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a b s t r a c t

In this work we present a mathematical model describing the dynamics of a population where sex

allocation remains flexible throughout adult life and so can be adjusted to current environmental

conditions. We consider that the fractions of immature individuals acquiring male and female sexual

roles are density dependent through nonlinear functions of a weighted total population size. The main

goal of this work is to understand the role of life-history parameters on the stabilization or

destabilization of the population dynamics.

The model turns out to be a nonlinear discrete model which is analysed by studying the existence of

fixed points as well as their stability conditions in terms of model parameters. The existence of more

complex asymptotic behaviours of system solutions is shown by means of numerical simulations.

Females have larger fertility rate than males. On the other hand, increasing population density

favours immature individuals adopting the male role. A positive equilibrium of the system exists

whenever fertility and survival rates of one of the sexual roles, if shared by all adults, allow population

growing while the opposite happens with the other sexual role. In terms of the female inherent net

reproductive number, ZF , it is shown that the positive equilibria are stable when ZF is larger and closed

to 1 while for larger values of ZF a certain asymptotic assumption on the investment rate in the female

function implies that the population density is permanent. Depending on the other parameters values,

the asymptotic behaviour of solutions becomes more complex, even chaotic. In this setting the

stabilization/destabilization effects of the abruptness rate in density dependence, of the survival rates

and of the competition coefficients are analysed.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In many organisms sex is a flexible affair, as it is for
hermaphroditic and some gonochoristic species with environ-

mental sex determination (ESD), for which environmental factors
play a crucial role in their strategies of sexual resource allocation.
In fact, for these species the traits favoured by one sex might be
costly to the other (Hosken and Stockley, 2005), what leads to
a divergence between male and female fitness and provides in the
case of simultaneous hermaphrodites a gender conflict (Angeloni,
2003; Anthes et al., 2006). To mediate this conflict, an evaluation
of the current environmental conditions is necessary (Charnov,
1982).
ll rights reserved.
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The sex allocation theory (Ghiselin, 1969; Charnov, 1982, 1993)
is a powerful evolutionary theory that was developed to analyse
the gender conflict of such ESD species. This theory describes how
the reproduction resources are allocated between male and
female components in order to maximize the reproductive value,
the fitness.

For outcrossing simultaneous hermaphrodites, the available
literature (Charnov, 1982; Brauer et al., 2007; Schärer, 2009)
shows that the mating group size influences sex allocation. Sex
allocation theory for these species predicts a more female-biased
investment of reproductive resources when the mating group size
decreases (Fischer, 1981; Charnov, 1982; West et al., 2005; Anthes
et al., 2006; Shuker et al., 2007). In relatively small groups
individuals need to produce fewer sperms to be successful, thus
leaving more resources for the female role (Fischer, 1981;
Charnov, 1982; Fischer, 1984). Often the studies on local mate
competition for simultaneous hermaphrodites have focused on
the evolutionary adjustment of sex allocation to mating group
size. As noted by Brauer et al. (2007), there are, in fact, three
different levels at which sex allocation can be adjusted. First level,
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the allocation strategy can be the result of selection and
evolution, and thus be an adaptation to the average mating group
size over many generations. In the second case sex allocation is
not or not strictly fixed genetically but it is set during ontogeny
and therefore influenced by environmental conditions such as
population density (developmental plasticity). Finally, in the third
level sex allocation is not fixed neither during evolution nor
ontogeny but remains flexible throughout adult life and can be
adjusted to current environmental conditions. In this work we
represent sex allocation as defined in the third case, therefore
considering the density dependence of the sex allocation as an
evolutionary stable strategy. More precisely we suppose that, at
each reproductive cycle, the gender distribution of the population
changes with the fractions of immature individuals acquiring
male and female sexual roles being nonlinear functions of a
weighted total population size. We have to notice that this
approach has already been used for some (ESD) gonochoristic
species by many authors (Woodward and Murray, 1993) to
explain heavily biased sex-ratios, of order 10:1, in favour of
females.

The main insights of this work have to do with how the general
aspect of sexual gender structures and the density dependence of
sexual allocation may lead to complex asymptotic behaviours.
Mathematically speaking, we represent the model by means of a
structured discrete system with a density-dependent form for
immature sexual choice. Our aim is to understand the influence of
the intraspecific sexual competition on sex-ratio and population
dynamics and to generate information about stabilizing and
destabilizing effects.

The paper is organized as follows. Firstly, we present
the mathematical model including the relevant biological features
described previously. Then we proceed to the analytical study of
the nonlinear discrete system by finding out, whenever it is
tractable, the existence of fixed points as well as their stability
conditions in terms of model parameters. We further discuss the
asymptotic behaviour of system solutions through numerical
simulations where we observe a variety of complex chaos-like
forms. Finally, we discuss the interpretation of these results for
the population dynamics of the referred species.
s2

Fig. 1. Conceptual model.
2. The model

Let JðtÞ denote the density of immature individuals, or
juveniles, in the population at times t¼ 0;1;2; . . . ; where the unit
of time is taken to be the duration of a reproductive cycle. At the
end of each reproductive cycle a fraction s of juveniles is assumed
to keep being at this stage while a fraction p come into the mature
stage, adulthood, and adopt either the male or the female
functions; the remaining fraction, 0o1�s�pr1, represents thus
the juvenile mortality rate per unit of time.

Juveniles when maturing to adulthood are faced to mating
opportunities and need to decide about which sexual role to
adopt. They have the choice between two genders: male or
female. Let MðtÞ and FðtÞ denote the density of mature individuals
having adopted the male and the female functions, respectively.
We assume that juveniles invest more in the most profitable sex
role, thereby getting a higher fertilization certainty (Anthes et al.,
2006). This investment should then take into account the gender
conflict between females, for which multiple mating is advanta-
geous, and males, for which avoiding female multiple mating
reduces the risk of competing with rival sperm. The sex allocation
is represented in the model through the investment rate in the

female function, called F, being then the investment rate in the
male function 1�F. As pointed out in the Introduction we
suppose sex allocation to be dependent on population density
through a weighted total population size:

WðtÞ ¼ JðtÞþb1MðtÞþb2FðtÞ ð1Þ

see Cushing and Li (1992) for a similar expression in a density
dependent juvenile growth model, where positive parameters bi

are competition coefficients that measure the pressure effects of a
male or female function individual on the juveniles sexual role
choice compare to that of a juvenile individual (Fig. 1).

In hermaphroditic species as well as in gonochoristic ones the
fecundity of the female function is limited to the amount of
energy available for egg production, while male function
fecundity is limited to the available eggs (Bateman’s principle)
(Bateman, 1948; Charnov, 1979). Moreover, in relatively smaller
mating groups male individuals need to produce fewer sperm to
be successful in sperm competition, leaving more resources for
the female function (Fischer, 1981; Charnov, 1982; Fischer, 1984;
Brauer et al., 2007). Applying these two principles and assuming
that the sizes of the population density and the corresponding
average mating group are positively correlated, we consider the
investment rate in the female function F to be decreasing in
terms of the weighted total population size W, with all juveniles
tending to join the female (resp. male) class at maturation for very
low (resp. high) population densities.
The survival rates of male and female adults are denoted s1 and
s2, respectively. Let f2 denote the fertility rate of female adults.
Also, assuming that during the mating process an alternation of
the sex role may be made by a small number of males into the
female role, Gamete Exchange (Anthes et al., 2006), we denote f1

the fertility rate of male adults, which should be much lower than
the one of females, i.e., f15 f2 (Fig. 1).

Including all the elements defined so far we get the following
nonlinear system of difference equations:

Jðtþ1Þ ¼ sJðtÞþ f1MðtÞþ f2FðtÞ

Mðtþ1Þ ¼ pð1�FðWðtÞÞÞJðtÞþs1MðtÞ

Fðtþ1Þ ¼ pFðWðtÞÞJðtÞþs2FðtÞ

8><
>: ð2Þ

whose parameters are all positive and verify sþpo1 and f15 f2.
Finally we assume for function F:

FAC1ðRþ ; ð0;1�Þ; F0ðxÞr0; Fð0Þ ¼ 1 and lim
x-þ1

FðxÞ ¼ 0

System (2) is an example of nonlinear autonomous matrix
equation (Cushing, 1998). Denoting X ¼ ðJ;M; FÞ, system (2) can
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be written as

Xðtþ1Þ ¼ PðXðtÞÞXðtÞ ð3Þ

where

PðXðtÞÞ ¼ PðWðtÞÞ ¼

s f1 f2

pð1�FðWðtÞÞÞ s1 0

pFðWðtÞÞ 0 s2

0
B@

1
CA

which is the sum, PðXðtÞÞ ¼ TðWðtÞÞþF, of the transition matrix,
depending on the weighted total population size W, and the
constant fertility matrix

TðWÞ ¼

s 0 0

pð1�FðWÞÞ s1 0

pFðWÞ 0 s2

0
B@

1
CA and F ¼

0 f1 f2

0 0 0

0 0 0

0
B@

1
CA

3. Model analysis

In this section we study the existence and stability of the
equilibrium points of system (2).

We use the net reproductive number, ZðWÞ, of the projection
matrix PðWÞ. Matrix PðWÞ is primitive for every positive W and its
strictly dominant eigenvalue rðWÞ verifies (Theorem 1.1.3 in
Cushing, 1998): rðWÞ41 if and only ZðWÞ41, rðWÞo1 if and only
ZðWÞo1 and thus rðWÞ ¼ 1 if and only ZðWÞ ¼ 1. ZðWÞ is the
strictly dominant eigenvalue of matrix FðI�TðWÞÞ�1:

FðI�TðWÞÞ�1
¼

pf1ð1�FðWÞÞ
ð1�sÞð1�s1Þ

þ
pf2FðWÞ
ð1�sÞð1�s2Þ

f1

1�s1

f2

1�s2

0 0 0

0 0 0

0
BBB@

1
CCCA

so

ZðWÞ ¼ pf1

ð1�sÞð1�s1Þ
ð1�FðWÞÞþ

pf2

ð1�sÞð1�s2Þ
FðWÞ

This expression is simplified by denoting

ZM ¼
pf1

ð1�sÞð1�s1Þ
and ZF ¼

pf2

ð1�sÞð1�s2Þ

that can be interpreted as the inherent net reproductive numbers
(expected number of offspring per newborn over the course of its
lifetime) when only the females reproduce and only the males
reproduce, respectively. We then have

ZðWÞ ¼ ZMð1�FðWÞÞþZFFðWÞ ð4Þ

Following the theory and methodology that can be found in
Cushing (1998) to perform a qualitative analysis of nonlinear
autonomous matrix equation like system (2), we study the
existence and the stability of its extinction and positive equilibria.

3.1. Trivial equilibrium and extinction of the population

The trivial, or extinction, equilibrium 0¼ ð0;0;0Þ of system (2)
always exists. The Jacobian of system (2) at 0 is Pð0Þ and thus the
facts of 0 being asymptotically stable or unstable are directly
expressed in terms of parameter ZF ¼ Zð0Þ.

Proposition 3.1. Let 0¼ ð0;0;0Þ be the trivial equilibrium of system

(2). If ZF o1, then 0 is asymptotically stable and if ZF 41, 0 is

unstable.

Proposition 3.1 yields that 0 loses its stability as ZF increases
through the critical value 1. We complete this bifurcation result in
Section 3.2 when considering the positive equilibria.

Under the hypothesis s1rs2, condition ZF o1 also implies that
the trivial equilibrium is globally stable, i.e., for any initial
condition ðJð0Þ;Mð0Þ; Fð0ÞÞAR3
þ the corresponding solution

ðJðtÞ;MðtÞ; FðtÞÞ tends to 0 as t goes to infinity.

Proposition 3.2. Let s1rs2. If ZF o1 then equilibrium 0 of system

(2) is globally asymptotically stable.

Proof. see Appendix A.1.

3.2. Positive equilibria

In the next proposition we express in terms of ZM and ZF

necessary and sufficient conditions for system (2) to possess a
positive equilibrium point X� ¼ ðJ�;M�; F�Þ. We also give condi-
tions that ensures X� stability.

Proposition 3.3. System (2) has a positive equilibrium point

X� ¼ ðJ�;M�; F�Þ if and only if either ZM o1 and ZF 41 or ZM 41
and ZF o1. In the first case, ZM o1, X� is asymptotically stable for

values of ZF 41 close enough to 1 and, in the second case, ZM 41, X�

is unstable for values of ZF o1 close enough to 1.

Proof. see Appendix A.2.

The positive equilibrium, in both cases, can be explicitly
calculated (see Appendix A.2) and reads as follows:

X� ¼ J�;
pð1�kÞ

1�s1
J�;

pk
1�s2

J�
� �

ð5Þ

where J� ¼F�1
ðkÞ=ð1þb1pð1�kÞ=ð1�s1Þþb2pk=ð1�s2ÞÞ and k¼

ð1�ZMÞ=ðZF�ZMÞ.
Assuming s1rs2, it is also hold that ZM oZF . We have already

shown that in this case if ZF o1 then the trivial equilibrium is
globally stable while for ZF 41 is unstable. Concerning the
positive equilibrium X�, the same assumption reduces its
existence conditions to ZM o1oZF . In the next proposition we
prove that s1rs2 and ZM 41 imply unbounded solutions of
system (2).

Proposition 3.4. Let s1rs2 and ZM 41. If ðJðtÞ;MðtÞ; FðtÞÞ is the

solution of system (2) associated to the non-negative initial condition

ðJð0Þ;Mð0Þ; Fð0ÞÞa ð0;0;0Þ then fðJðtÞ;MðtÞ; FðtÞÞ : tANg is un-

bounded.

Proof. see Appendix A.3.

After that, we propose a sufficient condition for the permanence
of the system (2). We use the definition of permanence found in
Kon et al. (2004) which ensures that the total population density
neither explodes nor goes to zero. To prove the permanence of
system (2) we apply Theorem 3 in Kon et al. (2004); for that we
need system (2) to be dissipative, i.e., we need to find a compact
set K �Rn

þ such that for all Xð0ÞARn
þ there exists a T ¼ TðXð0ÞÞ

such that XðtÞAK for all tZT. In the next proposition we present a
condition on the investment rate in the female function, F, that
ensures system (2) dissipativeness.

Proposition 3.5. Let ZM o1. If xFðxÞ is bounded on ½0;1Þ then

system (2) is dissipative.

Proof. see Appendix A.4.

Now, we state in the following proposition sufficient conditions
for system (2) permanence which is a direct consequence of
Theorem 3 in Kon et al. (2004).

Proposition 3.6. Let ZM o1 and ZF 41. If xFðxÞ is bounded on

½0;1Þ then system (2) is permanent.

In the next section we are presenting a set of simulations to
complete the study of those cases where the performed analysis
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does not help in characterizing the asymptotic behaviour of
solutions. These unknown cases correspond to the situation of
existence of a unique positive equilibrium point, X� ¼ ðJ�;M�; F�Þ,
for which it is not known whether it is stable or not. In terms of
parameters ZM and ZF , we are dealing with cases with a fixed
ZM o1 and different values of ZF 41. We should also choose a
specific form for the allocation function F that verifies the
condition imposed in Proposition 3.6 so that system (2) is
permanent. This choice is in a sense robust because it can be
proved, see Chapter 16 in Hirsch and Smale (1974), that if we take
a perturbation (C1) of F, i.e., another allocation function ~F such
that jFðxÞ� ~FðxÞj and jF0ðxÞ� ~F

0
ðxÞj are small for every xARþ , the

existence of the positive equilibrium X� in the case of F, when it is
hyperbolic, imply the existence of a close hyperbolic equilibrium
~X
�

in the case of ~F which moreover shares the same stability
features with X�.
4. Numerical results

In this section we pursue the analysis of the asymptotic
behaviour of solutions of system (2) by means of numerical
simulations.

We use particular forms of function F, the investment rate in
the female role. In Getz (1996) it is analysed the influence of
abrupt density dependence on the oscillations of a population by
means of simple discrete models and using different density-
dependent forms. Here we adapt the so-called generalized Ricker
function as presented in Getz (1996), FRg ðxÞ ¼ e�xg , where the
parameter g is called the ‘‘abruptness’’ parameter and controls
how rapidly density dependence sets in.

In the sequel we study how g, the abruptness parameter, s1

and s2, the adult survival rates, and b1 and b2, the competition
coefficients, affect the stability of the system. For this, we look for
ZF , the female inherent reproductive number, bifurcation values
where the positive equilibrium point X� ¼ ðJ�;M�; F�Þ loses its
stability as well as the values where the orbits that we calculate
get positive largest Lyapunov exponents (LLE).
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Fig. 2. The spectral radius of the Jacobian matrix associated to the equilibrium

point X� ¼ ðJ� ;M� ; F�Þ of system (2) is shown for three different values of

gAf1;1:5;2g, as ZF increases from 1 to 14, with s¼ 0:05, s1 ¼ 0:25, s2 ¼ 0:4,

p¼ 0:6, f1 ¼ 0:01, f2 ¼ ZF ð1�sÞð1�s2Þ=p, b1 ¼ 1, b2 ¼ 1:5 and FðxÞ ¼ e-xg . Z�F
represents the bifurcation value where X� loses its stability.
4.1. The effect of the abruptness parameter g

To illustrate the influence of the abruptness parameter g on the
destabilization of the positive equilibrium point X� we first
calculate, Fig. 2, the spectral radius of its associated Jacobian
matrix for different values of gAf1;1:5;2g and ZF A ½1;14� while
keeping fixed the rest of parameters values. Let us recall that
Proposition 3.3 ensures the asymptotical stability of X� for
ZF Að1;1þeÞ. It is shown in Fig. 2 that this spectral radius is less
than 1, i.e., X� asymptotically stable, for ZF between 1 and a
bifurcation value denoted Z�F . On the other hand, we see that X� is
unstable for ZF 4Z�F .

We notice that the larger the value of g the smaller the
value of Z�F , i.e., there is a clear destabilizing effect produced by
an increasing abruptness, the parameter that governs how
rapidly an increase of the weighted total population density is
reflected on sex allocation going towards a more biased male
distribution.

To illustrate what happens once the positive equilibrium loses
its stability we use the results of a number of numerical
simulations. We calculate orbits of system (2), with initial
conditions Xð0Þ ¼ ðJð0Þ;Mð0Þ; Fð0ÞÞ ¼ ð20;15;10Þ, three different
values of gAf1;1:5;2g, ZF A ½0;80� and the rest of parameters
values being the same as those previously used. We also calculate
the LLE of each of these orbits.

In Fig. 3(a) it is shown for g¼ 1 the juvenile orbit diagram for
values of ZF near bifurcation point, i.e., for each value of ZF the
points in its corresponding vertical line approximate the long
term behaviour of juveniles density JðtÞ, thus they approximately
represent the orbit attractor. It is noticed that for low values of ZF

the asymptotic behaviour corresponds to the juvenile component
J� of the positive equilibrium. The same is shown in Figs. 3(b) and
(c) for g¼ 1:5 and 2, respectively.

In Fig. 4, using ZF as a parameter, the LLE of the orbits
represented in Fig. 3 are plotted for the three different values of
the abruptness parameter gAf1;1:5;2g.

To quantify the destabilizing effects of g we use, on the one
hand, the lowest value of ZF from which positive Lyapunov
exponents appear, henceforth denoted Z1F (Fig. 4), and, on the
other hand, the amplitude of the orbit attractors (Fig. 3). We
observe that increasing g entails decreasing Z1F while there is an
increase of the orbits attractors amplitude. We can then conclude
that an increase of parameter g promotes instability and chaotic-
like oscillations in the population and that this kind of behaviour
is reinforced as long as the value of ZF is increased. Larger
sensibility to density dependence of sex allocation together with
larger female inherent rate reproductive number implies more
complex population dynamics.
4.2. The effect of the adult survival rates

The survival rates s1 and s2 constitute important parameters of
the model since they characterize species iteroparity. To see their
influence on the stability of the population dynamics we perform
a numerical study analogous to that already done for g in the
previous section.

The first index we use to assess the stability of the population
is Z�F , the bifurcation value of ZF where the positive equilibrium X�

of system (2) loses its stability. We calculate Z�F for the different
values of the survival rates s1 and s2 in [0.1,0.9], with s1os2, and
fixed values of the rest of parameters. In Fig. 5 it is shown a 2D
representation of Z�F in terms of s1 and s2.

Understanding an increase of Z�F as a population stability rise,
we notice the clear stabilization effect of increasing the female
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survival rate. In fact, for any fixed value of s1 we see that the larger
s2 the bigger Z�F . This is not the case of s1, as we can see that for
certain values of s2 the largest values of Z�F are found for
intermediate values for s1 while the lowest values of Z�F are found
for either small or large values of s1. This is certainly due to the
asymmetric roles of males and females.

Once the positive equilibrium X� loses its stability, our index
to assess the complexity of population dynamics are the values
of Z1F , that represent where orbits start to possess positive
Lyapunov exponents. We identify increasing Z1F with a gain
in population stability. To obtain Z1F we calculate the orbits
of system (2), with the same conditions on Xð0Þ and ZF as
previously and for the different values of s1 and s2 in [0.1,0.9],
and fixed values of the rest of parameters. The 2D representation
of Z1F in terms of s1 and s2 is shown in Fig. 6, where we notice that
the complexity of population dynamics increases as a result
of low survival rates. High values of s1 and s2 imply that very high
values of ZF are needed to get chaotic-like behaviour of system
orbits. This stabilization effect of the dynamical system can
be assimilated to iteroparity (Demetrius, 1971; Getz, 1996):
the repeated production of offspring throughout the life cycle
versus semelparity, where each individual reproduces only once
during its life.
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Fig. 5. The value Z�F , value of ZF for which the positive equilibrium point

X� ¼ ðJ�;M�; F�Þ of system (2) loses its stability, is shown for s1 A ½0:1;0:9� and

s2 A ½s1 ;0:9�, with s¼ 0:05, p¼ 0:6, f1 ¼ 0:01, b1 ¼ 1, b2 ¼ 1:5 and FðxÞ ¼ e-x .
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Fig. 6. The value Z1F , smallest value of ZF starting from which the corresponding

orbit has a positive LLE, is shown for s1 A ½0:1;0:9�, s2 A ½s1 ;0:9�, with s¼ 0:05,

p¼ 0:6, f1 ¼ 0:01, b1 ¼ 1, b2 ¼ 1:5 and FðxÞ ¼ e-x .
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Fig. 7. The value Z�F , value of ZF for which the positive equilibrium point

X� ¼ ðJ�;M�; F�Þ of system (2) loses its stability, is shown for b1 A ½0;50� and

b2 A ½b1;50�, with s¼ 0:05, s1 ¼ 0:25, s2 ¼ 0:4, p¼ 0:6, f1 ¼ 0:01 and FðxÞ ¼ e-x .
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Fig. 8. The value Z1F , smallest value of ZF starting from which the corresponding

orbit has a positive LLE, is shown for b1 A ½0;50� and b2 A ½b1 ;50�, with s¼ 0:05,

s1 ¼ 0:25, s2 ¼ 0:4, p¼ 0:6, f1 ¼ 0:01 and FðxÞ ¼ e-x .
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4.3. The effect of the competition coefficients

As the female role is more expensive in terms of reproductive
energy, we assume in this section that the female competition
effect, represented by b2, is larger than the corresponding male
effect, b1, on juvenile gender choice, i.e., b24b1. The results in
previous sections are not affected by this assumption.

We calculate Z�F for the different values of the competition
coefficients b1 and b2 in [0,50], with b1ob2, and fixed values of the
rest of parameters as before. In Fig. 7, similarly to Fig. 5, it is shown
a 2D representation of Z�F in terms of b1 and b2. We notice that the
lowest values of Z�F are found for b1 either small or close to b2.

The results of the calculation of Z1F , as done in previous
sections, are shown in Fig. 8.

We note a clear destabilizing pattern, Z1F decreasing, directly
related to the increase of the male competition coefficient b1. The
fact that males and females are comparable in terms of
reproductive energy entails a more complex population dynamics.
5. Discussion and conclusion

In this work we propose a model for the dynamics of an
iteroparous outcrossing simultaneous hermaphroditic population



ARTICLE IN PRESS

A. Kebir et al. / Journal of Theoretical Biology 263 (2010) 521–529 527
whose life cycle consists of a juvenile growth stage followed by a
reproductive one with two different adult sexual roles. At
maturation period, the transition to the reproductive stage
depends on population density through a weighted total popula-
tion size that differentiates by gender the competition between
juvenile and adult stages.

This approach suppose that sex allocation is not fixed
during evolution but remains flexible throughout adult life and
can be adjusted to current environmental conditions, this
was already proved by many authors (Schärer, 2009), our goal is
to study the implication at a population dynamics level of
this fact.

Apart from the parameters directly appearing in system (2) we
have introduced ZM and ZF , the male and female inherent net
reproductive numbers. We have proved that the system (2) has a
positive equilibrium point X� ¼ ðJ�;M�; F�Þ if and only if either
ZM o1 and ZF 41 or ZM 41 and ZF o1. Moreover, it exists a
branch of non-extinction equilibrium pairs ðZF ;X

�Þ, which bifur-
cates from the point ðZF ;X

�Þ ¼ ð1;0Þ which results stable when
ZM o1 and ZF]1 and unstable when ZM 41 and ZFu1. Further
more, under condition s1rs2, we proved that if ZM 41 the
population grows unboundedly and if ZF o1 the population gets
extinct. In the rest of the discussion we assume ZM o1 and ZF 41,
where we proved the permanence of the system (2) provided that
xFðxÞ be a bounded function for xA ½0;1Þ, which is the case for the
generalized Ricker function FRg ðxÞ ¼ e�xg used in the numerical
simulations of Section 4.

Parameter ZF close to 1 represents, through X�, low population
density and also female biased sex allocation due to density
dependence effects. We proved that X� is locally asymptotically
stable whenever ZF is bigger and close to 1, that is, a low
population density implies a stabilization of the population with a
sex allocation almost completely biased towards the female role.
Density dependent sexual allocation protects hermaphroditic
species from extinction.

Parameter ZM close to 1 or high values of parameter
ZF represent high population density at equilibrium X� what
entails a decrease of the female investment rate. This situation
corresponds to a loss of stability of the population dynamics
which, depending on other parameters values, may become
chaotic. In this context we studied the influence of density
dependence through the abruptness parameter g. We found that
the more severe the effects of density dependence are, i.e., the
larger the parameter g, the more complex the population
dynamics becomes. We have also studied the influence of survival
rates obtaining that the complexity of population dynamics
increases if they are low while high values of s1 and specially of
s2 imply that very high values of ZF are needed to get chaotic-like
behaviour of system orbits. An important applied consequence of
the last point is that selective mortality might have a destabiliza-
tion effect on exploited simultaneous hermaphroditic species.
Concerning competition parameters we also found a destabilizing
effect when the male coefficient b1 is high, that is, when
the reproductive energy consumed by males and females is
comparable.

We have shown, following the schema in Higgins et al. (1997),
that the population dynamics shows a sensibility to changes in
life history parameters and in sex allocation patterns. Numerical
simulations reveal the existence of chaotic-like long-term beha-
viour of the population dynamics for certain domains of
parameters values. In this sense iteroparity and abruptness
parameters have opposite effects. The latter is prone to imply
chaotic behaviour whereas the former promotes stability. Com-
plex dynamics implies a strong variability in the densities of male
and female adults what induces also a strong variation in sex
ratio. This variation involves an increase of the number of sex role
changes per individual with the corresponding energy expenses.
In the case that this energy cannot be allocated, the concerned
species has an evolutionary constraint in avoiding complex
dynamics which should be counteracted by means of life history
parameters such as ZF , s, s1 and s2.

It is implicit in model (2) that sex-allocation is regulated by
two mechanisms acting at two different time scales. The first one
is an evolutionary mechanism reflected in the existence of a sex-
allocation function in terms of population density and the second
one has to do with the population dynamics derived from this
sex-allocation function. We proved, as the inherent rate repro-
ductive number increases, that this dynamics can be very
complex to the point of exhibiting chaotic-like attractors.
However, we have to note that few experimental works exhibit
these dynamical phenomena, perhaps because they suppose that
population density remains constant or absolute fitness values are
measured as the breeding number instead of using the inherent
net reproductive rate (Caswell, 2001) as we do. Integrating model
(2) into an adaptative dynamics model for the traits b1 and b2 , or
s1 and s2, could help understanding the relationships between the
mentioned two times scales.

In general, sex allocation responses to environmental varia-
bility occurs at the individual level. In our model, the study scale
is at the population level and, therefore, the response of the
population to environmental changes should be considered as the
average of individual responses. To perform the study at the
individual level we could use a computational model like an IBM
(individual based model) which would allow subsequently a very
interesting comparison between both macroscopic and micro-
scopic approaches.

Finally, we have to note that the same sex allocation behaviour
is observed for some sequential hermaphroditic species.
An analogous modelling approach could be used in this case
provided that the model integrates a new adult class representing
asexual individuals and the corresponding transitions from the
female and male classes to the asexual one after the reproductive
period.
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Appendix A

A.1. Proof of Proposition 3.2

f1r f2 and s1rs2 imply

Jðtþ1Þ ¼ sJðtÞþ f1MðtÞþ f2FðtÞrsJðtÞþ f2ðMðtÞþFðtÞÞ

Mðtþ1ÞþFðtþ1Þ ¼ pJðtÞþs1MðtÞþs2FðtÞrpJðtÞþs2ðMðtÞþFðtÞÞ

(

ðA:1Þ

Considering now the linear system

xðtþ1Þ ¼ sxðtÞþ f2yðtÞ

yðtþ1Þ ¼ pxðtÞþs2yðtÞ

(
ðA:2Þ

we find that ZF o1 implies that the strictly dominant eigenvalue
of the associated matrix is less than 1 and so for any initial
condition ðxð0Þ; yð0ÞÞ the corresponding solution verifies
limt-1ðxðtÞ; yðtÞÞ ¼ ð0;0Þ.
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On the other hand, for every tZ0, JðtÞrxðtÞ and
MðtÞþFðtÞryðtÞ imply that Jðtþ1Þrxðtþ1Þ and Mðtþ1Þþ
Fðtþ1Þryðtþ1Þ:

Using (A.1) we have

Jðtþ1ÞrsJðtÞþ f2ðMðtÞþFðtÞÞrsxðtÞþ f2yðtÞ ¼ xðtþ1Þ

Mðtþ1ÞþFðtþ1ÞrpJðtÞþs2ðMðtÞþFðtÞÞrpxðtÞþs2yðtÞ ¼ yðtþ1Þ

(

Now, for any initial condition ðJð0Þ;Mð0Þ; Fð0ÞÞ of system (2),
setting xð0Þ ¼ Jð0Þ and yð0Þ ¼Mð0ÞþFð0Þ as initial conditions of
system (A.2), the previous inequalities imply that JðtÞrxðtÞ and
MðtÞþFðtÞryðtÞ for every tZ0, and so we obtain limt-1

ðJðtÞ;MðtÞ; FðtÞÞ ¼ ð0;0;0Þ.
A.2. Proof of Proposition 3.3 and Eq. (5)

The condition for the existence of a positive equilibrium of
system (2) (see 1.2.5 in Cushing, 1998) is that ZðWÞ ¼ 1, i.e.,
ZMð1�FðWÞÞþZFFðWÞ ¼ 1 or FðWÞ ¼ ð1�ZMÞ=ðZF�ZMÞ ¼ k. Thus,
there exists a positive equilibrium X� of system (2) if and only if
kAð0;1Þ. In this case, X� ¼ ðJ�;M�; F�Þ is unique and can be
straightforwardly calculated as the eigenvector of matrix
PðF�1

ðkÞÞ associated to eigenvalue 1 that verifies FðJ�þb1M�þ

b2F�Þ ¼ k, see (5).
The proof of Proposition 3.3 is a direct consequence of the

results in Section 1.2.2 of Cushing (1998). Writing PðZF ;XðtÞÞ ¼

TðWðtÞÞþZFF , where F ¼ ð1=ZF ÞF, and using ZF as bifurcation
parameter, Theorem 1.2.4 ensures the existence of a branch of
positive equilibria bifurcating from the equilibrium pair X ¼ 0 and
ZF ¼ 1. The condition of existence of positive equilibria kAð0;1Þ is
equivalent to either ZM o1 and ZF 41 (bifurcation to the right) or
ZM 41 and ZF o1 (bifurcation to the left). Now applying Theorem
1.2.6 of Cushing (1998), as in our case wT Bv¼ f2ð1�sÞ=ZF 40, we
obtain that the bifurcation is stable if it is to the right and
unstable if it is to the left, what proves the proposition.
A.3. Proof of Proposition 3.4

f1r f2 and s1rs2 imply

Jðtþ1Þ ¼ sJðtÞþ f1MðtÞþ f2FðtÞZsJðtÞþ f1ðMðtÞþFðtÞÞ

Mðtþ1ÞþFðtþ1Þ ¼ pJðtÞþs1MðtÞþs2FðtÞZpJðtÞþs1ðMðtÞþFðtÞÞ

(

ðA:3Þ

Considering now the linear system

xðtþ1Þ ¼ sxðtÞþ f1yðtÞ

yðtþ1Þ ¼ pxðtÞþs1yðtÞ

(
ðA:4Þ

Condition ZM 41 implies that the strictly dominant eigenvalue of
the associated matrix is larger than 1 and so for any initial
condition ðxð0Þ; yð0ÞÞað0;0Þ the corresponding solution verifies
limt-1ðxðtÞ; yðtÞÞ ¼ ðþ1; þ1Þ.

On the other hand, for every tZ0, JðtÞZxðtÞ and MðtÞþ

FðtÞZyðtÞ imply that Jðtþ1ÞZxðtþ1Þ and Mðtþ1ÞþFðtþ1Þ
Zyðtþ1Þ :

Using (A.4) we have

Jðtþ1ÞZsJðtÞþ f1ðMðtÞþFðtÞÞZsxðtÞþ f1yðtÞ ¼ xðtþ1Þ

Mðtþ1ÞþFðtþ1ÞZpJðtÞþs1ðMðtÞþFðtÞÞZpxðtÞþs1yðtÞ ¼ yðtþ1Þ

Now, for any non-negative initial condition ðJð0Þ;Mð0Þ;
Fð0ÞÞað0;0;0Þ of system (2), setting xð0Þ ¼ Jð0Þ and yð0Þ ¼Mð0Þþ
Fð0Þ as initial conditions of system (A.4), the previous inequalities
imply that JðtÞZxðtÞ and MðtÞþFðtÞZyðtÞ, for every tZ0, and so
that fðJðtÞ;MðtÞ; FðtÞÞ : tANg is unbounded.
A.4. Proof of Proposition 3.5

Let K040 be such that xFðxÞoK0 for all xZ0.
For every solution XðtÞ ¼ ðJðtÞ;MðtÞ; FðtÞÞAR3

þ of system (2) we
have

Fðtþ1Þ ¼ pFðWðtÞÞJðtÞþs2FðtÞrpFðJðtÞÞJðtÞþs2FðtÞopK0þs2FðtÞ

Since 0os2o1, there exists T1 ¼ T1ðXð0ÞÞ40 such that for
tZT1ðXð0ÞÞ

FðtÞo
pK0

1�s2
¼ K1

Now we have for all tZT1ðXð0ÞÞ that

Jðtþ1Þ ¼ sJðtÞþ f1MðtÞþ f2FðtÞosJðtÞþ f1MðtÞþ f2K1

Mðtþ1Þ ¼ pð1�FðWðtÞÞJðtÞþs1MðtÞopJðtÞþs1MðtÞ

and thus

Jðtþ1Þ

Mðtþ1Þ

 !
o

s f1

p s1

 !
JðtÞ

MðtÞ

 !
þ

f2K1

0

� �

Since ZM o1 we have that the spectral radius of matrix ðsp
f1
s1
Þ is

less than 1 and so we can find T2ðXð0ÞÞ4T1ðXð0ÞÞ such that for all
tZT2ðXð0ÞÞ
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 !
o
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what completes the proof.
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