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Abstract

In this paper, we propose a mathematical model to study a bacteria–fish system, based upon the interactions between Clostridium
botulinum and tilapia, Oerochromis mossambicus. The fish population is divided into susceptible and infected, and the infected fish
population is considered structured by the level of infection. The model is thus a system with the infected fish equation being
an evolution equation, while those corresponding to the susceptible fish and bacteria in water are ordinary differential equations.
The model is firstly transformed into a system with distributed delay for susceptible fish and bacteria and, further, under some
assumptions, into a system with discrete delay. The study of this system gives us some results concerning the existence, uniqueness,
positivity and boundedness of solutions; we also discuss the existence and stability of its equilibrium points, including conditions
for the appearance of Hopf bifurcation. The theoretical results are illustrated by some numerical simulations.
c© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Clostridium botulinum is a worldwide contaminant of fish and the causative agent of the foodborne disease referred
to as botulism in man, bankruptcy disease or also botulism in fish and avian botulism in birds. C. botulinum elaborates
toxins that are among the most powerful neuroparalytic poisons which we have knowledge of. Its incidence in fish
and incrimination in outbreaks of food-poisoning have been extensively studied, see [1] and the references therein.
Botulinal spores are widely distributed in the environment: soils, marine sediments and aquatic habitats throughout
the world. The first organisms in getting infected use to be fish which makes the infection reach men and birds.
Concerning men, it can be introduced into processed foods through raw materials or by post-processing contamination
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of foods resulting in man botulism; development of new-generation foods, which are mildly processed, contain few
or no preservatives, are packaged in vacuum or modified atmospheres to ensure long shelf life and rely primarily on
refrigeration for preservation, has raised concerns of potential increases in botulism risk [2].

In the case of birds, important outbreaks of avian botulism having fish as the source of infection have been reported.
A paradigmatic case occurred in recent years in the Salton Sea in southern California (USA) [3]. During 1996,
avian botulism killed over 15 000 birds, among them 9000 western white pelicans, Pelecanus erythrorhynchos and
1200 endangered Californian brown pelicans Pelecanus occidentalis californicus. The source of the toxin for these
fish-eating birds is considered to be fish, notably Mozambique tilapia, Oerochromis mossambicus, which is one the
most abundant fish species in the Sea and predominant food source for pelicans. The distribution and ecology of C.
botulinum in fish and aquatic environments are studied in [4], its growth and toxin production in a certain kind of
fish and shrimp are analyzed in [5] and the particular sensitivity of tilapia O. mossambicus to C. botulinum toxins is
described in [3,6].

A modelling effort to study the prey–predator system tilapia–pelican under the influence of botulism in the Salton
Sea has been carried out by Chattopadyay and collaborators [7–9]. They proposed and studied a three-dimensional
model consisting of susceptible fish population, infected fish population and their predator, the Pelican population.
They concluded that for the persistence of a system a considerable reduction of tilapia population density should be
carried out. These works are included in the so-called eco-epidemiological models which is rather a young subject
of study, which tries to merge the epidemic models with some demographic issues, [10–15], to take into account the
important effects of transmissible diseases in ecological relationships between species. One of the basic goals for the
study of eco-epidemiological models is to find conditions for which the system becomes disease free.

In this work we propose a mathematical model to study a bacteria–fish system, based upon the interactions
between C. botulinum and tilapia, O. mossambicus. In contrast with works [7–9], we include explicitly the variable
corresponding to bacteria density and, on the other hand, we do not include the predator population variable. Bacteria
live in water but they only can grow in fish. Once a fish gets bacteria spores they start growing till the fish dies. In
that sense our model could be considered a host–parasitoid system in continuous time. The fish death always happen
if the amount of bacteria in it attains a specified threshold. The fish population is divided into susceptible and infected
individuals. The infected fish population, as proposed in [16], is structured by the level of infection. The model is
a system of differential equations with initial and boundary conditions. The infected fish equation is an evolution
equation, while those corresponding to the susceptible fish and bacteria in water are ordinary differential equations.
We firstly transform this system by integrating the infected equation by means of the characteristics method obtaining
a system of two differential equations with distributed delay for susceptible fish and bacteria in the water. The delay
appears as function of the minimal amount of bacteria in a fish to be considered infected, the growth rate of bacteria in
fish and the amount threshold of bacteria provoking fish death; it represents the time interval needed for a susceptible
fish to attain the infection threshold. Similar models describing the epidemics induced by bacteriophages in marine
bacteria populations are presented in [17,18]; in contrast with the delay system discussed in [18] our model does not
introduce the delay explicitly in the equations but it is a consequence of the level of infection structure given to the
infected fish population together with the threshold condition related to the growth of bacteria in fish. The distributed
delay system is proved to reduce to a discrete delay system by assuming that most of the fish die when its level of
infection is closed to the threshold.

In this work we analyze the discrete delay system. We obtain some results concerning the existence, uniqueness,
positivity and boundedness of solutions. We also discuss the existence and stability of equilibrium points of the
system, establishing conditions for Hopf bifurcation to occur. The theoretical results are illustrated by some numerical
simulations.

The paper is organized as follows. The model is presented in Section 2. In Section 3 the use of the characteristic
lines method allows us to integrate the infected fish equation to get a system of two ordinary differential equations
with delay for the susceptible fish and the bacteria. In Section 4, the distributed delay of the system is transformed
in a discrete delay. The study of this last system is performed in Section 5. Section 6 is devoted to some numerical
simulations and a conclusion is developed in Section 7.

2. Model

We present the following model of two interacting populations of bacteria and fish:
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Infected fish dynamics
∂ I (b, t)

∂t
+
∂

∂b
(βbI (b, t)) = −υ (b) I (b, t) . (1a)

βb0 I (b0, t) = S (t) f (B (t)). (1b)

Susceptible fish dynamics
dS (t)

dt
= r S (t) (K − S (t))− S (t) f (B(t)) . (1c)

Bacteria dynamics
dB (t)

dt
= −µB (t)+

∫ b̄

b0

bυ(b)I (b, t) db. (1d)

Initial conditions I (b, 0) = I0 (b) , S(0) = S0, B(0) = B0. (1e)

We denote by B(t) the total number of bacteria in water. Fish get infected by bacteria spores and we distinguish
between susceptible and infected fish. We denote by S(t) the total number of susceptible fish. While bacteria and
susceptible fish populations are taken to be non-structured we consider the infected fish population to be disease
structured. The individual state variable for this population is the number of bacteria in the fish which is denoted by b.
So, I (b, t) denotes the density function representing the distribution of infected fish in terms of b at time t . This means
that the total number of infected fish having between b1 and b2 bacteria in their organisms is given by the following
integral∫ b2

b1

I (b, t)db.

We assume that in the absence of bacteria the fish population grows according to a logistic equation with carrying
capacity K and a ratio intrinsic growth rate to carrying capacity r .

We consider infected any fish with disease level b ≥ b0 and we suppose that no fish survive when its disease level
attains value b̄. Thus the total number of infected fish is

I (t) =
∫ b̄

b0

I (b, t)db.

Infected fish neither reproduce nor contribute to the carrying capacity of fish population.
Bacteria only grow and divide in the host. The growth of bacteria in an infected fish is governed by the equation

db

dt
= βb, b(0) = b0,

with β denoting the intrinsic growth rate of bacteria in fish. We see then that the maximal life span of an infected fish
is: τ = 1

β
ln( b̄

b0
). In the absence of fish, bacteria population decreases according to a constant mortality rate µ.

The rate of infection, i.e the inflow rate to the infected fish compartment, βb0 I (b0, t), is taken to be equal to
S(t) f (B(t)) where f (B(t))dt represents the ratio of the number of newly infected fish to the number of susceptible
fish during a small interval of time (t, t + dt).

The individual mortality rate for infected fish, υ(b), is dependent on the structurant variable b. The fact that no fish
survive for b ≥ b̄ is imposed by the following assumption:∫ b̄

b0

υ(b)db = +∞. (2)

When fish die they disintegrate in water and the bacteria grown in them up to that moment increase the total number

of bacteria in water, B(t), at a rate equal to
∫ b̄

b0
bυ(b)I (b, t)db.

3. A distributed delay version of the model

To begin with the study of system (1) we find the solution of Eq. (1a) following the characteristic lines and substitute
it into Eq. (1d) obtaining a distributed delay differential equation for the dynamics of bacteria population.
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The characteristic lines,
(̃
b(s), t̃ (s)

)
, are the trajectories made by vector field (βb̃, 1) in the level of disease × time

space, where s is a local time new variable. Solving:
db̃

ds
= βb̃, b̃(0) = b̃0

d̃t

ds
= 1, t̃(0) = t̃0

we obtain the characteristic line{
b̃ (s) = b̃0 exp (βs)
t̃ (s) = s + t̃0.

If we denote

Ĩ (s) = I
(̃
b(s), t̃ (s)

)
then Eq. (1a) can be written as

d Ĩ

ds
= −

(
β + υ

(̃
b0 exp (βs)

))
Ĩ

and, thus, we obtain

Ĩ (s) = Ĩ (0) exp
(
−

∫ s

0

(
β + υ

(̃
b0 exp (βσ)

))
dσ
)

I
(̃
b(s), t̃ (s)

)
= I

(̃
b0, t̃0

)
exp

(
−

∫ s

0

(
β + υ

(̃
b0 exp (βσ)

))
dσ
)
.

Now, for a given pair (b, t), we take:

- t̃0 = 0, s = t and b̃0 = b exp(−βt), if b exp(−βt) > b0.

- b̃0 = b0, s = 1
β

ln
(

b
b0

)
and t0 = t − 1

β
ln
(

b
b0

)
, if b exp(−βt) ≤ b0.

This yields

I (b, t) =


I0 (b exp (−βt)) exp

(
−

∫ t

0
(β + υ (b exp (β (σ − t)))) dσ

)
, if b exp (−βt) > b0,

I

(
b0, t −

1
β

ln
(

b

b0

))
exp

− ∫ 1
β

ln
(

b
b0

)
0

(β + υ (b0 exp (βσ))) dσ

 , if b exp (−βt) ≤ b0.

(3)

Substituting (3) into Eq. (1d), we obtain the following system of differential equations
dB (t)

dt
= −µB (t)+

∫ b̄

b0

bυ (b) I0 (b exp (−βt)) exp
(
−

∫ t

0
(β + υ (b exp (β (σ − t)))) dσ

)
db

if b exp (−βt) > b0
dS (t)

dt
= r S (t) (K − S (t))− S (t) f (B(t))

(4)

and 
dB (t)

dt
= −µB(t)+

∫ b̄

b0

bυ(b)I

(
b0, t −

1
β

ln
(

b

b0

))
exp

− ∫ 1
β

ln
(

b
b0

)
0

(β + υ (b0 exp (βσ))) dσ

 db

if b exp (−βt) ≤ b0
dS (t)

dt
= r S (t) (K − S (t))− S (t) f (B(t)) .

(5)
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System (4) can be written in the following form
dB(t)

dt
= −µB(t)+ h(t)

dS (t)

dt
= S (t) (K − S (t))− S (t) f (B(t))

(6)

with

h (t) =
∫ b

b0

bυ (b) I0 (b exp (−βt)) exp
(
−

∫ t

0
(β + υ (b0 exp (β (σ − t)))) dσ

)
db.

It is an o.d.e. system the solution of which is
B (t) = B (0) exp (−µt)+

∫ t

0
exp (−µ (t − σ)) h (σ ) dσ

S (t) =
S0

exp
(
−
∫ t

0 (K − f (B (s))) ds
)
+ S0

∫ t
0 exp

(
−
∫ t

s (K − f (B (σ ))) dσ
)

ds
.

Now, it suffices to study system (5) which is a distributed delay differential system.
If we put

π (b) = exp

− ∫ 1
β

ln
(

b
b0

)
0

(β + υ (b0 exp (βσ))) dσ


and

g (t, b) =
1
βb0

S

(
t −

1
β

ln
(

b

b0

))
f

(
B

(
t −

1
β

ln
(

b

b0

)))
system (5) becomes

dB(t)

dt
= −µB (t)+

∫ b̄

b0

bυ(b)π(b)g(t, b)db

dS(t)

dt
= r S(t) (K − S(t))− S(t) f (B(t)).

(7)

4. A case with concentrated mortality by infection

We study in the following the model (7) in a particular case, namely when the mortality by infection is concentrated
in a neighborhood of b = b.

Starting from a function υ which has support in the interval
[
b1, b̄

[
, b0 < b1 < b̄, we define the family υε by

υε (b) := υ

(
b − b1

ε

(
b −

(
b̄ − ε

))
+ b1

)
,

that verifies supp
(
υε
)
=
[
b − ε, b̄

]
and

∫ b̄
b0
υε (b) db = +∞, if we replace υ (b) by υε (b) in the first equation of

system (7), we get

dB (t)

dt
= −µB (t)+

∫ b̄

b0

bυε (b) πε (b) g (t, b) db, (8)

where

πε (b) = exp

− ∫ 1
β

ln
(

b
b0

)
0

(
β + υε (b0 exp (βσ))

)
dσ

 .
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The latter, by means of the change of variables u = b0 exp(βσ), becomes

πε (b) =
b0

b
exp

(
−

∫ b

b0

υε(u)

βu
du

)
.

Since g is continuous in
(
t, b̄
)
, then ∀ς > 0, ∃η0 > 0 such that ∀ε ≤ η0 and ∀b ∈

[
b̄ − ε, b̄

]
, the following

inequalities hold

(1− ς) g
(
t, b̄
)
≤ g (t, b) ≤ (1+ ς) g

(
t, b̄
)
, (9)

and thus we also have

(1− ς) g
(
t, b̄
) ∫ b̄

b0

bυε (b) πε (b) db ≤
∫ b̄

b0

bυε (b) πε (b) g (t, b) db

≤ (1+ ς) g
(
t, b
) ∫ b̄

b0

bυε (b) πε (b) db.

The fact that supp
(
υε (b)

)
=
[
b̄ − ε, b̄

]
implies that

1

βb̄

∫ b

b0

υε (s) ds ≤
∫ b

b0

υε (s)

βs
ds ≤

1

β
(
b̄ − ε

) ∫ b

b0

υε (s) ds,

from which we obtain

exp

(
−1

β
(
b̄ − ε

) ∫ b

b0

υε (s) ds

)
≤ exp

(
−

∫ b

b0

υε (s)

βs
ds

)
≤ exp

(
−1

βb̄

∫ b

b0

υε (s) ds

)
,

and finally
∫ b̄

b0

b0υε (b) exp

(
−1

β
(
b̄ − ε

) ∫ b

b0

υε (s) ds

)
db ≤

∫ b̄

b0

b0υε (b) exp
(
−

∫ b

b0

υε (s)

βs
ds

)
db,∫ b̄

b0

b0υε (b) exp
(
−

∫ b

b0

υε (s)

βs
ds

)
db ≤

∫ b̄

b0

b0υε (b) exp
(
−1

βb̄

∫ b

b0

υε (s) ds

)
db.

Calling χ(b) = exp(− 1
β(b̄−ε)

∫ b
b0
υε(u)du) we have χ ′(b) = − 1

β(b̄−ε)
υε(b) exp(− 1

β(b̄−ε)

∫ b
b0
υε(u)du), and thus,

having in mind that supp υε ⊂ [b̄ − ε, b̄],∫ b̄

b0

b0υε (b) exp

(
−1

β
(
b̄ − ε

) ∫ b

b0

υε (s) ds

)
db = b0β(b̄ − ε)

∫ b̄

b0

(−χ ′(b))db

= βb0(b̄ − ε)(−χ(b̄)+ χ(b̄ − ε)).

On the other hand, we have
∫ b̄

b0
υε(u)du = +∞ which is a direct consequence of assumption (2), and then we get

χ(b̄) = exp

(
−

1

β(b̄ − ε)

∫ b̄

b0

υε(u)du

)
= 0

which makes∫ b̄

b0

b0υε (b) exp

(
−1

β
(
b̄ − ε

) ∫ b

b0

υε (s) ds

)
db = b0β

(
b̄ − ε

)
exp

(
−1

β
(
b̄ − ε

) ∫ b̄−ε

b0

υε (s) ds

)
and thus we obtain the following inequality

b0β
(
b̄ − ε

)
exp

(
−1

β
(
b̄ − ε

) ∫ b̄−ε

b0

υε (s) ds

)
db ≤

∫ b̄

b0

bυε (b) πε (b) db.
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The same arguments used out of χ(b) to get the previous inequality give us the next one out of ψ(b) =
exp(− 1

βb̄

∫ b
b0
υε(u)du),

∫ b̄

b0

bυε (b) πε (b) db ≤ b0β b exp

(
−1

βb̄

∫ b−ε

b0

υε (s) ds

)
.

Having in mind that supp
(
υε (b)

)
=
[
b̄ − ε, b̄

]
, we have

b0β
(
b̄ − ε

)
≤

∫ b̄

b0

bυε (b) πε (b) db ≤ b0βb̄. (10)

From inequalities (9) and (10) we obtain

(1− ς) g
(
t, b̄
)

b0β
(
b̄ − ε

)
≤

∫ b̄

b0

bυε (b) πε (b) g (t, b) db ≤ (1+ ς) g
(
t, b̄
)

b0β b

and so

lim
ε→0

∫ b̄

b0

bυε (b) πε (b) g (t, b) db = g
(
t, b̄
)

b.

Consequently, Eq. (8) becomes a discrete retarded differential equation

dB (t)

dt
= −µB (t)+ b̄S

(
t −

1
β

ln
(

b̄

b0

))
f

(
B

(
t −

1
β

ln
(

b̄

b0

)))
.

The model (5) can be written as
dB (t)

dt
= −µB (t)+ b̄S(t − τ) f (B (t − τ))

dS (t)

dt
= r S (t) (K − S (t))− S (t) f (B(t))

(B0, S0) = ϕ ∈ Ω0,

(11)

where Ω0 = {ϕ = (ϕ1, ϕ2) ∈ C([−τ, 0];R2) : ϕ1 > 0, ϕ2 > 0} and τ = 1
β

ln( b̄
b0
).

5. Study of the model with discrete delay

In this section we study system (11) with the following function f (x) which is of Michaelis–Menten type:

f (x) =
x

K1 + x
,

where K1 is the bacteria density at which half of the maximum infection rate is reached.

5.1. Existence and uniqueness of the solution

System (11) can be written as{
x ′ (t) = Ax (t)+ F (xt )

x0 = ϕ,
(12)

where A =
[
−µ 0
0 r K

]
, x(t) =

(
B(t)
S(t)

)
and F : C

(
[−τ, 0];R2

)
→ R2 is defined by

F(ϕ) =

(
b̄ϕ2(−τ) f (ϕ1 (−τ))

− (ϕ2 (0))2 r − ϕ2 (0) f (ϕ1(0))

)
.
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Since f is a C∞ function then F is locally Lipschitz, and it is well known (see [19] Chapter 2, [20] Chapter 9) that
this assures the existence and uniqueness of a maximal solution of system (12) which is given by

x (t) = exp (t A) ϕ (0)+
∫ t

0
exp ((t − s) A) F (xs) ds, for t ∈

[
−τ, Tϕ

[
.

5.2. Positivity of the solution

Proposition 5.1. If ϕ > 0, then the solution (B(t), S(t)) of system (11) is non-negative on
[
−τ, Tϕ

[
.

Proof. Let 0 < t < τ . We have

dB (t)

dt
= −µB (t)+ b̄ϕ2(t − τ) f (ϕ1 (t − τ)) .

It follows that

dB (t)

dt
≥ −µB (t) .

By integration, we get

B (t) ≥ ϕ1 (0) exp (−µt) for any 0 ≤ t ≤ τ,

from where

B (t) ≥ 0 ∀t ∈ [0, τ ].

On the other hand, we have

dS (t)

dt
= S (t) l (t) ,

where l(t) = r(K − S (t))− f (B(t)). So we get

S (t) = S(0) exp
(∫ t

0
l (σ ) dσ

)
.

Since S (0) > 0, the solution is positive for any t ∈ [0, τ [. Let
(
B̂ (t) , Ŝ (t)

)
be a non-negative solution of Eq. (11)

on [0, τ ] and let τ < t < 2τ , we then have

dB (t)

dt
= −µB (t)+ b̄Ŝ(t − τ) f

(
B̂ (t − τ)

)
for any t ∈ [τ, 2τ ] .

Thus

dB (t)

dt
≥ −µB (t) for any t ∈ [τ, 2τ ] ,

which implies that

B (t) ≥ B̂ (τ ) exp (−µt) for any t ∈ [τ, 2τ ] ,

and so

B (t) ≥ 0 for any t ∈ [τ, 2τ ].

The solution (B (t) , S (t)) of system (11) is non-negative on [τ, 2τ ]. Proceeding as previously we prove by induction
the positivity of solution (B (t) , S (t)) on

[
−τ, Tϕ

]
. �
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5.3. Boundedness of the solution

Proposition 5.2. The solution (B(t), S(t)) of system (11) is bounded on
[
−τ, Tϕ

[
.

Proof. Proposition 5.1 and the choice of f (x) give S (t) f (B(t)) > 0 and so in the second equation of system (11)
we have dS(t)

dt < r S (t) (K − S (t)).

Then S(t) verifies S(t) < Ŝ(t) where Ŝ(t) is the solution of the next initial value problem:

dŜ (t)

dt
= r Ŝ (t)

(
K − Ŝ (t)

)
, Ŝ(0) = S0

which is a logistic equation that assures that

S(t) < Ŝ(t) ≤ max (S0, K ) := M.

This bound for S(t) applied to the first equation of system (11) and the fact that f (x) ∈ (0, 1) for x > 0 give us:

dB (t)

dt
< −µB (t)+ b̄M

which yields

B(t) ≤ exp(−µt)B(0)+ (1− exp(−µt))
b̄M

µ
≤ max

(
B (0) ,

b̄

µ
M

)
. �

Proposition 5.3. System (11) has a unique global solution.

Proof. Let us suppose that X (t) = (B(t), S(t)) for t ∈
[
0, Tϕ

[
is a maximal solution of system (11). It verifies

dX(t)
dt = AX (t) + F (X t ) := G (X t ) which is a continuous function of X . As X (t) is bounded on

[
0, Tϕ

[
, dX(t)

dt is
bounded on

[
0, Tϕ

[
and thus X (t) is uniformly continuous on

[
0, Tϕ

[
. So we can extend X (t) to the right of Tϕ which

contradicts our assumption on maximality. This fact implies Tϕ = +∞ that is equivalent to the global existence of
the solution.

5.4. Equilibrium points

System (11) has a trivial equilibrium E0 = (0, 0), an axial equilibrium E1 = (0, K ) and possibly a positive
equilibrium E∗ = (B∗, S∗) where B∗ and S∗ satisfy the following system:

−µB∗ +
b̄S∗B∗

K1 + B∗
= 0

r S∗(K − S∗)−
S∗B∗

K1 + B∗
= 0

B∗ > 0, S∗ > 0.

(13)

Hence S∗ = µ

b̄
(K1 + B∗) and B∗ verifies the equation:

−µr

b̄

(
K1 + B∗

)2
+ (r K − 1)(K1 + B∗)+ K1 = 0.

The only root of this equation which can be positive is

B∗ = −K1 −
b̄

2µr

(
1− r K −

√
(r K − 1)2 + 4µr K1/b̄

)
. (14)

The condition for this to hold is

µK1 < b̄K (15)
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and we obtain for S∗:

S∗ =
µ

b̄

(
K1 + B∗

)
=

1
2r

(
r K − 1+

√
(r K − 1)2 + 4µr K1/b̄

)
. (16)

5.5. Local stability of equilibrium points

To linearize system (11) about an equilibrium point (B̄, S̄) we define the local variables{
x(t) = B(t)− B̄,
y(t) = S(t)− S̄.

We then obtain the linearized system
dx

dt
= −µx(t)+ b̄ f (B̄)y(t − τ)+ b̄S̄ f ′(B̄)x(t − τ)

dy

dt
= (r K − 2r S̄ − f (B̄))y(t)− S̄ f ′(B̄)x(t),

(17)

the associated characteristic equation of which is given by det(M(λ, τ )) = 0 where

M(λ, τ ) =

[
−µ+ b̄S̄ f ′(B̄) exp (−λτ)− λ b̄ f (B̄) exp (−λτ)
−S̄ f ′(B̄) r K − 2r S̄ − f (B̄)− λ

]
.

A straightforward calculation finally gives

λ2
+
(
µ− r K + 2r S̄ + f (B̄)

)
λ+ (2r S̄ + f (B̄)− r K )µ+ (r K − 2r S̄ − λ)b̄S̄ f ′(B̄) exp(−λτ) = 0. (18)

5.5.1. Local stability around E0 = (0, 0)

Proposition 5.4. The equilibrium point E0 = (0, 0) is unstable and if r K > 1 then it is also repulsive.

Proof. In this case the characteristic equation is

λ2
+ (µ− r K )λ− µr K = 0,

the roots of which are λ1 = −µ < 0 and λ2 = r K > 0. So E0 is a saddle point.
To prove the second assertion of the proposition we use the second equation of system (11) which is of Bernoulli

type and can be written in the form:

−
d
dt

(
1
S

)
=

1
S (t)

(r K − f (B (t)))− r.

Hence
1
S
=

1
S0

exp
(
−

∫ t

0
(r K − f (B (s))) ds

)
+

∫ t

0
r exp

(
−

∫ t

s
(r K − f (B (σ ))) dσ

)
ds,

that is

S (t) =
S0

exp
(
−
∫ t

0 (r K − f (B (s))) ds
)
+ S0

∫ t
0 r exp

(
−
∫ t

s (r K − f (B (σ ))) dσ
)

ds
.

Since f (B (t)) < 1 we have

S (t) ≥
S0

exp− (r K − 1) t + r S0
r K−1 (1− exp (− (r K − 1) t))

,

thus

lim inf
t→+∞

S (t) ≥
r K − 1

r
> 0,

which proves that E0 is repulsive.
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5.5.2. Local stability around E1 = (0, K )
Now the characteristic equation becomes

λ2
+ (µ+ r K ) λ+ r Kµ−

r K 2

K1
b̄ exp(−λτ)− b̄

K

K1
λ exp (−λτ) = 0

or

(λ+ r K )

(
λ+ µ− b̄

K

K1
exp (−λτ)

)
= 0. (19)

This implies that

λ = −r K or λ+ µ− b̄
K

K1
exp (−λτ) = 0. (20)

So, λ = −r K < 0 is always an eigenvalue of (19) and we, therefore, focus on the equation

λ+ µ− b̄
K

K1
exp (−λτ) = 0. (21)

Function f (λ) = λ+ µ− b̄ K
K1

exp (−λτ), considering λ to be real, is increasing and its range is (−∞,+∞), hence
Eq. (21) possesses a unique real root λ0. We are now proving that any other root λ = α+ iω 6= λ0 of Eq. (21) verifies
α < λ0. Taking the real part in Eq. (21), we obtain

α − λ0 =
b̄K

K1
(exp(−ατ) cos(ωτ)− exp(−λ0τ)).

If we suppose that α > λ0 we get a contradiction since, in this case, the first term of the equality is positive while
the second term is negative. So α ≤ λ0. If we now assume that α = λ0 then this equality implies that cos(ωτ) = 1
and, therefore, sin(ωτ) = 0. But considering the imaginary part of (21) we get ω + b̄K

K1
sin(ωτ)e−ατ = 0, so ω = 0

yielding λ = λ0 in contradiction with the assumption that λ 6= λ0. Thus, α < λ0.
The real root λ0 is negative if µK1 > b̄K and, in this case, all eigenvalues of (19) have negative real parts. We

summarize the previous study in the following proposition.

Proposition 5.5. Let E1 = (0, K ) be the axial equilibrium point of system (11). If µK1 > b̄K then E1 is locally
asymptotically stable and if µK1 < b̄K then it is unstable.

Remark 1. If µK1 = b̄K then the unique real root of (19) is λ0 = 0 and all other eigenvalues have negative real
parts. One can check that λ0 is a simple root of (21) and, thus, the linear system is stable, but still we cannot conclude
on the stability of E1 without further analysis.

We notice that the condition for E1 = (0, K ) to be unstable coincides with condition (15) for the existence of the
positive equilibrium E∗ = (B∗, S∗).

5.5.3. Local stability around E∗ = (B∗, S∗)
In the following we assume condition (15), µK1 < b̄K , that assures the existence of the positive equilibrium

E∗ = (B∗, S∗). The characteristic equation, using that f (B∗) = r(K − S∗), can be written as:

D (λ, τ ) = λ2
+
(
µ+ r S∗

)
λ+ µr S∗ +

(
r(K − 2S∗)− λ

)
b̄S∗ f ′(B∗) exp(−λτ) = 0. (22)

In this section, we use some basic results on zeros of some transcendental functions (see [21,22]).

Proposition 5.6. The characteristic equation associated to the linearized system of (11) about the positive
equilibrium E∗ = (B∗, S∗) does not have λ = 0 as a root.

Proof. If we make λ = 0 in Eq. (22) we obtain

µr S∗ + r(K − 2S∗)b̄S∗ f ′(B∗) = 0. (23)
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From Eq. (13) we can deduce the following equality:

b̄S∗ f ′(B∗) =
µ2 K1

b̄S∗
(24)

and substituting in Eq. (23) we have the following second degree equation for S∗:

b̄(S∗)2 − 2µK1S∗ + µK K1 = 0

which does not have positive solutions if and only if µK1 < b̄K .

Now we study the case without delay.

Proposition 5.7. For τ = 0, a necessary and sufficient condition for the roots of the characteristic equation associated
to the linearized system of (11) about the positive equilibrium E∗ = (B∗, S∗) to have negative real parts is that the
following two inequalities hold:{

(µ+ r K − 1)b̄S∗ + µK1(1− µ) > 0(
(r K − 1)b̄ − 2rµK1

)
S∗ + µK1(r K + 1) > 0.

(25)

Proof. For τ = 0 the characteristic equation (22) simplifies to

D(λ, 0) = λ2
+
(
µ+ r S∗

)
λ+ µr S∗ +

(
r(K − 2S∗)− λ

)
b̄S∗ f ′(B∗) = 0 (26)

which is a second degree equation λ2
+ a1λ+ b1 = 0 where

a1 = µ+ r S∗ − b̄S∗ f ′(B∗)

and

b1 = µr S∗ + r(K − 2S∗)b̄S∗ f ′(B∗).

The roots of the characteristic equations have negative real parts if and only a1 > 0 and b1 > 0. That is,{
a1 = µ+ r S∗ − b̄S∗ f ′(B∗) > 0
b1 = µr S∗ + r(K − 2S∗)b̄S∗ f ′(B∗) > 0.

Then, using equality (24), we obtain:
µ+ r S∗ −

µ2 K1

b̄S∗
> 0

µr S∗ + r(K − 2S∗)
µ2 K1

b̄S∗
> 0

and, thus,{
r b̄(S∗)2 + b̄µS∗ − µ2 K1 > 0
b̄(S∗)2 − 2µK1S∗ + µK K1 > 0.

From Eq. (13) one can deduce that

r b̄(S∗)2 = µK1 − b̄(1− r K )S∗

which, when substituted in the previous inequalities gives us conditions (25). �

In the next corollary we state some sufficient conditions to get the same result of Proposition 5.7.
We now explore the possibility of finding imaginary roots of the characteristic equation for particular values of the

delay τ . Let λ = iω(ω ∈ R) be a root of (22), that is,

D (iω, τ) = −ω2
+
(
µ+ r S∗

)
iω + µr S∗ + (r(K − 2S∗)− iω)b̄S∗ f ′(B∗) exp (−iωτ) = 0. (27)
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Thus

exp (−iωτ) =
ω2
− (µ+ r S∗) iω − µr S∗

(r(K − 2S∗)− iω)b̄S∗ f ′(B∗)
.

Since | exp (−iωτ) |2 = 1, then

(ω2
− µr S∗)2 + (µ+ r S∗)2ω2

= (r2(K − 2S∗)2 + ω2)(b̄S∗ f ′(B∗))2,

which is polynomial equation of degree four

ω4
+

(
µ2
+ r2(S∗)2 −

(
b̄S∗ f ′(B∗)

)2)
ω2
+ (µr S∗)2 − r2(K − 2S∗)2

(
b̄S∗ f ′(B∗)

)2
= 0.

Using equalities (24) the equation is written as

ω4
− C1ω

2
+ C2 = 0 (28)

with

C1 =
1

(S∗)2b̄2

(
K 2

1µ
4
−

(
µ2
+ r2(S∗)2

)
(S∗)2b̄2

)
C2 =

µ2r2

(S∗)2b̄2

(
b̄2(S∗)4 − (K − 2S∗)2µ2 K 2

1

)
.

The fact that Eq. (28) could be transformed, letting ω2
= x , into the second degree equation x2

− C1x + C2 = 0
allows us to discuss the existence of imaginary roots of the characteristic equation (22) in a simple way in terms of
the values of C1 and C2.

We, now, establish in the following two theorems sufficient conditions for the positive equilibrium E∗ = (B∗, S∗)
to be asymptotically stable for any value of τ , in the first one, and for the system (11) to undergo Hopf bifurcations at
E∗ for certain values of τ , in the second one.

Theorem 5.1. Let E∗ = (B∗, S∗) be the positive equilibrium of system (11) and assume that inequalities (25) hold.
Let C1 and C2 be the coefficients in Eq. (28), if, either C1 < 0 and C2 > 0, or 0 < C1 < 2

√
C2 then E∗ is locally

asymptotically stable for all τ ≥ 0.

Proof. The assumptions on C1 and C2 implies that Eq. (28) has no real roots and thus that the characteristic equation
(22) has no imaginary roots for any τ ≥ 0. Since we are also assuming that for τ = 0 the roots of (22) have negative
real parts we conclude, using the results in [22], that E∗ is locally asymptotically stable for all τ ≥ 0. �

In the next theorem we assume that C2 < 0 which implies that Eq. (28) possesses a unique positive root

ω0 =

√
1
2

(
C1 +

√
C2

1 − 4C2

)
.

Thus, there is sequence τk (k = 0, 1, 2, . . .) of positive values of the delay τ such that (iω0, τk) is a solution of Eq.
(27), i.e. D (iω0, τk) = 0. If we call τ0 the only one of these values of τ for which ω0τ0 ∈ (0, 2π) then we have

τk = τ0 +
2π
ω0

k for k = 0, 1, 2, . . . .

Theorem 5.2. Let E∗ = (B∗, S∗) be the positive equilibrium of system (11), assume that inequalities (25) hold and
let the coefficient C2 in Eq. (28) be negative. Then E∗ is locally asymptotically stable for 0 ≤ τ < τ0 and unstable
for τ > τ0. Moreover, if τ = τk (k = 0, 1, 2, . . .) and

(µ+ r S∗)ω2
0

(
(µ+ r S∗)b̄S∗ − µ2 K1 cos(ω0τk)

)
+

(
ω3

0 − µr S∗ω0)(2ω0b̄S∗ + µ2 K1 sin(ω0τk)
)
> 0,

then system (11) undergoes a Hopf bifurcation at E∗.
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Proof. Since C2 < 0, then Eq. (28) has one positive root and the characteristic equation (22) has a unique imaginary
root iω0 associated to the value τ0 of the delay in the conditions of the theorem. Having in mind that for τ = 0 the
roots of (22) have negative real parts we conclude, using the results in [22], that E∗ is locally asymptotically stable
for all τ < τ0.

To prove the existence of Hopf bifurcations at τ = τk we need to verify the following transversality condition:

R

(
dλ
dτ

)∣∣∣∣ τ=τk
λ=iω0

> 0.

Considering λ as a function of τ and differentiating (22) with respect to τ we obtain

dλ
dτ
=

(r(K − 2S∗)− λ)b̄S∗ f ′(B∗)λ exp(−λτ)

2λ+ µ+ r S∗ − (1+ (r(K − 2S∗)− λ)τ)b̄S∗ f ′(B∗) exp(−λτ)
. (29)

From (22) we have

(r(K − 2S∗)− λ)b̄S∗ f ′(B∗) exp (−λτ) = −
(
λ2
+
(
µ+ r S∗

)
λ+ µr S∗

)
.

So (29) can be written as

dλ
dτ
=

−λ
(
λ2
+ (µ+ r S∗) λ+ µr S∗

)
2λ+ µ+ r S∗ − b̄S∗ f ′(B∗) exp(−λτ)+ τ

(
λ2 + (µ+ r S∗) λ+ µr S∗

) . (30)

Using that b̄S∗ f ′(B∗) = µ2 K1
b̄S∗

we, thus, obtain substituting τ = τk and λ = iω0 in (30)

dλ
dτ

∣∣∣∣ τ=τk
λ=iω0

=
(µ+ r S∗)ω2

0 + i(ω3
0 − µr S∗ω0)(

µ+ r S∗ − µ2 K1
b̄S∗

cos(ω0τk)+ τk(µr S∗ − ω2
0)
)
+ i

(
2ω0 +

µ2 K1
b̄S∗

sin(ω0τk)+ τk(µ+ r S∗)ω0

) .
From this expression it is straightforward to prove the transversality condition stated in the theorem. �

6. Numerical simulations

In this section we present graphically some simulations (MATLAB, dde23) of the solution of system (11) for
different values of the delay τ but using the same set of values for the other parameters, namely: µ = 0.2, b̄ = 10,
K1 = 12, K = 25 and r = 0.027. As µK1 = 2.4 < 250 = b̄K we have the existence of the positive equilibrium
E∗ = (B∗, S∗) = (22.8994, 0.6980).

In Fig. 1 it is presented the case without delay, τ = 0. The conditions (25) for E∗ to be asymptotically stable in
this case are satisfied: a1 = 0.1501 > 0 and b1 = 0.0476 > 0.

If we calculate the coefficients in Eq. (28) we obtain: C1 = −0.0356 < 0 and C2 = −0.0019 < 0. Thus, we can
apply Theorem 5.2, where ω0 = 0.1713 and τ0 = 4.1418, obtaining that E∗ still is asymptotically stable for τ < τ0
(see Fig. 2 where τ = 3) while E∗ is unstable for τ > τ0.

The transversality condition appearing in Theorem 5.2 is also verified,

R

(
dλ
dτ

)∣∣∣∣
τ=4.1418
λ=i0.1713

= 0.0093 > 0.

So, a Hopf bifurcation occurs at E∗ for τ = τ0. See Fig. 3 where a periodic solution appears for that value of τ .

7. Discussion

In this work we propose a mathematical model to study a bacteria–fish system. The fish population is divided into
susceptible and infected individuals, and the infected fish population is structured by the level of infection. The model,
which is a system of differential equations with initial and boundary conditions, is first transformed into a system of
two differential equations with distributed delay for susceptible fish and bacteria in the water and further reduced to a
discrete delay system by assuming that fish mortality is mainly due to infection attaining the lethal threshold.
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Fig. 1. Solution of system (11) for µ = 0.2, b̄ = 10, K1 = 12, K = 25, r = 0.027 and τ = 0.

Fig. 2. Solution of system (11) for µ = 0.2, b̄ = 10, K1 = 12, K = 25, r = 0.027 and τ = 3.

The analysis of this latter system gives the existence, for any parameter values, of two feasible equilibria:
E0 = (0, 0), which is unstable and is only reachable if there is no fish in the initial conditions, and E1 = (0, K ),
the disease free equilibrium. E1 is asymptotically stable if µ > b̄K

K1
, i.e. if bacteria mortality rate is larger than a

certain quantity that may become small if either the fish environmental carrying capacity or the lethal disease level
are themselves small. Bacteria mortality rate decreasing under this quantity, i.e. µ < b̄K

K1
, allows the existence of a
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Fig. 3. Solution of system (11) for µ = 0.2, b̄ = 10, K1 = 12, K = 25, r = 0.027 and τ = 4.1418.

positive equilibrium E∗ = (B∗, S∗), the endemic equilibrium. If conditions (25) hold then E∗ is asymptotically stable
for zero delay, τ = 0. This can be extended for τ ∈ (0, τ0) where τ0 is always positive and maybe infinite, depending
on parameter values. If τ0 < ∞ a Hopf bifurcation occurs at E∗ as seen in Fig. 3. An easy-to-analyze case happens
when r K > 1, i.e. when the susceptible fish intrinsic growth rate is greater than one. Recall that this is the condition
for E0 = (0, 0) to be repulsive. In this case it is straightforward to see that for small enough µ conditions (25) will be
certainly satisfied and, having in mind that limµ→0+ S∗ = K − 1/r , it is also possible to find values of µ for which
the coefficients in Eq. (28) are C1 < 0 and C2 > 0 yielding from Theorem 5.1 the asymptotic stability of the endemic
equilibrium for any value of the delay.
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