided into blocks Sij; 1 # i; j # q. We have then

S ¼

S11 S12 · · · S1q

S21 S22 · · · S2q

..

. ..
. . .

. ..
.

Sq1 Sq2 · · · Sqq

2
666664

3
777775;

where each block Sij ¼ ½Sml
ij � has dimensions Ni £ Nj and characterizes the rates of

transference of individuals from the subgroups of group j to those of group i. More

specifically, for each m ¼ 1; 2; . . . ;Ni and each l ¼ 1; 2; . . . ;Nj, Sml
ij represents the rate of

transference of individuals, due to the slow process, from subgroup l of group j to

subgroup m of group i throughout a slow time unit.

We assume fast process to be internal for each group i (i ¼ 1; . . . ; q). Individuals

interact strongly among the subgroups of the same group while these interactions are

weaker with individuals in other groups. For each group i, the fast process is defined by a

sequence of non-negative matrices Fi;k [ RNi£Ni

þ with k [ N, where k represents the ratio

of the slow to the fast time scale and Fi;k the projection matrix through a fast time unit for

the specific k and the group i. The fast process for the whole population is then defined by

the sequence of block-diagonal matrices Fk ¼ diag{F1;k; . . . ;Fq;k} [ RN£N
þ .

We choose as time step of the complete model that corresponding to the slow

dynamics and in order to approximate the effect of the fast process over a time interval

much larger than its own, we assume that during this time step the fast process acts k times

before the slow process acts, where k in applications will take a large value. Therefore, the

complete system is defined by

Xk;nþ1 ¼ SðFkÞ
kXk;n; ð5Þ

where ðFkÞ
k denotes the k-power of matrix Fk.

In order to meet Hypotheses 2.1 and 2.2, we make the following assumptions.

Hypothesis 3.1. Fast process: for every i (i ¼ 1; . . . ; q), there exists a matrix �Fi ¼

limk!1ðFi;kÞ
k and two positive matrices Gi [ R1£Ni

þ and Ei [ RNi£1
þ such that �Fi ¼ EiGi.

Slow process: for every i (i ¼ 1; . . . ; q), matrix Sii is row allowable.

We denote �F ¼ diag{ �F1; . . . ; �Fq} [ RN£N
þ , G ¼ diag{G1; . . . ;Gq} [ Rq£N

þ and E ¼

diag{E1; . . . ;Eq} [ RN£q
þ . Then, we have limk!1ðFkÞ

k ¼ �F ¼ EG.

T. Nguyen-Huu et al.626
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Assuming Hypothesis 3.1, we follow the development of Section 2 in the particular

case of system (5) where Hk ¼ SðFkÞ
k, �H ¼ S �F and D ¼ SE. The auxiliary system is

Xnþ1 ¼ S �FXn ¼ SEGXn and we define the global variables

Yn ¼ ðY1;n; . . . ; Yq;nÞ U ðG1x
1
n; . . . ;Gqx

q
nÞ ¼ GXn: ð6Þ

The fast process, apart from being internal for each group, attains an equilibrium which for

an initial distribution among its subgroups xi
0 is �Fix

i
0 where we can notice that this

equilibrium, �Fix
i
0 ¼ EiGix

i
0, depends on initial conditions only through the value of the

associated global variable Gix
i
0.

The aggregated system, denoting �S ¼ GSE, reads

Ynþ1 ¼ �SYn: ð7Þ

Finally, as a direct consequence of Theorem 2.4, we obtain the following result that

allows us to study the asymptotic behaviour of system (5) by means of the aggregated

system (7).

Proposition 3.2. Suppose that Hypothesis 3.1 is verified, and that matrix �S of the

aggregated system (7) is primitive, its strictly dominant eigenvalue being l�S, and v �S and u �S

its corresponding positive right column and left row eigenvectors, respectively. Then, we

can conclude that, for k large enough, matrix SðFkÞ
k of the complete system (5) is primitive

and, for k !1 and any consistent norm k·k, its strictly dominant eigenvalue lSðFkÞ
k , and its

corresponding positive right column and left row eigenvectors vSðFkÞ
k and uSðFkÞ

k verify

(1) lSðFkÞ
k ¼ l�S þ

u �SGSððFkÞ
k2 �FÞSEv �S

l�Su �Sv �S
þ OðkðFkÞ

k 2 �Fk
2
Þ:

(2) vSðFkÞ
k ¼ SEv �S þ OðkðFkÞ

k 2 �FkÞ:

(3) uSðFkÞ
k ¼ u �SG þ OðkðFkÞ

k 2 �FkÞ:

We propose in the sequel, a particular case of fast dynamics for which Hypothesis 3.1

is met. We suppose, for every i ¼ 1; . . . ; q, that matrix Fi;k is the product of two matrices:

Fi;k ¼ Di;kMi: ð8Þ

Matrices Di;k are defined from a non-singular matrix Di of order N i as

Di;k ¼ expðð1=kÞD0
iÞ, where D0

i is a matrix such that expðD0
iÞ ¼ Di. Matrix Mi is a

primitive matrix of order N i whose strictly dominant eigenvalue is 1 with a positive

left-associated eigenvector, row vector ui ¼ ðui;1; . . . ; ui;N iÞ and a positive right-

associated eigenvector, column vector vi ¼ ðvi;1; . . . ; vi;N iÞT verifying ui·vi ¼ 1. Now,

Theorem A.1 (see Appendix) applies and we have

lim
k!1

ðDi;kMiÞ
k ¼ giviui with gi ¼ expðuiD

0
iviÞ

and

kðDi;kMiÞ
k 2 giviuik ¼ O

1

k

� �
:

Therefore, calling �Fi ¼ limk!1ðDi;kMiÞ
k, Gi ¼ ui and Ei ¼ givi, we see that Hypothesis

3.1 is met and that we can estimate the convergence in Proposition (3.2) in terms of 1/k

kðFkÞ
k 2 �Fk ¼ O

1

k

� �
: ð9Þ

Journal of Difference Equations and Applications 627
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We present in Section 4 an application of this case to an age-structured population

inhabiting a multi-patch environment.

4. Application

The model we present in this section includes, on one hand, the most basic life cycle

division [11], the population is structured into two classes: non-reproducing juveniles and

reproducing adults, and, on the other hand, the simplest heterogeneous environment,

which is composed of just two different patches. The demography is defined by the

survival rates of juveniles and adults, the maturation rates of juveniles and the fertility

rates of adults.

For each patch j ( j ¼ 1; 2), let s1j and s2j be the fraction of the juveniles and adults

(respectively) alive at time n that survive to time n þ 1. Also, let mj be the fraction of the

surviving juveniles that mature to become adults. Finally, supposing that reproduction

happens at the end of each period of time ½n; n þ 1Þ, let fj be the number of juveniles

produced by an adult that survive to time n þ 1. The projection matrix corresponding to

patch j thus reads as follows:

s1jð12 mjÞ s2jfj

s1jmj s2j

 !
: ð10Þ

The complete model includes demography together with migrations between patches.

Migrations are considered fast in comparison to demography, and the time unit of the

associated discrete system is the one associated to demography. We consider reproduction

and maturation as processes that happen once at the end of each period of time ½n; n þ 1Þ

but, on the other hand, mortality could happen at any time between n and n þ 1. In order to

take this into account and to combine demography and migrations, which occur k times in

each period of time, we write matrix (10) in the following form:

s1jð12 mjÞ s2jfj

s1jmj s2j

 !
¼

12 mj fj

mj 1

 !
ðs1jÞ

1
k 0

0 ðs2jÞ
1
k

0
B@

1
CA

k

: ð11Þ

We represent the state of the population at time n by vector

Xn U ðx11n ; x12n ; x21n ; x22n ÞT [ R4
þ;

where x1j and x2j denote respectively the density of juveniles and adults in patch j.

The projection matrix of migrations for an interval of time which is 1/k of the one

associated to demography, representing k the ratio between time scales, follows:

12 q1 p1 0 0

q1 12 p1 0 0

0 0 12 q2 p2

0 0 q2 12 p2

0
BBBBB@

1
CCCCCA; ð12Þ

where q1 and p1 represent the proportions of juveniles which leave respectively patches 1

and 2, and q2 and p2 the proportions of adults which leave, respectively, patches 1 and 2.

T. Nguyen-Huu et al.628
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Now putting together demography and migrations and having in mind the order of the

variables in Xn and the decomposition in (11), we propose the following complete model:

Xnþ1 ¼ SðFkÞ
kXn; ð13Þ

where

S ¼

12 m1 0 f1 0

0 12 m2 0 f2

m1 0 1 0

0 m2 0 1

0
BBBBB@

1
CCCCCA

and

Fk ¼

ðs11Þ
1
k 0 0 0

0 ðs12Þ
1
k 0 0

0 0 ðs21Þ
1
k 0

0 0 0 ðs22Þ
1
k

0
BBBBBBB@

1
CCCCCCCA

12 q1 p1 0 0

q1 12 p1 0 0

0 0 12 q2 p2

0 0 q2 12 p2

0
BBBBB@

1
CCCCCA:

Following the notation in (8), we have that

Di;k ¼
ðsi1Þ

1
k 0

0 ðsi2Þ
1
k

0
B@

1
CA and Mi ¼

12 qi pi

qi 12 pi

 !
:

We note then that Di ¼ diag{si1;si2} and so D0
i ¼ diag{lnðsi1Þ; lnðsi2Þ}. Matrices Mi,

provided that pi; qi [ ð0; 1Þ, are stochastic and primitive, and we can choose the

eigenvectors associated to eigenvalue 1 to be

ui ¼ ð1; 1Þ and vi ¼
pi

pi þ qi

;
qi

pi þ qi

� �T

:

We can now calculate

gi ¼ expðuiD
0
iviÞ ¼ ðsi1Þ

pi

piþqi ðsi2Þ
qi

piþqi ;

matrix G ¼ diag{u1; u2} and matrix E ¼ diag{g1v1; g2v2}. The global variables

Yn ¼ ðY1;n; Y2;nÞ ¼ GXn ¼ ðx11n þ x12n ; x21n þ x22n ÞT [ R2
þ

are the total densities of juveniles and adults, respectively, and the resulting aggregated
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system is

Ynþ1 ¼ GSEYn ¼

g1
p1ð12 m1Þ þ q1ð12 m2Þ

p1 þ q1

g2
p2f1 þ q2f2

p2 þ q2

g1
p1m1 þ q1m2

p1 þ q1

g2

0
BBB@

1
CCCAYn: ð14Þ

Proposition 3.2 tells us that the dominant eigen-elements of system (13) can be

approximated from the corresponding eigen-elements of system (14) with a discrepancy

which is, according to expression (9), a Oð1=kÞ. To illustrate the kind of results that one

can deduce, we introduce a simplifying assumption in system (13). We suppose that we are

treating the case of a precocious and iteroparous species, e.g. small mammals and birds,

see Ref. [11], which begin reproducing when a year old and survive and reproduce for

several years. To introduce this assumption into the model, we set m1 ¼ m2 ¼ 1, all

surviving juveniles become adults in a period of time. The projection matrix of the

aggregated system (14) is now

0 g2
p2f1 þ q2f2

p2 þ q2

g1 g2

0
B@

1
CA: ð15Þ

If we calculate n, the inherent net reproductive number of this matrix, see Ref. [6], which

shares with its strictly dominant eigenvalue being larger, equal or less than 1

n ¼
g1g2

12 g2
·
p2f1 þ q2f2

p2 þ q2

:

We obtain (Ref. [6], Theorem 1.1.3) that solutions of the aggregated system grow

exponentially if n . 1 and decay exponentially if n . 1. Via Proposition 3.2 we get, for k

large enough, the same conclusions on the solutions of complete system (13) in the case

m1 ¼ m2 ¼ 1. Though we presented a model with two patches, no added difficulty would

have been met in a similar model with a large number of patches. The aggregated system

together with the conditions on exponential growth or extinction of the population could

have been expressed as simply as in the two patches case.

5. Discussion

In the present work, we have introduced a very general class of linear discrete models that

admit an approximate reduction. We have extended previous works [3,13,14] on

aggregation methods by showing how the aggregated model is built and how the

asymptotic behaviour of the original model can be studied through it.

When there are two processes acting at different time scales that should be gathered in

a single discrete model, there is a decision to make on the time unit to use. If we use the

fast time scale, then we face the problem of describing the action of the slow process along

a time unit much smaller than its own. This problem is, in many situations, unsolvable

because there are many discrete processes that have no sense if observed at time intervals

different from the ones they are naturally associated to. On the other hand, the choice

of the slow time scale avoids this problem because we just need to let the fast process act
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a number of times approximating the ratio between time scales in order to describe its

action through a slow time unit.

Discrete models in population dynamics involving two time scales use to classify

processes as those which occur at slow time scale and those which occur at fast time scale.

Nevertheless, some processes such as mortality, predation and others, which are often

measured at slow time scale, act almost continuously and thus should be better considered

as occurring at fast time scale. For this kind of processes, we have shown how to express

their actions on a much shorter interval of time by performing a sort of kth root of their

known actions, whenever this has sense as in the proposed application in Section 4 with

mortality. Once the originally slow process has been re-scaled to the fast time scale, the

conditions on fast dynamics that allow the reduction of the model change with respect to

those appearing in previous works. In Section 2, we have proposed these conditions in

their most abstract setting Hypotheses 2.1 and 2.2. We have shown how to build the

aggregated model and determined its asymptotic relationship with the original model.

Section 3 particularizes the general setting of Section 2 so that models with two time

scales, which appear in previous works, are included and the option of re-scaling some of

the considered slow processes is also admitted.

We have illustrated the results in Section 3 with an example in Section 4 that

emphasizes the fact that mortality is measured at slow time scale but represented in the

model at fast time scale. Even a simple application like the one proposed shows that

aggregation methods provide analytic results that could not be obtained otherwise just by

working with the complete model.

Further methodological studies should consider cases where Hypothesis 2.1 is

generalized. An important case where Hypothesis 2.1 fails to be met is the case where

migration matrices are not primitive, leading to cycles at fast time scale. These kinds of

matrices appear in seasonal migrations. A real world application is planned for a

spatially explicit population dynamics model of the species Abax parallelepipedus in

Brittany landscape, for which the spatial dimension has only been considered implicitly

in Ref. [12].
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Appendix A. The convergence of a matrix sequence

. Let M be a non-negative matrix of order n, primitive and whose strictly dominant

eigenvalue is 1.

The Perron–Frobenius theorem yields that eigenvalue 1 is simple, has a positive

left-associated eigenvector, row vector u ¼ ðu1; . . . ; unÞ, uM ¼ u, and a positive

right-associated eigenvector, column vector v ¼ ðv1; . . . ; vnÞ
T, Mv ¼ v, which can

be chosen to verify u·v ¼ 1. In this case, the limit of the powers of matrix M exists,

we call it �M, and can be expressed in terms of u and v, �M ¼ limk!1M k ¼ vu.

Matrix �M represents the eigenprojection associated to 1, so

M �M ¼ �MM ¼ �M �M ¼ �M: ðA1Þ

and also matrix M 2 �M has the same eigenvalues than M except that 1 is substituted

by 0, therefore its spectral radius verifies rðM 2 �MÞ , 1 and thus there exists a

norm k·k in Rn such that for the associated matrix norm in Rn£n, jk·jk, holds

jkM 2 �Mjk , r , 1 and jkMjk ¼ 1: ðA2Þ

. Let D be a non-singular matrix of order n and D0 a matrix such that expðD0Þ ¼ D,

then let us define matrices Dk ¼ expðð1=kÞD0Þ.

Matrix Dk can be written as

Dk ¼ I þ Pk with jkPkjk ¼ O
1

k

� �
ðA3Þ

and as

Dk ¼ I þ
1

k
D0 þ Nk with jkNkjk ¼ O

1

k 2

� �
: ðA4Þ
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Matrix dD, for d . 0, verifies dD ¼ expðD0 þ ðlog dÞIÞ, and so we denote

ðdDÞ0 ¼ D0 þ ðlog dÞI and ðdDÞk ¼ exp
1

k
ðD0 þ ðlog dÞIÞ

� �
:

We then have for any k ¼ 0; 1; 2; . . . :

ðdDÞk ¼ exp
1

k
D0

� �
exp

1

k
log d

� �
I

� �
¼ d

1
k Dk: ðA5Þ

Theorem A.1. Let M and D be matrices as described previously. Then,

lim
k!1

ðDkMÞk ¼ lim
k!1

ðMDkÞ
k ¼ g �M;

with g ¼ expðuD0vÞ, and, furthermore, kðMDkÞ
k 2 g �Mk ¼ Oð1=kÞ and kðDkMÞk 2

g �Mk ¼ Oð1=kÞ.

Proof. The facts that ðDkMÞk ¼ DkðMDkÞ
kðDkÞ

21 and limk!1Dk ¼ limk!1ðDkÞ
21 ¼ I

yield that limk!1ðDkMÞk ¼ limk!1ðMDkÞ
k, so we just need to prove, by the equivalence

of norms, that

jkðMDkÞ
k 2 g �Mjk ¼ O

1

k

� �
; ðA6Þ

which is equivalent to kðDkMÞk 2 g �Mk ¼ Oð1=kÞ.

If we prove (A6) for matrix dD, for any d . 0, we will have it also proved for D

because, on the one hand,

ðMðdDÞkÞ
k ¼ M exp

1

k
ðD0 þ ðlog dÞIÞ

� �� �k

¼ M exp
1

k
log d

� �
exp

1

k
D0

� �� �k

¼ dðMDkÞ
k;

and, on the other hand, calling gdD to constant g for matrix dD, we have

gdD ¼ expðuðD0 þ ðlog dÞIÞvÞ ¼ expðuD0vþ log dÞ ¼ dg:

If we take d ¼ expð2jkD0jkÞ we find, using (A5), that for every k,

jkðdDÞkjk ¼ jkd
1
k Dkjk ¼ d

1
kjkexpð1

k
D0Þjk # expð2 1

k
jkD0jkÞexpðjk 1

k
D0jkÞ ¼ 1:

So, we can assume, without loss of generality, that matrix D verifies jkDkkj # 1 and

together with (A2) we obtain that

jkðMDkÞ
ijk # 1 for every i; k [ N: ðA7Þ
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Now, we decompose ðMDkÞ
i using projector �M,

ðMDkÞ
i ¼ �MðMDkÞ

i þ ðI 2 �MÞðMDkÞ
i: ðA8Þ

First, we prove that jkðI 2 �MÞðMDkÞ
kjk ¼ Oð1=kÞ,

ðI 2 �MÞðMDkÞ
iþ1 ¼ ðI 2 �MÞMDkðMDkÞ

i ¼ ðI 2 �MÞMDkð �MðMDkÞ
i þ ðI 2 �MÞðMDkÞ

iÞ

using equalities (A1) and (A3), we get

ðI 2 �MÞðMDkÞ
iþ1 ¼ ðM 2 �MÞPk

�MðMDkÞ
i þ ðM 2 �MÞDkðI 2 �MÞðMDkÞ

i:

Denoting wi
k ¼ jkðI 2 �MÞðMDkÞ

ijk and using (A2) and (A7), we obtain the following

inequality:

wiþ1
k # rjkPkjk jk �Mjk þ rwi

k; ðA9Þ

which yields

wi
k # r iw0

k þ jkPkjk jk �Mjk
Xi

j¼1

r j # r iw0
k þ jkPkjk

jk �Mjkr

12 r
: ðA10Þ

In particular,

wk
k # r kw0

k þ jkPkjk
jk �Mjkr

12 r
¼ O

1

k

� �
:

Second, we prove that jk �MðMDkÞ
k 2 ð1þ ð1=kÞðuD0vÞÞk �Mjk ¼ Oð1=kÞ,

�MðMDkÞ
iþ1 ¼ �MMDkðMDkÞ

i and using (A8) and (A4), we get

�MðMDkÞ
iþ1 ¼ �MðI þ ð1=kÞD0 þ NkÞð �MðMDkÞ

i þ ðI 2 �MÞðMDkÞ
iÞ;

and having in mind that �MD0 �M ¼ ðuD0vÞ �M and (A1), we deduce that

�MðMDkÞ
iþ1 ¼ 1þ

1

k
ðuD0vÞ

� �
�MðMDkÞ

i þ
1

k
�MD0ðI 2 �MÞðMDkÞ

i þ �MNkðMDkÞ
i;

thus by induction, we obtain

�MðMDkÞ
k ¼ 1þ

1

k
ðuD0vÞ

� �k

�M

þ
Xk21

j¼0

1þ
1

k
ðuD0vÞ

� �j
1

k
�MD0ðI 2 �MÞðMDkÞ

k212j þ �MNkðMDkÞ
k212j

� �
:

So, we need to prove that

Xk21

j¼0

1þ
1

k
ðuD0vÞ

� �j
1

k
�MD0ðI 2 �MÞðMDkÞ

k212j þ �MNkðMDkÞ
k212j

� ������
�����

�����
����� ¼ O

1

k

� �
:
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From (A10), we get

Xk

i¼0

wi
k #

Xk

i¼0

r iw0
k þ

Xk

i¼0

jkPkjk
jk �Mjkr

12 r
#

w0
k

12 r
þ

jk �Mjkr

12 r
kjkPkjk # B , 1

and, using (A4) and (A7), we finally have

Xk21

j¼0

1þ
1

k
ðuD0vÞ

� �j
1

k
�MD0ðI 2 �MÞðMDkÞ

k212j þ �MNkðMDkÞ
k212j

� ������
�����

�����
�����

# expð1þ juD0vjÞ
1

k
jk �MD0jk

Xk21

j¼0

w
k212j
k þ jk �Mjk jkNkjk

Xk21

j¼0

jkðMDkÞ
k212jjk

 !

# expð1þ juD0vjÞ
1

k
jk �MD0jkB þ jk �Mjk jkNkjkk

� �
¼ O

1

k

� �
:

To finish the proof

jkðMDkÞ
k 2 g �Mjk ¼ jk �MðMDkÞ

k þ ðI 2 �MÞðMDkÞ
k 2 g �Mjk

# jkðI 2 �MÞðMDkÞ
kjk þ �MðMDkÞ

k 2 1þ
1

k
ðuD0vÞ

� �k

�M

�����
�����

�����
�����

þ 1þ
1

k
ðuD0vÞ

� �k

2expðuD0vÞ

�����
�����jk �Mjk ¼ O

1

k

� �
:

A

Journal of Difference Equations and Applications 635

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
d
e
 
l
a
 
P
a
r
r
a
,
 
R
 
B
r
a
v
o
]
 
A
t
:
 
1
4
:
5
0
 
2
8
 
M
a
r
c
h
 
2
0
1
1


