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8871 Alcalá de Henares, Spain.

ail address: rafael.bravo@uah.es (R.B. de la Pa
a b s t r a c t

We investigate whether asymmetric fast migration can modify the predictions of classical competition

theory and, in particular revert species dominance. We consider a model of two species competing for

an implicit resource on a habitat divided into two patches. Both patches are connected through constant

migration rates and in each patch local dynamics are driven by a Lotka–Volterra competition system.

Local competition is asymmetric with the same superior competitor in both patches. Migration is

asymmetric, species dependent and fast in comparison to local competitive interactions. The species

and patches are taken to be otherwise similar: in both patches we assume the same carrying capacities

for both species, and the same growth rates and pair-wise competition coefficients for each species.

We show that global dynamics can be described by a classical Lotka–Volterra competition model.

We found that by modifying the ratio of intraspecific migration rates for both species all possible

combinations of global species relative dominance can be achieved. We find specific conditions for

which the local superior competitor is globally excluded. This is to our knowledge the first study

showing that fast asymmetric migration can lead to inferior competitor dominance in a homogeneous

environment. We conclude that disparity of temporal scales between migration and local dynamics

may have important consequences for the maintenance of biodiversity in spatially structured

populations.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Understanding the mechanisms underlying coexistence in
spatially structured habitats (e.g. patchy environments) has been
a central goal in theoretical and conservation ecology (Levins,
1969, 1970; Levin, 1992). One of the most common and simple
theoretical explanation for the coexistence of species in mosaic
habitats is based on the so-called competition-colonization trade-
off. According to this mechanism, poorer competitors can stably
coexist with competitively superior species by means of their
greater colonizing ability. This is, traits linked to colonizing ability
such as migration enable fugitive species to capture available sites
at faster rate than competitors, which favours coexistence in a
heterogeneous environment (e.g. Horn and MacArthur, 1972;
Hasting, 1980).
ll rights reserved.
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The competition-colonization trade-off is the basis of the Patch
Occupancy Metapopulation Theory (POT), a key theoretical frame-
work for exploring population persistence and species coexistence
in fragmented landscapes (Hanski, 1999). Applications of POT have
greatly contributed to bridge the gap between theory and field data
leading to important contributions in conservation ecology (Hanski
and Gilpin, 1997). In the last decade, interest in metapopulation
biology has rapidly increased covering a range of applications from
metapopulation genetics and evolution to landscape ecology or
ecosystem ecology. This development has lead to an accumulation
of increasing empirical evidence on metapopulation dynamics but
has also raised important issues related to the realism of under-
lying biological assumptions.

As any other theoretical formalization, the POT involves a
specific recognition of the temporal scales at which ecological
processes operate, with an explicit separation of within patch and
among patch dynamics. Specifically, POT focuses on the presence
of local populations in habitat patches and it does not include any
description of local dynamics. Also, implicit to POT there is an
assumption that competition operates at a much faster time scale
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than colonization-extinction processes. All these assumptions
preclude in fact local coexistence and imply that migration
cannot influence local competitive interactions. Empirical studies
of migration-competition trade-offs, however, have revealed a
pattern that is at odds with this assumption, chiefly widespread
presence of colonizers species and local coexistence. Amarasekare
and Nisbet (2001) have shown that the mismatch between patch
occupancy theory and data may arise from the separation of time
scales inherent in the patch occupancy framework. Specifically it
has been suggested that migration and competition can operate at
similar temporal time scales and thus colonizing rates may
influence the outcome of local competition.

Mismatches between model assumptions and temporal scales
at which ecological phenomena take place, suggest the need to
revisit POT underlying assumptions to incorporate a more
realistic description of the temporal scales at which key ecological
processes operate. Understanding how ecological phenomena
interact across temporal scales is indeed a key need in theoretical
ecology (O’Neill et al., 1986; Levin, 1992). Specifically differences
in process time scales may be critical for system dynamical
behaviour (Ludwig et al., 1978; Lett et al., 2005).

In this study we investigate whether explicit consideration of a
mismatch of temporal scales between migration and local
dynamics can fundamentally challenge the predictions of classical
metapopulation theory on species coexistence. Specifically we
examine the interplay of local dynamics and migration in a
metapopulation for the specific case in which the migration
process across patches operates at a faster scale relative to local
dynamics. This situation can be found in a range of evolutionary
and ecological processes in which gene flow and migration rate
due to non-sedentary habit can operate at a fast scale relative to
selection or population interaction processes. We develop a
general model of two species inhabiting two separate patches
that are connected through density independent migrations at a
fast time scale. Local within-patch competition is assumed to take
place at a relatively slower time scale and it is represented by a
Lotka–Volterra type competition model.

Previous studies have mainly considered models where they
omit disparity of temporal scales between migration and competi-
tion; and assume symmetric migrations and heterogeneous envir-
onments. For example, Takeuchi (1989) considered symmetric
migrations and proved that the corresponding system can be made
persistent under appropriate diffusion – symmetric migrations –
conditions, even if isolated patches are not persistent. Takeuchi and
Lu (1995) extended these results by finding conditions to ensure the
permanence and global stability of a positive equilibrium. Perma-
nence indicates that if all species are initially present – even in low
abundances – their abundances reach and remain henceforth over a
sizeable threshold. Conditions for migration-mediated coexistence
are also studied in the case of local communities where the source is
explicitly considered, with symmetric migrations for the competing
consumers and no migration for the resource (Abrams and Wilson,
2004; Namba and Hashimoto, 2004) or with also symmetric
migrations for the resource (Namba, 2007).

Amarasekare and Nisbet (2001) considered spatial heterogene-
ity either by allowing for species refuges or by assuming variations
in competitive rankings over space such that the superior
competitor in some parts of the landscape becomes the inferior
competitor in the remnant landscape. So, they establish a source-
sink dynamics framework that yields coexistence due to spatial
variance in fitness. On the other hand, they also show that under a
spatially homogeneous competitive environment – asymmetric
competition – differences in migration cannot explain coexistence
with the absence of an inferior competitor refuge.

In this study we specifically investigate the life-history
trade-off between competitive abilities and migration strategies.
Our main result is that fast asymmetric migration can promote
dominance of poorer competitor even in a homogeneous
environment.

We assume, in contrast with previous studies, that competi-
tion is asymmetric, i.e. the same species are the superior and the
inferior competitors all across the landscape, and also that
migration is asymmetric and occurs on a faster time scale relative
to local dynamics. In order to set a homogeneous environment no
model parameter, apart from migration rates, is space dependent
which allows isolating the relationship between competition
abilities and migration strategies.

The proposed model has the form of a four dimensional, two
species and two patches, ordinary differential equations system
with two time scales. Taking advantage of this last property the
system is reduced into a two dimensional system for the total
densities of the two species. The form of the reduced system is
that of a classical Lotka–Volterra competition model which allows
a complete analytical description of the competition outcome in
terms of general migration rates and competition intensities.
2. Model structure

We consider a model with two species competing for an
implicit resource on a habitat divided into two patches. Let nij(t)
be the density of species i in patch j at time t with i,jA{1;2}.

Both patches are connected through constant migration rates
and we suppose that locally, in each patch, there is a Lotka–
Volterra competitive dynamics.

Species 1 migrates from patch 1 to patch 2 at a rate k and from
patch 2 to patch 1 at a rate k. Similarly, the migration rate of
species 2 from patch 1 to patch 2 is m and from patch 2 to patch 1
is m; so k, k, m and m are constant positive parameters. Migration
rates are asymmetric and, in general, different for each species.

We are interested in a life-history trade-off between compe-
titive abilities and migration strategies. We describe such a trade-
off in terms of competition coefficients and migration rates.

We assume that local competition is asymmetric with species
1 being the superior competitor in both patches. The species and
patches are supposed to be otherwise similar: the same carrying
capacity, K, for both species in both patches, the same growth
rates for each species in both patches, r1 for species 1 and r2 for
species 2, and the same pair-wise competition coefficients, a and
b, in both patches, measuring the competitive effect of species 2
on species 1 and species 1 on species 2, respectively. To ensure
the aforementioned asymmetric competition we assume that
ao1ob.

According to the previous assumptions, the complete model
reads as follows:

dn11

dt ¼ ð�kn11þkn12Þþer1n11 1�
n11

K
�a

n21

K

� �
dn12

dt
¼ ðkn11�kn12Þþer1n12 1�

n12

K
�a

n22

K

� �
dn21

dt
¼ ð�mn21þmn22Þþer2n21 1�b

n11

K
�

n21

K

� �
dn22

dt ¼ ðmn21�mn22Þþer2n22 1�b
n12

K
�

n22

K

� �

8>>>>>>>>>>><
>>>>>>>>>>>:

ð1Þ

To study this system we first apply aggregation methods to
transform it into a reduced system with two ordinary differential
equations governing the dynamics of the global variables: the
total density of species 1, n1(t)¼n11(t)+n12(t), and the total
density of species 2, n2(t)¼n21(t)+n22(t). Both are adequate
candidates to global variables because they are constants of
motion of the migration process, i.e., they keep constant at the
fast time scale. If we forget the competitive interactions, global
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densities will not change but the distribution of each species
between the two patches will evolve and tend towards certain
equilibrium proportions. To calculate them let us suppose fixed
values of n1 and n2 and find the equilibria of the fast part of
system (1). We obtain for species 1

n*
11 ¼

k

kþk
n1 ¼ W1

*n1 and n*
12 ¼

k

kþk
n1 ¼ W2

*n1 ð2Þ

and for species 2

n*
21 ¼

m

mþm
n2 ¼ m1

*n2 and n*
22 ¼

m

mþm
n2 ¼ m2

*n2 ð3Þ

where constants W1
* and W2

* represent the fast equilibrium
proportions of species 1 on each patch while the constants m1

*

and m2
* represent the fast equilibrium proportions of species 2 on

each patch. It is immediate to prove that these equilibria are
stable for fast dynamics.

Now, coming back to the complete model (1), we can write a
system for the two global variables just by adding up the
corresponding equations and substituting the former state
variables by the fast equilibria ((2) and (3)) as follows:

n11 ¼ W*
1n1, n12 ¼ W*

2n1, n21 ¼ m*
1n2 and n22 ¼ m*

2n2

Obtaining the following aggregated system at the slow time
scale:

dn1

dt
¼ r1n1 1�

ðW1
*
Þ
2
þðW2

*
Þ
2

K
n1�a

W1
*m1

*þW2
*m2

*

K
n2

 !

dn2

dt
¼ r2n2 1�b

W1
*m1

*þW2
*m2

*

K
n1�
ðm1

*Þ
2
þðm2

*Þ
2

K
n2

 !
8>>>>><
>>>>>:

ð4Þ

According to aggregation methods (Auger et al., 2008a; 2008b),
we can study the dynamics of the complete system (1) by carrying
out the study of the aggregated model (4) (see Appendix A).

The aggregated model (4) is a classical Lotka–Volterra
competition model (Murray, 2002) and its asymptotic behaviour
is better described by performing the following change of
variables:

u1 ¼ n1
ðW1

*
Þ
2
þðW2

*
Þ
2

K
, y, u2 ¼ n2

ðm1
*Þ

2
þðm2

*Þ
2

K

which yields

du1

dt
¼ r1u1ð1�u1�a12u2Þ

du2

dt
¼ r2u2ð1�a21u1�u2Þ

8>><
>>:
where

a12 ¼ a
W1

*m1
*þW2

*m2
*

ðm1
*Þ

2
þðm2

*Þ
2

and a21 ¼ b
W1

*m1
*þW2

*m2
*

ðW1
*
Þ
2
þðW2

*
Þ
2

ð5Þ

Now, the asymptotic behaviour of the solutions of system (4),
i.e. the long term outcome of competition, is determined by the
positive parameters a12 and a21 being greater or smaller than one
(Murray 2002). If a12o1 (resp. a21o1) then species 1 (resp. 2)
can invade when rare while it is excluded when rare for a1241
(resp. a2141). The possible outcomes of competition are thus
coexistence via niche partitioning if a12o1 and a21o1, exclusion
via priority effects (the excluded species depend on initial
conditions, the species that gains an early advantage wins) if
a1241 and a2141, species 1 outcompetes species 2 if a12o1 and
a2141, and species 2 outcompetes species 1 if a1241 and a21o1.
3. Model analyses and results

We study the outcome of global competition in terms of the
four independent parameters involved in the model. Firstly, a and
b, representing competition abilities of species 2 and 1, respec-
tively, which verify ao1ob due to the assumption of local
dominance of species 1 on species 2. Secondly, we represent
migration through parameters W1

* and m1
* (called x and y, resp., in

Figs. 1–3), which are the proportions of species 1 and 2 in patch 1,
respectively. The closer to 1 (resp. 0) these parameters are the
more biased the distribution of the corresponding species is
towards patch 1 (resp. 2) or, analogously, the greater the ratio k=k

or m=m, depending of the species, is (see Appendix B for
calculations).

The ability of species 1 to invade when rare depends on
parameter a, which represents species 2’s competitive ability, but
it is independent of parameter b, which represents species 1’s
competitive ability. There is a threshold value a* ¼ 2ð

ffiffiffi
2
p
�1Þ �

0:8284 so that if aoa * then species 1 can invade when rare for
any values of migration parameters. Fig. 1 shows in the migration
parameter space the region (dark) for which species 1 is unable to
invade when rare (values of a¼0.75, 0.85 and 0.95). We find no
region for a¼0.75oa * , for a¼0.854a * there are two small sub-
regions – symmetric with respect to the point (0.5,0.5) because of
the equivalence of the two patches – that enlarge when a¼0.95.

A similar analysis can be done to evaluate species 2 global
invasibility – the local inferior competitor – when rare. The only
competition related parameter involved is b. For any value of
b41, a region in the migration parameter space can be found for
which species 2 can invade when rare. The size of this region
decreases as expected for increasing values of species 1 competi-
tion ability b, (dark region in Fig. 2; b¼1.1, b¼1.5 and b¼2.5). We
notice that species 2 can never invade if it is almost uniformly
distributed between patches. As b increases the range of distri-
butions that prevent species 2 from invading also increases.
Regions amenable to invasion exhibit an opposite distribution to
that of species 1. That is, if species 1 has a fairly high competitive
ability then species 2 invasion requires that the distribution of
species 1 is clearly biased towards one of the patches while the
distribution of species 2 is concentrated in the other patch.

To analyse the outcome of competition we need to consider
simultaneously invasion and non-invasion regions for both
species. If aoa * (region I of the parameters a and b space,
Fig. 4) the region of species 1 invasion is the whole migration
parameter space and thus dark regions in Fig. 2 render species
coexistence. The light region then indicates where species 1
outcompetes species 2.

To analyse the cases a4a * we examine the intersections
between regions where species 1 cannot invade (Fig. 1) with
regions where species 2 can invade (Fig. 2). In Appendix B we
prove that for each particular value of a4a * three different cases
depending on b are found.

First we assume rather low b values, bob* ¼ 1þa=2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þ4a�4
p

=2 (region II of the parameters a and b space, Fig. 4).
We have then (Fig. 3, b¼1.1), that the region where species 1 cannot
invade (white) is included in the region where species 2 invades,
thus becoming a region (light) where the competition outcome
results in species 1 exclusion. We also observe a coexistence region
(dark) and a species 2 exclusion region (light grey).

For b*obob* ¼ 1þa=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þ4a�4
p

=2 (region III of the para-
meters a and b space, Fig. 4) the increase in b (Fig. 3, b¼1.5)
entails that a part of the species 1 non-invasion region is now
included in the species 2 non-invasion region resulting in a new
region (dark grey) where we find exclusion via priority effects.

The last case is when b* ob (region IV of the parameters a and b

space, Fig. 4). For these values (Fig. 3, b¼2.5) the species 1



Fig. 1. Influence of species 2 competition ability, a, on species 1 being able to invade when rare. Each diagram represents the space of parameters x, proportion in patch 1 of

species 1, and y, proportion in patch 1 of species 2, i.e. the square [0,1]� [0,1]. For three different values of a (0.75, 0.85 and 0.95) we draw in white the region where species

1 can invade and in black where it cannot.

Fig. 2. Influence of species 1 competition ability, b, on species 2 being able to invade when rare. Each diagram represents the space of parameters x, proportion in patch 1 of

species 1, and y, proportion in patch 1 of species 2, i.e. the square [0,1]� [0,1]. For three different values of b (1.1, 1.5 and 2.5) we draw in black the region where species 2

can invade and in white where it cannot. Competition outcomes for aoa* ¼ 2ð
ffiffiffi
2
p
�1Þ � 0:8284 . For theses cases the same diagrams represent in black the regions of

coexistence and in white the region of species 1 outcompeting species 2.

Fig. 3. Competition outcomes for a4a* ¼ 2ð
ffiffiffi
2
p
�1Þ � 0:8284: influence of b. Each diagram represents the space of parameters x, proportion in patch 1 of species 1, and y,

proportion in patch 1 of species 2, i.e. the square [0,1]� [0,1]. For fixed a¼0.9 and three different values of b (1.1, 1.5 and 2.5) we draw in black the region where we find

species coexistence, in light grey where species 1 outcompetes species 2, in white where species 2 outcompetes species 1 and in dark grey where there is exclusion via

priority effects.
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non-invasion region is now completely included in the species 2 non-
invasion region and so there is no region of species 1 exclusion
although it might be excluded in the dark grey region via priority
effects.
4. Discussion

The issue of scale is a recurrent topic in the development of
theoretical ecology. The metapopulation framework involves a



Fig. 4. Regions of the parameters a and b space with different competition

diagrams in terms of migration parameters. Region I, ara
*
, the diagram

corresponds to the ones in Fig. 2. Region II, a4a
*

and 1obob* ¼ 1þa=2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þ4a�4
p

=2, the diagram corresponds to the one in Fig. 3, b¼1.1. Region III,

a4a
*

and b* obob* ¼ 1þa=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þ4a�4
p

=2, the diagram corresponds to the

one in Fig. 3, b¼1.5. Region IV, a4a
*

and b
*
ob, the diagram corresponds to the

one in Fig. 3, b¼2.5.
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specific recognition of the temporal scales at which ecological
processes operate, with an explicit separation of within and
among patch dynamics (Amarasekare and Nisbet, 2001). When
the migration process across patches operates at a faster scale
relative to local dynamics the interplay of local dynamics and
migration can differ from the case in which both processes
operate at the same time scale.

The fact that migration acts at a faster scale than local
dynamics brings new dimensions to metapopulation dynamics.
Specifically, previous to local dynamics regulation each species
distributes between patches proportionally to its own migration
rates and therefore independently from migration rates of
competing species and from both species demographic para-
meters. Once species distributions are set, then the outcome of
competition depends on demographic parameters. When migra-
tion and local competitive interactions occur at the same time
scale it is expected that under asymmetric competition the locally
superior competitor (LSC) tends to dominate globally, this is
particularly true in a homogeneous environment (Amarasekare
and Nisbet, 2001). Notwithstanding, as we prove, the proposed
time scale separation entails, for any values of competitive
abilities, the existence of a range of migration strategies whose
outcome is coexistence. Also, when the competitive abilities of the
locally inferior competitor (LIC) and the LSC are not very far from
each other, LIC can both locally and globally outcompete LSC
depending on migration strategies. Thus migration traits should
covary with competitive related traits to have an impact on
species fitness.

Long et al. (2007) study the effects of immigration and
environmental variability on the persistence of an inferior
competitor by means of an experimental microcosm, proposing
that this persistence in closed systems is possible if
environmental variability makes a sink for the inferior competitor
become temporally a source. We show through our mathematical
model that this is also the case when the only environmental
variability is due to changes in populations densities as a result of
constant asymmetric migration rates.

In our model migration rates establish species distributions
between patches and then parameters a, LIC competitive ability,
and b, LSC competitive ability, decide the outcome of competition.
Parameter a governs by itself the possibility of LSC invading when
rare, if aoa * E0.8284 then it has no influence and LSC can invade
in any case, on the other hand, for a4a * the closer a is to 1 the
larger the choice of possible species distributions for which LSC
cannot invade (Fig. 1). In its turn, whether LIC can invade or not
depends on parameter b; we stress that there always exists a
region in the parameter space of species distributions where LIC
can invade, so that the outcome of competition is either
coexistence or exclusion of the LSC, and, as expected, the larger
(resp. the closer to 1) b the smaller (resp. the larger) this region
(Fig. 2).

As a rule of thumb even distributions of species between
patches (IFD would fall into this category) result in global
dominance of the LSC. This LSC dominance may depend just in
its own distribution, e.g., for a rather high LIC competitive ability
a¼0.9 and a moderate LSC competitive ability b¼1.5, LIC is
excluded, independently of its distribution, provided that LSC
does not exceed 64% of its number in each patch (Fig. 3). Also, if
both species are skewed towards the same patch, which
can be called coincident uneven distributions, LSC has an
advantage to outcompete LIC, e.g., even for a rather high a¼0.9
and low b¼1.13 LIC is excluded provided that 1/2oW1

* om1
* +0.11,

that is, in the most inhabited patch the percentage of LIC is
not below the percentage of LSC by more than 11%. Finally,
if both species are skewed towards different patches there
is a propensity to coexistence. The smaller the b the larger is
the region in the migration parameter space where coexistence
is met; in the limit case, i.e. b approaching 1, general non-
coincident uneven distributions (W1

* o1/2om1
* or m1

* o1/2oW1
* )

imply coexistence.
Let us remark here that in our setting, global coexistence

implies local coexistence which is not the case in the patch
occupancy metapopulation approach. Necessary conditions for
LSC to be globally, and therefore locally, excluded are, on the one
hand, that the competitive ability of LIC be rather high, a4a * , and
the one of LSC rather low bob * (region II, Fig. 4). On the other
hand, there are also necessary conditions on both species between
patches distributions that can be summarized, depending on the
patch, as 1/2om1

* oW1
* (resp. W1

* om1
* o1/2), that is, both species

distributions are skewed towards patch 1 (resp. 2) but LIC
distribution is less skewed than the one of LSC (b¼1.1, Fig. 3).
These distributions conditions tend to be sufficient as a and b tend
to 1, that is, their local competitive abilities tend to be equal to
each other. With the same distributions considerations but with
b4b * (region IV, Fig. 4), LSC can still be excluded via priority
effects. We can finally add that the same distributions with aoa *

and b close to 1 give coexistence as outcome of competition.
When migration and competition take place at a similar time

scale the existence of a refuge for the LIC species can lead to global
coexistence (Amarasekare and Nisbet, 2001). In our setting, fast
migration can create a refuge-like effect when species tend to
concentrate in different patches. As shown in Section 2 there is
always a region in the parameter space of species distributions
where LIC can invade.

We observe that fast migrations can also achieve dominance
reversal, i.e. LSC can be excluded globally and thus locally. We
state in Section 2 the general conditions that in terms of
asymmetric migrations rates and competition abilities must meet



D. Nguyen Ngoc et al. / Journal of Theoretical Biology 266 (2010) 256–263 261
so that LIC species becomes the superior competitor on a spatially
homogeneous environment. Some other works show that in a
spatially heterogeneous environment competitive reversal can be
found with symmetric migration rates running on the same time
scale than local dynamics (Takeuchi, 1989; Takeuchi and Lu,
1995). Other mechanisms of competitive reversal can also be
found in competition models with continuous space and diffusion
(Pacala and Roughgarden, 1982; Cantrell et al., 1998).

The key role of species distributions in final species dominance
suggest a strong selective force for directed migration. Although
adaptations linked to directed migration may be unlikely
(Herrera, 1985), directed migration may be a common phenom-
ena even in the absence of adaptive traits (Wenny, 2001).
Specifically, directed migration may be ecologically meaningful
if one migration vector has a disproportionate effect on plant
recruitment (e.g. Purves et al., 2007), which can improve species
persistence in response to habitat loss (Montoya et al., 2008). As
the metapopulation framework is applied to new problems and
empirical evidence builds up key underlying assumptions are
challenged. A number of biological processes can take place in
which movement across patches can in fact operate at a faster
time scale than local dynamics (Amarasekare, 1998, 2000a,
2000b). Migration and competition processes can operate at
similar temporal time scales and thus colonizing rates may
influence the outcome of local competition (Amarasekare and
Nisbet, 2001). For example in long lived organisms such as trees,
Fig. 5. Comparison of solutions of system (1) with their approximations through the a

state variables of system (1) (n11, n12, n21 and n22) and their approximations obtained

parameters values e¼0.1, k¼0.9, k ¼ 0:1, m¼0.7, m ¼ 0:3, r1¼0.3, r2¼0.2, K¼5, a¼

n22(0)¼0.6.
gene flow through pollination or migration can take place at a
much faster time scale than selection process (Garcı́a-Ramos and
Kirkpatrick, 1997). In host–parasite systems – in which the
individual host is the patch – the interplay between within-patch
and among-patch evolutionary dynamics drives the evolution of
intermediate levels of virulence (Levin and Pimentel, 1981). Also,
asymmetries in migration across patches can have profound
implications for species global dominance. For example, prefer-
ential migration towards suitable habitat and towards unoccupied
patches has important consequences for estimating species
response to habitat loss which can be overestimated in the
classical Levins (1969, 1970) model (Purves and Dushoff, 2005).

The problem of aggregation is inextricably link to the problem
of model simplicity (Levin, 1992). Convenient separation of spatial
and temporal scales is thus implicit in almost any analytical
formulation. The challenge for any given system will be to
determine the appropriate levels of aggregation and simplifica-
tion of the system that provides an accurate representation of the
biological scales implied and that are in agreement with
experimental evidence.
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Appendix A

Results in aggregation methods are valid provided there exists
a large enough ratio of time scales. The analytical study of the
necessary ratio has only been performed in the context of linear
discrete systems (Sanz and Bravo de la Parra, 2002). For nonlinear
systems, numerical simulations have shown in different applica-
tions (Nguyen-Huu et al., 2006, 2008; Poggiale et al., 2008; Auger
et al., 2008a, 2009) that the approximation is appropriate for a
qualitative analysis whenever the ratio of the fast to the slow time
scale, represented by e, is less than 0.1. This ratio of one order of
magnitude appears to be a reasonable assumption in many
particular applications.

We include in Figs. 5 and 6 a more detailed simulation than
those appearing in the mentioned references. For the same set of
parameters values, taking e¼0.1, and two different sets of initial
conditions, we calculate numerically the solution of system (1)
and the corresponding solution of system (4). Then, for each of the
four state variables of system (1), we put together its evolution in
time t and the one predicted by the aggregated system through
Fig. 6. Comparison of solutions of system (1) with their approximations through the a

state variables of system (1) (n11, n12, n21 and n22) and their approximations obtained fro

parameters values as in Fig. 5 and initial conditions n11(0)¼0.2, n12(0)¼0.3, n21(0)¼4
the equalities n11 ¼ W*
1n1, n12 ¼ W*

2n1, n21 ¼ m*
1n2 and n22 ¼ m*

2n2.
We can observe in Figs. 5 and 6 that the long term behaviour of
both is very similar.
Appendix B

Firstly we study when species 1 can or cannot invade when
rare. For that we need to solve a12o1 and a1241 where we use
the expression in (5) a12¼a(W1

*m1
* +W2

*m2
* )/((m1

* )2+(m2
* )2). Let us do

the notation changes x¼ W*
1 and y¼ m*

1, so W*
2 ¼ 1�x, m*

2 ¼ 1�y

and so a12¼a(x(2y�1)�y+1)/2y2
�2y+1. We now study the

line a12¼1 which can be written as an explicit function of x in
terms of y:

x¼ f ðyÞ ¼
2y2þða�2Þyþð1�aÞ

að2y�1Þ

The graph of f is symmetrical with respect to the point (1/2,1/2),
has two asymptotes: y¼1/2 and x¼1/a(y�1/2)+1/2, and it is
composed of two branches which have a non-void intersection
with the square [0,1]� [0,1] provided they exist real values of y

for x¼0. The roots of equation 2y2+(a�2)y+(1�a)¼0 are
y1 ¼ 2�a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þ4a�4
p

=4 and y2 ¼ 2�aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þ4a�4
p

=4 which are
ggregated system (4). This figure shows the evolutions in time of each of the four

m the aggregated system (4) (W*
1n1, W*

2n1, m*
1n2 and m*

2n2, respectively) for the same

and n22(0)¼6.
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real if a2+4a�440, that is

aZa* ¼ 2ð
ffiffiffi
2
p
�1Þ

For every a4a* ¼ 2ð
ffiffiffi
2
p
�1Þ there are two symmetric regions

enclosed by lines x¼ f(y) and either x¼0 or x¼1, which
corresponds to the solution of a1241, i.e. parameter values for
which species 1 cannot invade when rare. The rest of the square
[0,1]� [0,1] corresponds to the case of species 1 invasion.

A similar analysis can be done to study when species 2 can or
cannot invade when rare. We need to solve a21o1 and a2141, and so
we look at the line a21¼1 which is expressed in terms of x and y as

y¼ gðxÞ ¼
2x2þðb�2Þxþð1�bÞ

bð2x�1Þ

The graph of g is also symmetrical with respect to the point (1/2,1/2)
and has two asymptotes and two branches. In this case it is
straightforward to prove that the intersection with the square
[0,1]� [0,1] exists for any value of b41 and there are two symmetric
regions surrounding points (0,1) and (1,0) which corresponds to the
solution of a21o1, parameter values for which species 2 invades
when rare, letting the rest of the square [0,1]� [0,1] for the region of
non-invasion.

To obtain the parameter values regions corresponding to the
different competition outcomes we need to put together the
regions described previously. In particular we should find
conditions so that those regions intersect. We know that line
a21¼1 has the point (0,y3)¼(0,(b�1)/b) on the y-axis, The
intersection between regions a1241 and a21o1 depends on
the relative position of y3 with respect to y1 and y2: (i) if y3oy1

the region a21o1 includes the region a1241; (ii) if y1oy3oy2

there is an intersection without inclusions between regions
a21o1 and a1241; (iii) if y2oy3 there is no intersection between
regions a21o1 and a1241. To distinguish these three cases
in terms of the values of parameters a and b we see when
y3 coincides with either y1 or y2 by substituting y3 in 2y2+
(a�2)y+(1�a)¼0, thus obtaining:

b* ¼ 1þa=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þ4a�4

p
=2 and b* ¼ 1þa=2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þ4a�4

p
=2

which yields case (i) if 1obob*, case (ii) if b*obob * and case
(iii) if b * ob.
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Nguyen-Huu, T., Auger, P., Lett, C., Marvá, M., 2008. Emergence of global behaviour
in a host-parasitoid model with density-dependent dispersal in a chain of
patches. Ecological Complexity 5, 9–21.

Nguyen-Huu, T., Lett, C., Auger, P., Poggiale, J.-C., 2006. Spatial synchrony in host-
parasitoid models using aggregation of variables. Mathematical Biosciences
203, 204–221.

O’Neill, R.V., DeAngelis, D.L., Waide, J.B., AlIen, T.F.H., 1986. A Hierarchical Concept
of Ecosystems. Princeton University Press, Princeton, NJ, USA.

Pacala, S.W., Roughgarden, J., 1982. Spatial heterogeneity and interspecific
competition. Theoretical Population Biology 21, 92–113.

Poggiale, J.-C., Gauduchon, M., Auger, P., 2008. Enrichment paradox induced by
spatial heterogeneity in a phytoplankton–zooplankton system. Mathematical
Modelling of Natural Phenomena 3 (3), 87–102.

Purves, D., Dushoff, J., 2005. Directed seed dispersal and metapopulation response
to habitat loss and disturbance: application to Eichhornia paniculata. Journal of
Ecology 93, 658–669.

Purves, D.W., Zavala, M.A., Ogle, K., Prieto, F., Rey Benayas, J.M., 2007.
Environmental heterogeneity, bird-mediated directed dispersal, and oak
woodland dynamics in Mediterranean Spain. Ecological Monographs 77,
77–97.

Sanz, L., Bravo de la Parra, R., 2002. The reliability of approximate reduction
techniques in population models with two time scales. Acta Biotheoretica 50
(4), 297–322.

Takeuchi, Y., 1989. Diffusion-mediated persistence in two-species competition
Lotka–Volterra model. Mathematical Biosciences 95, 65–83.

Takeuchi, Y., Lu, Z., 1995. Permanence and global stability for competitive Lotka–
Volterra diffusion systems. Nonlinear Analysis, Theory, Methods & Applica-
tions 24, 91–104.

Wenny, D.G., 2001. Advantages of seed dispersal: a re-evaluation of directed
dispersal. Evolutionary Ecology Research 3, 51–74.


	Competition and species coexistence in a metapopulation model: Can fast asymmetric migration reverse the outcome of...
	Introduction
	Model structure
	Model analyses and results
	Discussion
	Acknowledgements
	Appendix A
	Appendix B
	References




