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a b s t r a c t

This work deals with a general class of two-time scales discrete nonlinear dynamical systems which are

susceptible of being studied by means of a reduced system that is obtained using the so-called

aggregation of variables method. This reduction process is applied to several models of population

dynamics driven by demographic and migratory processes which take place at two different time

scales: slow and fast. An analysis of these models exchanging the role of the slow and fast dynamics is

provided: when a Leslie type demography is faster than migrations, a multi-attractor scenario appears

for the reduced dynamics; on the other hand, when the migratory process is faster than demography,

the reduction process gives rise to new interpretations of well known discrete models, including some

Allee effect scenarios.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Ecological models always entail a decision on the level of detail
to be included in them, and this decision should be taken on the
basis of optimizing the benefit of the study. Any model is a
compromise between generality and simplicity on the one hand
and biological realism on the other. The more biological details are
included in specifying a model the more complicated and specific
it becomes.

Nature offers many examples of systems where several
processes act at different time scales. It is then usual to consider
those events occurring at the fast scale as being instantaneous
with respect to the slower ones. This sort of decoupling implies a
reduction of the number of variables or parameters needed to
describe the evolution of the system. A subsequent issue is to
determine conditions for these reductions to give good approx-
imations of the real results. An example of this general framework
are the so-called aggregation methods which study the relation-
ship between a large class of two-time scales complex systems
and their corresponding aggregated or reduced ones. The aim of
aggregation methods is twofold. On the one hand they construct

the reduced systems that summarize the dynamics of the complex
ones, thus simplifying their analytical study, and on the other
hand, looking at the relationship in the opposite sense, the
complex systems serve as explanations of the simple form of the
aggregated ones. A review on these methods in different
mathematical settings, with updated bibliography, can be found
in Auger and Bravo de la Parra (2000) and Auger et al. (2008).

In this work we will apply the aggregation of variables method
in the setting of discrete dynamical systems. In the construction of
a discrete model with two-time scales it is essential to decide if
the time unit should be associated to the slow process or to the
fast one. Bravo de la Parra et al. (1995) and Bravo de la Parra et al.
(1997) study models in which the time unit of the dynamical
system is chosen to be that of the fast dynamics. Nevertheless, this
choice is not always possible, because the action of the slow
process during a fast time unit may not be describable. But if the
system is expressed in the slow time unit, it is always possible to
describe the action of the fast process during it by repeating a
large enough number of times its action during a slow unit. From
this point of view, it is interesting to extend to nonlinear cases
previous work, made by some of us, that develop the methods of
aggregation of variables for linear discrete systems expressed in
the slow time unit (see Sánchez et al., 1995; Sanz and Bravo de la
Parra, 1999).

A first attempt to do this is Bravo de la Parra et al. (1999),
where the slow dynamics is assumed to be linear. An extension to
a general class of nonlinear discrete models has been recently
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made by some of the authors and can be found in Sanz et al.
(2008). In this work, a very general discrete system including two
different processes acting at different time scales is proposed. The
time unit is the one corresponding to the slow dynamics and the
effect of the fast dynamics is represented assuming that the slow
time unit is divided into a large number of fast time units and so
that it acts a large number of times during one single slow time
unit. Then some assumptions, generalizing those required in
previous works, are proposed which allow the construction of a
reduced model associated to the original one. Several results
relating the solutions to both systems have been established: it is
possible to study the existence, stability and basins of attraction of
steady states and periodic solutions to the original system
performing the study for the corresponding aggregated system.

The hypotheses of the general results of Sanz et al. (2008) are
not easy to prove in particular cases. In Nguyen Huu et al. (2008)
this is done for a particular multi-patch host–parasitoid model
where migration, which is fast in comparison to demography, is
considered density independent for hosts and dependent on local
host population density for parasitoids. In this work we present a
general class of two-time scales nonlinear discrete models as a
particular case of the more abstract setting described in Sanz et al.
(2008). Then we construct the corresponding reduced models and
prove that the approximation results established in Sanz et al.
(2008) are valid. The reduction process is applied to several models
of population dynamics driven by nonlinear demographic and
migration processes which take place at two different time scales,
slow and fast. We provide an analysis of these models exchanging
the role of the slow and fast dynamics: when a Leslie type
demography is faster than migrations, a multi-attractor scenario
appears for the aggregated dynamics; on the other hand, when the
migratory process is faster than demography, by introducing
different migration schemes we derive some well known discrete
models whose analysis gives rise to some Allee effect scenarios.

The organization of the paper is as follows: in Section 2 we
specify the mathematical formulation of a general class of two-
time scales discrete nonlinear dynamical systems to which a
reduction process can be applied, yielding the so-called aggregated

model, whose dynamical features approximate those of the
original more complex model. Section 3 is devoted to the
application of these mathematical results to several specific
models of population dynamics. Some conclusions are given in
Section 4. To facilitate the reading, technical mathematical proofs
of the results established in Section 2 are deferred to a final
Appendix A.

2. Application of the aggregation of variables method to the
reduction of a general nonlinear discrete dynamical system

The main goal of this section is to apply the aggregation of
variables method to the reduction of a general class of nonlinear
discrete models with two-time scales, which fit in the framework
of an original formulation made by some of the authors and
developed in detail in Sanz et al. (2008). To facilitate the reading,
we will start describing the model and its main mathematical
features, as done in Sanz et al. (2008).

First of all, let us present the so-called complete or general

system to which the aggregation of variables method will be
applied.

The model evolves in discrete time and is driven by two
processes with different time scales, slow and fast. Such processes
are defined, respectively, by two mappings

S; F : ON�!ON ; S; F 2 C1
ðONÞ,

where ON � RN is a non-empty open set.

We choose as time step of the model that corresponding to the
slow dynamics. In order to approximate the effect of the fast
process over a time interval much bigger than its own, we assume
that during this time step the fast process acts k times before the
slow process acts, where k is a positive integer that in applications
will take a big value.

Therefore, denoting by Xk;n 2 R
N the vector of state variables at

time n, the complete or general system is defined by

Xk;nþ1 ¼ SðFk
ðXk;nÞÞ¼:HkðXk;nÞ, (1)

where Fk denotes the k-fold composition of F with itself.
In order to reduce system (1), we have to impose some

conditions on the fast process, which are specified in the following
hypothesis:

Hypothesis 1. For each initial condition X 2 ON , the fast dynamics
tends to an equilibrium. That is, there exists a mapping
F̄ : ON ! ON , F̄ 2 C1

ðONÞ, such that

8X 2 ON ; lim
k!1

Fk
ðXÞ ¼ F̄ðXÞ.

Moreover, there exist a nonempty open set Oq � Rq with qoN,
and two mappings

G : ON�!Oq; G 2 C1
ðONÞ; E : Oq�!ON ; E 2 C1

ðOqÞ

such that F̄ can be expressed as F̄ ¼ E � G.

Let us define a new set of variables, called global variables, by

Yn:¼GðXnÞ.

The reduced or aggregated system which approximates system (1)
is given by

Ynþ1 ¼ G � S � EðYnÞ:¼HðYnÞ. (2)

Note that through this procedure we have constructed an
approximation that allows us to reduce a system with N variables
to a new system with q variables. In most practical applications,
q will be much smaller than N.

To establish a relationship between the solutions to systems
(1) and (2), the following assumption is crucial:

Hypothesis 2. The mappings F and F satisfy that

lim
k!1

Fk
¼ F̄; lim

k!1
DFk
¼ DF̄

uniformly on any compact set K � ON .

As usual, the notation DF represents the differential of F.
Then, the following theorem, whose details can be found in

Sanz et al. (2008), guarantees that the existence of an equilibrium
point Y� for the aggregated system implies, for large enough k, the
existence of an equilibrium X�k for the original system, which can
be approximated in terms of Y�. Moreover, in the hyperbolic case,
the stability of Y� is equivalent to the stability of X�k and in the
asymptotically stable (AS) case, the basin of attraction of X�k can be
approximated in terms of the basin of attraction of Y�.

Theorem 1. Under Hypotheses 1 and 2, let Y� 2 Rq be a hyperbolic

equilibrium point of system (2). Then, there exists an integer k0X0
such that for all kXk0 system (1) has an equilibrium point X�k which is

hyperbolic and satisfies

lim
k!1

X�k ¼ X�; X�:¼S � EðY�Þ.

Moreover, the following holds:

(i) X�k is AS (resp. unstable) if and only if Y� is AS (resp. unstable).
(ii) Let Y� be AS and let X0 2 ON be such that Y0:¼GðX0Þ satisfies that

limn!1 H
n
ðY0Þ ¼ Y�. Then, for all kXk0, limn!1 Hn

kðX0Þ ¼ X�.
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Although it is not stated in Theorem 1, these results are also
valid for m-periodic points (see Sanz et al., 2008).

Let us recall that an equilibrium point X� of a discrete
dynamical system Xnþ1 ¼ TðXnÞ is hyperbolic if none of the
eigenvalues of the differential operator DTðX�Þ has modulus 1. If
all the eigenvalues of DTðX�Þ have modulus strictly less than 1,
then X� is AS and the set of initial conditions whose corresponding
solutions tend to X� is called the basin of attraction. If any of the
eigenvalues of DTðX�Þ have modulus larger than 1, then X� is
unstable. See Robinson (1995) for the general theory.

2.1. Fast dynamics depending on global variables

As we mentioned in the Introduction, for a particular two-time
scales discrete model it is difficult to prove that Hypothesis 2 in
Theorem 1 is met. Here we present a class of models for which
this is proved and so Theorem 1 applies.

Let us suppose a population divided into groups, and each of
these groups divided into several subgroups. We can think, for
instance, of an age-structured population occupying a multi-patch
environment. In this case, the population can be considered
divided into groups which are the age classes, and each group
divided into subgroups which are the individuals inhabiting each
of the different patches.

The state at time n of a population distributed into q groups is

represented by a vector Xn:¼ðx1
n; . . . ; x

q
nÞ

T
2 RN

þ, where each vector

xi
n:¼ðx

i1
n ; . . . ; x

iNi

n Þ
T
2 RNi

þ , i ¼ 1; . . . ;q, represents the state of the i-

group which in turn is divided into Ni subgroups with

N ¼ N1
þ � � � þ Nq.

Following Sánchez et al. (1995), we will suppose that for each
group i ¼ 1; . . . ;q, the fast dynamics is internal, conservative of the
total number of individuals and with an AS distribution among
the groups. These assumptions are met in the particular case of
representing the fast dynamics for each group i by a projection
matrix which is a regular stochastic matrix of dimensions Ni

� Ni.
Hypothesis 2 in Theorem 1 is trivially satisfied if these projection
matrices are constant. Our aim in what follows is to extend this
situation to the nonlinear case in which such projection matrices
depend on the total number of individuals in each group. To be
precise, let us introduce some definitions.

Let 1i:¼ð1; . . . ;1Þ
T
2 RNi

, i ¼ 1; . . . ; q, U:¼diag ð1T
1; . . . ;1

T
qÞ and

Oq:¼UON � Rq.
For each i ¼ 1; . . . ; q, let Pið�Þ 2 C1

ðOqÞ be a matrix function such
that for all Y 2 Oq, PiðYÞ is a regular stochastic matrix of
dimensions Ni

� Ni. As a consequence, 1 is an eigenvalue simple
and strictly dominant in modulus for PiðYÞ, with associated right
and left eigenvectors viðYÞ, 1i, respectively. The eigenvector viðYÞ is
the AS probability distribution, i.e., viðYÞX0 and 1T

i viðYÞ ¼ 1.
The fast dynamics for the whole population is represented by

the block diagonal matrix:

8Y 2 Oq; FðYÞ:¼ diag ðP1ðYÞ; . . . ; PqðYÞÞ.

The Perron–Frobenius theorem applies to each matrix PiðYÞ, so
that we have

PiðYÞ:¼ lim
k!1

Pk
i ðYÞ ¼ ðviðYÞj . . . jviðYÞÞ ¼ viðYÞ1

T
i .

Introducing the notations

FðYÞ:¼ diagðP1ðYÞ; . . . ; PqðYÞÞ,

VðYÞ:¼ diagðv1ðYÞ; . . . ; vqðYÞÞ

we also have

8Y 2 Oq; FðYÞ ¼ lim
k!1

Fk
ðYÞ ¼VðYÞU.

Finally, the nonlinear model that we are considering is
formulated as

Xk;nþ1 ¼ SðFk
ðUXk;nÞXk;nÞ. (3)

If we think that the ratio of slow to fast time scale tends to
infinity i.e., k!1, or in other words, that the fast process is
instantaneous in relation to the slow process, we can approximate
system (3) by the following auxiliary system:

Xnþ1 ¼ SðFðUXnÞXnÞ ¼ SðVðUXnÞUXnÞ.

We see that the evolution of this system depends on UXn 2 R
q,

which suggests the global variables should be defined by

Yn:¼UXn

and therefore the aggregated system of system (3) is

Ynþ1 ¼ USðVðYnÞYnÞ. (4)

We can now establish an approximation result between the
solutions to the complete system (3) and the aggregated model
(4), as a consequence of Theorem 1.

Theorem 2. Let Y� 2 Rq be a hyperbolic equilibrium point of system

(4). Then, there exists an integer k0X0 such that for all kXk0 system

(3) has an equilibrium point X�k which is hyperbolic and satisfies

lim
k!1

X�k ¼ X�; X�:¼SðVðY�ÞY�Þ.

Moreover, the following holds:

(i) X�k is AS (resp. unstable) if, and only if, Y� is AS (resp. unstable).
(ii) Let Y� be AS and let X0 2 ON be such that the solution fYngn¼0;1;...

to (4) corresponding to the initial data Y0:¼UX0 satisfies that

limn!1Yn ¼ Y�. Then, for all kXk0, the solution to (3)
fXk;ngn¼0;1;... with Xk;0 ¼ X0 satisfies that limn!1 Xk;n ¼ X�k.

Proof. See Appendix A.

In some applications, particularly in ecology, it would be more
realistic to have the fast dynamics dependent on the state
variables and not just on the global variables as in Theorem 2.
Nevertheless, it does not seem easy to find a proof for this more
general case and specific proofs should be provided for each
particular case of fast dynamics depending on state variables as it
is done in Nguyen Huu et al. (2008). On the other hand, as we will
see in the next section, it is possible to develop interesting
applications keeping in the framework of Theorem 2.

3. Two-time discrete population dynamics models including
demography and migrations

In this section we illustrate the previous results by means of
some applications. We begin treating the case of a population
inhabiting a multi-patch environment but with no further
structure, thus the corresponding aggregated model is a scalar
difference equation. Then we develop the reduction of a model of
an age-structured population in a multi-patch habitat with the
special feature of considering demography fast in comparison
with migration. This last example extends slightly the framework
presented in Section 2.1.

3.1. Multi-patch models with fast migrations

The models we are considering in this section fit in the general
setting of Section 2.1 but consider a non-structured population,
that is, a population constituted by just one group which is
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subdivided into m sub-groups representing the local populations
at the m patches making up its habitat.

As a consequence, the population vector at time n is
Xn ¼ ðx1

n; . . . ; x
m
n Þ

T, the fast dynamics (associated in our models to
the migration process) is represented by a regular stochastic
matrix FðyÞ, whose entries depend on the total population
y:¼x1 þ � � � þ xm, and the slow dynamics is represented by a
general C1-map S : Om � Rm

þ ! Om which gives the local demo-
graphy in each patch that, in general, could be influenced by the
population densities in all the patches.

For the sake of simplicity in what follows we will consider a
two patch environment (i.e. m ¼ 2), and the local dynamics
depending only on the local population. That is, the slow
dynamics is described by

SðXnÞ:¼ðs1ðx
1
nÞ; s2ðx

2
nÞÞ; Xn:¼ðx

1
n; x

2
nÞ,

where si, i ¼ 1;2, are two non-negative C1 functions defined on
Rþ.

The migration matrix FðyÞ can be written in terms of two C1

real functions a;b : Rþ ! ð0;1Þ:

FðyÞ:¼
1� aðyÞ bðyÞ

aðyÞ 1� bðyÞ

 !
.

Since FðyÞ is a regular stochastic matrix, we have

F̄ðyÞ:¼ lim
k!1

Fk
ðyÞ ¼ ðvðyÞjvðyÞÞ,

where

vðyÞ:¼
v1ðyÞ

v2ðyÞ

 !
¼

bðyÞ

aðyÞ þ bðyÞ

aðyÞ

aðyÞ þ bðyÞ

0
BBB@

1
CCCA.

A straightforward application of the results established in
Section 2 leads to the aggregated system:

ynþ1 ¼ s1ðv1ðynÞynÞ þ s2ðv2ðynÞynÞ. (5)

3.1.1. Malthusian local demography

We will carry out a detailed analysis of the above model
assuming that a malthusian dynamics acts at each patch, that is

SðXnÞ:¼ðd1x1
n; d2x2

nÞ. (6)

Moreover we will assume that 0od1o1od2, which means that
patch 1 behaves as a sink and patch 2 as a source.

When the slow dynamics is given by (6), the aggregated model
(5) reads as

ynþ1 ¼
d1bðynÞ þ d2aðynÞ

aðynÞ þ bðynÞ

� �
yn:¼hðynÞyn. (7)

It is evident that y0 ¼ 0 is a fixed point of the above model, but we
are mainly interested in the existence and stability properties of
the positive fixed points y�, which are the solutions to equation
hðyÞ ¼ 1.

To study the behaviour of function h, we should take into
account its derivative:

h0ðyÞ ¼ ðd2 � d1Þ
a0ðyÞbðyÞ � aðyÞb0ðyÞ

½aðyÞ þ bðyÞ�2
.

For the sake of simplicity we restrict our analysis to the case in
which functions aðyÞ, bðyÞ are monotone. When one of them is
increasing and the other is decreasing, it is evident that hðyÞ is
strictly monotone. Therefore, whether function hðyÞ crosses or not
the line y ¼ 1 is completely determined by the values hð0Þ and
hð1Þ:¼limy!þ1 hðyÞ. Moreover, in the case in which y� exists, it is

unique and its stability is determined by the value h0ðy�Þy�. On the
other hand, the stability of the fixed point y0 ¼ 0 depends on the
value of hð0Þ.

These results are summarized as follows:

aðyÞ bðyÞ hð0Þ hð1Þ y0 ¼ 0 y�

& % 41 2 ð0;1Þ U 9; U or AS

& % 41 41 U )
& % 2 ð0;1Þ 2 ð0;1Þ GAS )
% & 2 ð0;1Þ 41 AS 9, U

% & 2 ð0;1Þ 2 ð0;1Þ GAS )
% & 41 41 U )

where the arrows & and % stand for a decreasing and an
increasing function, respectively, and U, AS and GAS stand for
unstable, asymptotically stable and globally asymptotically stable,
respectively.

The fact that local dynamics are of malthusian type allows
extinction and unbounded growing to be expected at a global
level. Nevertheless, as we see in the first row of the previous table,
certain kinds of density dependent migrations can lead to a
positive AS equilibrium. Two examples are described below.

If we choose

aðyÞ ¼
a� d1ð1þ byÞ

d2 � d1
and bðyÞ ¼

d2ð1þ byÞ � a
d2 � d1

(8)

for positive parameters a and b, formal calculations yield the well-
known Beverton–Holt (1957) equation:

ynþ1 ¼
ayn

1þ byn

which always possesses a positive equilibrium which is globally
AS. The formal calculations are valid provided that aðyÞ; bðyÞ 2

ð0;1Þ, which is true if

a� d2

b
oyo

a� d1

d2b
.

So, if we choose a 2 ðd1; d2Þ and b 2 ð0;a� d1=d2ŷÞ we can easily
prove that aðyÞ; bðyÞ 2 ð0;1Þ whenever y 2 ½0; ŷ�.

Similar requirements allow us to obtain the Ricker (1954)
equation

ynþ1 ¼ expðrð1� yn=KÞÞyn,

where r and K are positive parameters, by choosing

aðyÞ ¼
erð1�y=KÞ � d1

d2 � d1
and bðyÞ ¼

d2 � erð1�y=KÞ

d2 � d1
. (9)

We have illustrated how the aggregation procedure provides an
explanation of two classical mono-species discrete models in
terms of a sink–source environment with fast density dependent
migrations coupled to simple local malthusian dynamics. Similar
approaches using aggregation methods for ordinary differential
equations were presented in Auger and Poggiale (1996) and Auger
et al. (2000).

Some others interpretations of this kind have been recently
presented by Geritz and Kisdi (2004). There, starting from a
continuous-time resource-consumer model for the dynamics
within a year, a discrete-time model for the between-year
dynamics is derived. This model is analysed assuming that the
within-year resource dynamics in absence of consumers takes
different functional forms. Considering particular constant rates
for the influx and efflux of the resource, the Beverton–Holt model,
the Ricker model and many other models are recovered. Further
models derived by systematically varying the within-year pat-
terns of reproduction and aggression between individuals can be
found in Eskola and Geritz (2007).
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To go on with the study of Eq. (7), we notice that the cases in
which both aðyÞ and bðyÞ are simultaneously increasing or
decreasing functions yield a more complicated dynamics and
Allee effect scenarios may arise.

We illustrate this fact with the next example. Let us assume
that aðyÞ and bðyÞ are increasing functions given by

aðyÞ:¼
y2

y2 þ b
and bðyÞ:¼

y2 þ b
y2 þ d

; 0obod.

Function hðyÞ in (7) becomes

hðyÞ ¼
d1ðy

2 þ bÞ2 þ d2ðy
2 þ dÞy2

ðy2 þ bÞ2 þ ðy2 þ dÞy2
.

The qualitative analysis of Eq. (7) is straightforward having in
mind that positive solutions are decreasing if hðyÞo1, increasing if
hðyÞ41 and the positive fixed points are the roots of equation
hðyÞ ¼ 1. Since hð0Þ ¼ d1o1, the fixed point y�0 ¼ 0 is always AS.

To find when hðyÞo1 and when hðyÞ41 we know that hð0Þ ¼
d1o1 and limy!1 hðyÞ ¼ ðd1 þ d2Þ=2. Moreover, if we look at the
sign of h0ðyÞ,

h0ðyÞ ¼
2ðd2 � d1Þyðð2b� dÞy4 þ 2b2y2 þ b2dÞ

ð2y4 þ ð2bþ dÞy2 þ b2
Þ
2

,

we see that if dp2b then hðyÞ is increasing in ½0;1Þwhile if d42b
then hðyÞ is increasing in ½0; yMÞ and decreasing in ðyM ;1Þ, where
yM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bd=ðd� 2bÞ

p
is the only positive root of equation h0ðyÞ ¼ 0.

Thus, we have:

	 If dp2b and ðd1 þ d2Þ=2p1, there is no positive fixed point.
	 If dp2b and ðd1 þ d2Þ=241, there is a positive fixed point

which is unstable.
	 If d42b and hðyMÞo1, there is no positive fixed point.
	 If d42b and hðyMÞ ¼ 1, yM is the only positive fixed point and it

is unstable.
	 If d42b, hðyMÞ41 and ðd1 þ d2Þ=2X1, there is a positive fixed

point, y�1oyM , which is unstable.
	 If d42b, hðyMÞ41 and ðd1 þ d2Þ=2o1, there are two positive

fixed points, y�1oyMoy�2. In this case the positive solutions of
Eq. (7), which are all monotone, verify the following:
If the initial condition y0oy�1 then limn!1 yn ¼ 0 and if y04y�1
then limn!1 yn ¼ y�2,
i.e., at low population densities population gets extinct, while
the evolution of population densities above y�1 leads to y�2.

As we see in the last case, an Allee effect scenario appears out of
local malthusian dynamics in a sink–source environment with
fast density dependent migrations.

3.1.2. Beverton–Holt local demography

Our main goal in this section is to illustrate through another
example, now with local dynamics different from malthusian, that
nonlinear fast migrations can give rise to a variety of situations,
among them Allee-type effect dynamics. Let us choose a local
demography of Beverton–Holt type, together with monotone
migrations. That is, in lieu of (6), we assume that the slow
dynamics is given by

SðXnÞ:¼
d1x1

n

1þ c1x1
n

;
d2x2

n

1þ c2x2
n

� �
; 0od1o1od2; ci40,

i ¼ 1;2

and that functions aðyÞ, bðyÞ defining the fast dynamics FðyÞ are
given by

aðyÞ:¼
y

1þ y
; bðyÞ:¼

1

1þ y
.

In this situation, the aggregated system (5) reads

ynþ1 ¼ hðynÞyn; hðynÞ:¼
d1

1þ ð1þ c1Þyn

þ
d2yn

1þ yn þ c2y2
n

.

Arguing in a similar way to the previous section, we obtain that
y0 ¼ 0 is an equilibrium point which is always AS since
hð0Þ ¼ d1o1.

The positive equilibria, if they exist, are the positive solutions
to hðyÞ ¼ 1. Notice that

h0ðyÞ ¼ �
d1ð1þ c1Þ

½1þ ð1þ c1Þy�
2
þ

d2ð1� c2y2Þ

ð1þ yþ c2y2Þ
2

.

If d24d1ð1þ c1Þ, then there exists a unique value yM 2 ð0;1=
ffiffiffiffiffi
c2
p
Þ

such that h0ðyMÞ ¼ 0 and moreover h takes its maximum value at
this point. Therefore, bearing in mind that hð0Þ ¼ d1o1 and
hðþ1Þ ¼ 0, the equation hðyÞ ¼ 1 will have either two positive
solutions or none according to hðyMÞ41 or hðyMÞo1; respectively.
One sufficient condition for hðyMÞ41 is that hð1=

ffiffiffiffiffi
c2
p
Þ41 which

yields a relationship between the parameters of the model. In
turn, a simple sufficient condition for this is d241þ 2

ffiffiffiffiffi
c2
p

.
Summing up, we can assure that for large enough values of d2

the aggregated model has two positive equilibria 0oy�oy�� such
that y� is unstable and y�� can be AS or unstable.

3.2. An age-structured population model with fast demography

This section can be considered as an extension of some results
in Sanz and Bravo de la Parra (1999), where a linear case is
discussed. The theory developed in Section 2 does not exactly
match with the setting here, but it can be easily adapted:
everything works if the fast dynamics is given by a non-negative
C1 matrix function whose dominant eigenvalue is 1 and the
corresponding associated normalized left eigenvector is constant.

To be precise, let us consider an age-structured population
distributed between two spatial patches. We will distinguish two
age classes: juvenile (class 1, non-reproductive) and adult (class 2,
reproductive), so that the state of the population at time n is
represented by a vector:

Xn:¼ðx
1
n; x

2
nÞ

T
2 R4

þ; xi
n:¼ðx

i1
n ; x

i2
n Þ

T; i ¼ 1;2,

where xij
n stands for the individuals of class j inhabitant patch i.

Let us set demography as a local process driven by a Leslie C1

matrix function:

8y 2 Rþ; LiðyÞ:¼
0 f i

12ðyÞ

ti
21ðyÞ ti

22ðyÞ

 !
; i ¼ 1;2,

where, as usual, f i
12ð�Þ stands for the fertility rate of the adults and

ti
2jð�Þ, j ¼ 1;2, stand for the survival rate of each age class. In order

to fit in the framework of Section 2.1, let us impose that 1 is the
strictly dominant in modulus eigenvalue of matrix Lið�Þ, which
yields

8y 2 Rþ; ti
22ðyÞ þ f i

21ðyÞt
i
21ðyÞ ¼ 1; i ¼ 1;2. (10)

As a consequence, we can find associate positive right and left
eigenvectors viðyÞ, uiðyÞ, which can be chosen normalized by the
condition uT

i ðyÞviðyÞ ¼ 1. In fact, these vectors are given by

uiðyÞ ¼

1

1

ti
12ðyÞ

0
B@

1
CA:¼ ui

1ðyÞ

ui
2ðyÞ

0
@

1
A,
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viðyÞ ¼

f i
12ðyÞt

i
21ðyÞ

1þ f i
12ðyÞt

i
21ðyÞ

ti
21ðyÞ

1þ f i
12ðyÞt

i
21ðyÞ

0
BBBBB@

1
CCCCCA:¼

vi
1ðyÞ

vi
2ðyÞ

0
@

1
A.

The general theory of non-negative matrices applies, so that
there exists the limit:

8y 2 Rþ; L̄iðyÞ:¼ lim
k!1

Lk
i ðyÞ ¼ viðyÞu

T
i ðyÞ; i ¼ 1;2.

The fast dynamics for the whole population will be represented
by the block diagonal matrix:

8Y:¼
y1

y2

 !
2 Rþ; LðYÞ:¼

L1ðy1Þ 0

0 L2ðy2Þ

 !
.

Bearing in mind the above considerations, it is evident that the
following limit exists:

L̄ðYÞ:¼ lim
k!1

Lk
ðYÞ ¼

L̄1ðy1Þ 0

0 L̄2ðy2Þ

 !
¼VðYÞUðYÞ,

whereas in Section 2 we have introduced the notations:

VðYÞ:¼ diagðv1ðy1Þ; v2ðy2ÞÞ; UðYÞ:¼ diagðuT
1ðy1Þ;u

T
2ðy2ÞÞ.

In addition, we consider migrations between patches. To
simplify, we will consider a linear process represented by a
constant stochastic matrix:

M:¼

1� a1 0 a2 0

0 1� b1 0 b2

a1 0 1� a2 0

0 b1 0 1� b2

0
BBBBB@

1
CCCCCA; ai; bi 2 ð0;1Þ,

i ¼ 1;2,

where ai and bi stand for the fraction of juvenile and adult
individuals which move from patch i, respectively.

In this section we are assuming that demography is much
faster than migrations and spatially internal, that is, only
dependent on the population on each patch. In order to be able
to retain the smoothness results established in Section 2, we will
assume that matrix Uð�Þ is constant. To meet this assumption we
only need to suppose that ti

21ð�Þ is constant, what we do in the
sequel.

Then, the global variables are defined by

Yn:¼UXn ¼
x11

n þ ð1=t1
12Þx

12
n

x21
n þ ð1=t2

12Þx
22
n

 !
:¼

y1
n

y2
n

 !

which have a biological meaningful interpretation as they are the
population at each patch weighted by its reproductive values.
Therefore it makes sense to consider the fertility rates of the
reproductive class as a function of the global variables, and then
the coefficients ti

22ð�Þ, i ¼ 1;2 are also dependent on the global
variables because of relation (10).

Finally, the slow–fast model that we are considering is

Xk;nþ1 ¼ MLk
ðUXk;nÞXk;n

which, arguing as in Section 2 can be reduced to the following
system expressed in terms of the global variables:

Yn ¼ UMVðYnÞYn.

Direct substitutions lead to the following nonlinear aggregated
system:

y1
nþ1 ¼ ½u

1
1ð1� a1Þv

1
1ðy

1
nÞ þ u1

2ð1� b1Þv
1
2ðy

1
nÞ�y

1
n

þ½u1
1a2v2

1ðy
2
nÞ þ u1

2b2v2
2ðy

2
nÞ�y

2
n;

y2
nþ1 ¼ ½u

2
1a1v1

1ðy
1
nÞ þ u2

2b1v1
2ðy

1
nÞ�y

1
n

þ½u2
1ð1� a2Þv

2
1ðy

2
nÞ þ u2

2ð1� b2Þv
2
2ðy

2
nÞ�y

2
n

8>>>><
>>>>:
to which the general results on stability of equilibria established
in Section 2 apply.

To perform an numerical analysis of this system, set

f i
12ðy

iÞ:¼
ai

1þ yi
; aiX0; i ¼ 1;2

which provides the aggregated system:

y1
nþ1 ¼

ð1� a1Þa1t1
21 þ ð1� b1Þð1þ y1

nÞÞ

1þ a1t1
21 þ y1

n

" #
y1

n

þ
t2

21ða2a2 þ b2ð1þ y2
nÞ=t1

21Þ

1þ a2t2
21 þ y2

n

" #
y2

n;

y2
nþ1 ¼

t1
21ða1a1 þ b1ð1þ y1

nÞ=t2
21Þ

1þ a1t1
21 þ y1

n

" #
y1

n

þ
ð1� a2Þa1t2

21 þ ð1� b2Þð1þ y2
nÞ

1þ a2t2
21 þ y2

n

" #
y2

n

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:
whose fixed points are the solutions to

0 ¼ �
a1a1t1

21 þ b1ð1þ y1Þ

1þ a1t1
21 þ y1

y1

þ
t2

21ða2a2 þ b2ð1þ y2Þ=t1
21Þ

1þ a2t2
21 þ y2

y2;

0 ¼
t1

21ða1a1 þ b1ð1þ y1Þ=t2
21Þ

1þ a1t1
21 þ y1

y1

�
a2a1t2

21 þ b2ð1þ y2Þ

1þ a2t2
21 þ y2

y2:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(11)

Obviously, ðy1
0; y

2
0Þ:¼ð0;0Þ is a fixed point to Eq. (11). Moreover,

there are no fixed points of the form ðy1;0Þ or ð0; y2Þ with y140 or
y240. Further calculations give rise to

y2 ¼
a2b1a2ðy

1 þ 1Þ

a1b2a1
� 1,

where y1 is any solution to equation

a1a1t1
21 þ b1ð1þ y1Þ

1þ a1t1
21 þ y1

y1 ¼

t2
21 a2a2 þ

a2b1a2ð1þ y2Þ

a1a1t1
21

 !

a2t2
21 þ

a2b1a2ð1þ y1Þ

a1b2a1

�
a2b1a2ðy

1 þ 1Þ

a1b2a1
� 1

� �
.

Numerical experiments carried out using a large range for the
parameters show that there are several scenarios for which there
exists a positive AS fixed point, as well as several scenarios for
which there exist two positive AS fixed points. This is shown for
particular values of the parameters in Figs. 1 and 2.

4. Conclusions

In this paper we have presented a general class of nonlinear
two-time scales discrete dynamical systems susceptible to be
reduced by the so-called aggregation of variables method. These
systems can serve as models for population dynamics that
combine both migratory and demographic processes taking place
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at different time scales. In the applications proposed in this paper
we have considered situations in which demography can be
considered fast with respect to migration and others in which the
opposite holds.

We have shown that our formulations enter in the more
abstract framework described in Sanz et al. (2008), so that it is
possible to study the hyperbolic fixed points of the slow–fast
complex system, as well as their basins of attraction in the case
they are stable, by performing the corresponding study in the
aggregated system.

In Section 3.1 we consider that migration, which is dependent
on the total population, is fast when compared with demography.
In the simplest case that migrations depend monotonically on the
total population, and the local demography is of malthusian type,
we have derived the classical Beverton–Holt and Ricker models in
terms of source–sink systems linked by migrations, which
constitutes a possible interpretation for these models.

In the same setting, with more complex situations correspond-
ing to monotone migrations, the Allee effect can appear. Our
analysis can be related with the results in Boukal and Berec (2007)
concerning the Allee effect. These authors critically review and
classify deterministic non-spatial models of single species
population dynamics subject to the demographic Allee effect.
The outcome of all models studied in the above-mentioned work
is either unconditional extinction, extinction-survival scenario or

unconditional survival. The same kinds of results have been
established in Section 3.1 for the aggregated model. As the general
slow–fast spatially structured model miss its spatial features
when its aggregation is performed, our method allows us to study
spatially distributed populations by means of non-spatial models.

In Section 3.2 we change the point of view and consider
demographic processes depending on population densities as fast
dynamics driven by Leslie-type matrices. We may think, for
instance, of a parasitoid population being the guest in a species
that migrates. After building up a general aggregated system for
this setting, numerical experiments considering migration, survi-
val and fertility rates as parameters give rise to multi-attractor
scenarios.
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Appendix A

A.1. Proof of Theorem 2

The result is a consequence of Theorem 1, since model (3) fits
in the general formulation given by (1) if we choose

8X 2 ON ; FðXÞ:¼FðUXÞX. (12)

Therefore, bearing in mind that for all Y 2 Rq we have UFðYÞ ¼ U,
the following holds for all X 2 ON:

lim
k!1

Fk
ðXÞ ¼ lim

k!1
Fk
ðUXÞX ¼FðUXÞX ¼VðUXÞUX.

Then,

8X 2 ON ; FðXÞ:¼VðUXÞUX (13)

and since the global variables are defined by GðXÞ:¼UX, finally we
choose

8Y 2 Rq; EðYÞ:¼VðYÞY .

Now we will check that Hypotheses 1 and 2 are satisfied in the
above setting.

The regularity conditions imposed in Hypothesis 1 hold
immediately from the C1 regularity of eigenvectors við�Þ,
i ¼ 1; . . . ; q, as established in Lemma 1.

Lemma 1. Let Pð�Þ be a C1 matrix function defined on Oq, such that

for each Y 2 Oq, PðYÞ is a n� n regular stochastic matrix.

Let us consider the function v : Oq�!Rn where vðYÞ is the unique

eigenvector associated to eigenvalue 1, normalized by the condition

1T
nvðYÞ ¼ 1.

Then, v 2 C1
ðOqÞ.

Proof. For each Y 2 Oq, the normalized eigenvector vðYÞ asso-
ciated to the eigenvalue 1 is the unique solution to the system:

(EV)
ðPðYÞ � InÞv ¼ 0;

1T
nv ¼ 1:

(

Set Y0 2 Oq and let vðY0Þ be the corresponding solution to (EV).
Since 1T

nðPðYÞ � InÞ ¼ 0T
n, an elementary application of the Rank

Theorem (see Zeidler, 1986, problem 4.4d, p. 199) allows to solve
system (EV) in a neighbourhood of ðY0; vðY0ÞÞ, NðY0Þ � Oq �Rn, by
eliminating the last row of the matrix PðYÞ � In. As an immediate
consequence, this theorem assures that the function vð�Þ defined
implicitly by system (EV) is C1 in a neighbourhood of Y0, as we
wanted to prove. &
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Fig. 1. From white to black, zones with none, one or two positive asymptotically

stable fixed points. Parameter values: a1 ¼ 0:1, a2 ¼ 0:3, a1 ¼ 100, a2 ¼ 45,

t1
21 ¼ 0:3, t2

21 ¼ 0:1, and b1, b2 range from 0.01 to 1.0, step 0.005.

6
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4

3

2

2 4 6 8 10

1

Fig. 2. Basins of attraction of the asymptotically stable fixed points (0,0), (3.44,

1.57) (too small to be plotted in this picture) and (5.36, 2.68). Parameter values:

a1 ¼ 0:1, a2 ¼ 0:3, b1 ¼ 0:3, b2 ¼ 0:7, a1 ¼ 100, a2 ¼ 45, t1
21 ¼ 0:3, t2

21 ¼ 0:1.
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Let us observe that the application of the Rank Theorem to

system (EV) is based on the following elementary result:

For each n� n regular stochastic matrix P0, we have

Rank
P0 � In

1T
n

 !
¼ n.

Regarding Hypothesis 2, let us notice that for each Y 2 Oq,

matrix FðYÞ can be written as

FðYÞ ¼ ðVðYÞjRðYÞÞ
Iq O

O HðYÞ

 !
U

SðYÞ

 !

¼VðYÞUþ Q ðYÞ

with Q ðYÞ:¼RðYÞHðYÞSðYÞ, RðYÞ, SðYÞ are suitable matrices and HðYÞ

corresponds to the Jordan blocks of FðYÞ associated to eigenva-

lues of modulus strictly less than 1. Therefore

8Y 2 Oq; rðQ ðYÞÞo1, (14)

where r denotes the spectral radius.

Moreover, straightforward calculations lead to

Fk
ðYÞ ¼VðYÞUþ Qk

ðYÞ; k ¼ 1;2; . . . : & (15)

Bearing in mind Lemma 1, and since F 2 C1
ðOqÞ, let us observe

that we also have Q 2 C1
ðOqÞ.

We are now able to prove the following:

Proposition 1. The functions F and F defined in (12) and (13) satisfy

that:

(i) limk!1 Fk
¼ F,

(ii) limk!1 DFk
¼ DF

uniformly on each compact set KN � ON .

Proof. From (15) we have, for each X 2 ON:

kFk
ðXÞ � FðXÞk ¼ kFk

ðUXÞX �VðUXÞUXk

pkQk
ðUXÞkkXk.

Therefore, as U is a constant matrix, to prove (i) it is enough to
prove that, for each compact set Kq � Oq we have

sup
Y2Kq

kQk
ðYÞk�!0 ðk!1Þ

which, in turn, will be a consequence of the existence of two
constants C40 and b 2 ð0;1Þ such that

8Y 2 Kq; kQ
k
ðYÞkpCbk; k ¼ 1;2; . . . . (16)

Since Q ð�Þ is continuous, the spectral radius rðQ ð�ÞÞ is also
continuous on Oq and then, bearing in mind (14), we can
assure the existence of a constant a with 0oao1 such that
supY2WrðQ ðYÞÞpa, where W is some bounded open set with Kq �

W and W � Oq.

Let b be fixed with aobo1 and set Y 2W . It is a well known

fact that there exists a matrix norm k � kY (depending on Y) for

which kQ ðYÞkYob.

The continuity of Q ð�Þ and of the norm allow us to assure the

existence of an open neighbourhood of Y, BðYÞ �W , such that

supZ2BðYÞ kQ ðZÞkYpb.

Obviously, the family B:¼fBðYÞ;Y 2Wg is an open covering of Kq

and since Kq is a compact set, there exist a finite collection of

points Yj 2W , j ¼ 1; . . . ; r such that Kq �
Sr

j¼1 BðYjÞ.

Then, for each Y 2 Kq there exists j 2 f1; . . . ; rg such that

kQ ðYÞkYj
pb, and therefore kQk

ðYÞkYj
pbk, k ¼ 1;2; . . . .

As a consequence, bearing in mind that all the matrix norms are

equivalent, we have that kQk
ðYÞkpCjb

k, for some constant Cj40.

Choosing C:¼maxðC1; . . .CrÞ, the estimation (16) holds.

To prove the assertion (ii) let us notice that (15) implies that

8X 2 ON ; DFk
ðXÞ ¼ DFðXÞ þ D½Qk

ðUXÞX�.

Therefore, we have to prove that, for each compact set KN � ON

we have

sup
X2KN

kD½Qk
ðUXÞX�k�!0 ðk!1Þ.

Let us start with some straightforward calculations. Let

Að�Þ:¼ðaijð�ÞÞi;j¼1;...;N be a C1 matrix function defined on ON and set

R the scalar function defined on ON by RðXÞ:¼AðXÞX, X:¼ðx1; . . . ;

xNÞ
T
2 ON .

A direct calculation of the partial derivatives leads to the

following expression:

DRðXÞ ¼ AðXÞ þ

PN
j¼1

xj grad a1jðXÞ

..

.

PN
j¼1

xj grad aNjðXÞ

0
BBBBBBB@

1
CCCCCCCA

.

Choosing AðXÞ:¼Qk
ðUXÞ in the above expression, with the help of

the chain rule we have

D½Qk
ðUXÞX� ¼ Qk

ðUXÞ þ

PN
j¼1

xj grad qðkÞ1j ðUXÞ

..

.

PN
j¼1

xj grad qðkÞNj ðUXÞ

0
BBBBBBB@

1
CCCCCCCA
U,

where we have denoted by qðkÞij ðYÞ the entries of matrix Qk
ðYÞ.

Let KN � ON be a compact set and set Kq:¼UKN � Oq, which is

also a compact set. Bearing in mind (16), the above expression

leads to the following estimation:

kD½Qk
ðUXÞX�k

pC1b
k
þ C2kUkkXk

� max
i;j¼1;...;N

sup
Y2Kq

qqðkÞij

qys

ðYÞ

�����
�����; s ¼ 1; . . . ; q

 !
,

where C140, C240 are two constants whose specific values are

not relevant.

For each Y :¼ðy1; . . . ; yqÞ
T
2 Oq and k ¼ 1;2; . . . we have

qQk

qys

ðYÞ ¼
qQ

qys

ðYÞQ ðYÞ . . .ðk�1ÞQ ðyÞ

þ Q ðYÞ
qQ

qys

ðYÞQ ðYÞ . . .ðk�2ÞQ ðYÞ

þ � � � þ Q ðYÞ . . .ðk�1ÞQ ðYÞ
qQ

qys

ðYÞ

and since Q ð�Þ has continuous partial derivatives, then bounded on

each compact set, we can conclude that

sup
X2KN

kD½Qk
ðUXÞX�kpC1b

k
þ C3kbk�1

�!0 ðk!1Þ

as we wanted to prove. &

This finishes the proof of Theorem 2.
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