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Madrid, Spain
rafael.bravo@uah.es
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Summary. Ecological modelers produce models with more and more details, lead-
ing to dynamical systems involving lots of variables. This chapter presents a set of
methods which aim to extract from these complex models some submodels contain-
ing the same information but which are more tractable from the mathematical point
of view. This “aggregation” of variables is based on time scales separation methods.
The first part of the chapter is devoted to the presentation of mathematical aggre-
gation methods for ODE’s, discrete models, PDE’s and DDE’s. The second part
presents several applications in population and community dynamics.

5.1 Introduction

Ecology aims to understand the relations between living organisms and their
environment. This environment constitutes a set of physical, chemical and
biological constraints acting at the individual level. In order to deal with the
complexity of an ecosystem, ecology has been developed on the basis of a wide
range of knowledge starting from the molecular level (molecular ecology) to
the ecosystem level. One of the current aims of ecological modelling is to use
the mathematical formalism for integrating all this knowledge.
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On the other hand, mathematical ecology provided a large amount of rather
simple models involving a small number of state variables and parameters.
The time continuous Lotka–Volterra models, published in the beginning of the
twentieth century [59, 60, 94] as well as the discrete host–parasite Nicholson–
Bailey models [69, 70] are classic examples and can be found in many bio-
mathematical textbooks as the book by Edelstein-Keshet [48] and the book
by Murray [66] in which many other examples and references are given. In
such population dynamics models, the state variables are often chosen as the
population densities and the model is a set of nonlinear coupled ordinary dif-
ferential equations (ODE’s) or discrete equations. The models describe the
time variation of the interacting populations. Of course, mathematical ecolo-
gists proposed also more realistic models taking account of some populations
structures (space, age, physiology, etc.). Mathematical methods have been de-
veloped to deal with these structured population models, but which may fail
to get robust results for high dimensional systems.

During the last decades, supported by the fast development of computers,
a new generation of ecological models has appeared. Nowadays, lots of ecolog-
ical models consider more and more details. Lots of populations are involved
in a community and in food webs. Furthermore, each population is not ho-
mogeneous in the sense that all individuals are identical but each individual
has changing properties (physiology, metabolism, behaviour), according to its
environment. For instance, functional ecology considers functional groups cor-
responding to the different functions of living organisms in the ecosystems. It
follows that lots of models consider populations structured in subgroups.

Incorporating more details in models is necessary to advance toward a
more realistic description of ecological systems and to understand how living
organisms respond to the forcing imposed by their environment changes. The
drawback of a detailed description of systems is the fact that models become
more complex, involving an increasing number of variables and parameters.
A mathematical study with general and robust results is then difficult to
perform. For this reason, it is important to find which details are really rel-
evant and must be incorporated in a model. An important goal of ecological
modelling should thus be to describe tractable models.

In the context of terrestrial ecology, if we consider a forest dynamics for
instance, we can just consider the total forest surface or how trees are dis-
tributed among species or globally. But the dynamics of these variables or
indicators depend on the individuals properties of the trees (height, weight,
basal area, metabolism, etc.). Should we take into account all the details?
Is there a trade-off between the amount of details to be integrated and the
relative simplicity required for understanding forest dynamics? In this case,
the surface or the spatial structure indicators are global variables that we
call macro or aggregated variables. These variables actually depend on the
individuals descriptors, which we call the micro-variables.

The same approaches are considered in marine ecology. The simplest way
should be to consider the concentrations of mineral matter, primary produc-
ers, zooplankton, top-predators and microbial loop with bacteria and detritus



5 Aggregation of Variables and Applications to Population Dynamics 211

as the variables of the model. This point of view permits to summarize the
biological components of a marine ecosystem with only a few macro-variables.
However, each variable describes a set of lots of populations having different
properties. This is the main reason to split them into different micro-variables,
leading to a set of differential systems involving typically dozens of variables
and parameters.

In ecology, the problem of aggregation of variables may be set in this way:
when considering a detailed system with various interacting organization lev-
els, is there a way to find, at each level, a reduced set of variables describing
the dynamics of this level? How to find such variables? How to find the rela-
tions between these macro-variables and the micro-variables associated with
the detailed description? Under which assumptions these questions could be
dealt with? Do these assumptions have a realistic basis? This chapter aims to
describe some mathematical methods of aggregation of variables which help
to answer parts of these questions. Two main goals of variables aggregation
are dealt with in this chapter. The first one is to reduce the dimension of
the mathematical model to be handled analytically. The second one is to un-
derstand how different organization levels interact and which properties of a
given level emerge at other levels.

Aggregation of variables is coming from economy and has been introduced
in ecology by Iwasa, Andreasen and Levin, in [52]. In general, the aggregation
of a system consists of defining a small number of global variables, functions
of its state variables, and a system describing their dynamics. When the ag-
gregated dynamics are consistent with the original dynamics in the sense that
the global variables behave identically both in the initial system and in the
aggregated one, it is called perfect aggregation [52]. Perfect aggregation is a
very particular situation which is rarely possible since it requires very drastic
conditions. Consequently, methods for approximate aggregation have been de-
veloped [53]. Approximate aggregation deals with methods of reduction where
the consistency between the dynamics of the global variables in the complete
system and the aggregated system is only approximate.

This chapter is devoted to approximate aggregation methods that are
based on the existence of different time scales. It is common in ecology to
consider different ecological levels of organization, the individual, popula-
tion, community and ecosystem levels. In general, different characteristic time
scales are associated with these levels of organization. For example, a fast time
scale corresponds to individual processes while a slow time scale is associated
with demographic ones. It is possible to take advantage of these two time
scales in order to reduce the dimension of the initial complete model and to
build a simplified system which describes the dynamics of a small number of
global variables. Such methods originated in Auger [3] and were presented in
a rigorous mathematical form for ODEs in Auger and Roussarie [16] and in
Auger and Poggiale [12], extended to discrete models in Sanchez et al. [82]
and in Bravo de la Parra et al. [29], to PDEs in Arino et al. [1] and to DDEs in
Sanchez et al. in [81]. There are lots of examples in various applications fields
where the intuitive ideas of the methods are used implicitly. It is for instance
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the case in epidemiology, when population dynamics is ignored at the epi-
demiological scale since the latter is much faster, see for example Chap. 3
Sect. 4 in this book. It is often correct but we shall give some examples where
the intuitive ideas are not sufficient and the mathematical developments are
useful.

The chapter is organized as follows. Three sections are devoted to mathe-
matical aggregation methods associated to different mathematical formalisms
while the last section illustrates these methods on particular ecological ex-
amples. The methods described in this chapter are not intended to be ex-
haustive and just address partially the problems suggested by the questions
arisen above. Some open problems are discussed along the chapter. In the
next section, we focus on aggregation methods for ODE’s systems involving
at least two different time scales. The third section proposes an approach
for discrete time models. The fourth section is devoted to aggregation meth-
ods for Partial Differential Equation (PDE’s) and Delayed Differential Equa-
tions (DDE’s) systems involving different time scales. Finally, we illustrate
the different methods presented in the previous sections by means of a set of
examples from population dynamics and community dynamics.

5.2 Aggregation of Variables for ODE’s Systems

5.2.1 Notation and Position of the Problem

Let us consider a population dynamics model describing the interactions be-
tween A populations and let us assume that each population is structured in
subpopulations. We denote by nα

i the abundance of subpopulation i in popu-
lation α, α = 1, . . . , A and i = 1, . . . , Nα where Nα is the number of subpopu-
lations in population α. We now assume that the dynamics of the subpopula-
tion i in population α results from the interactions of a set of processes among
which some are much faster than the other ones. The complete model reads:

dnα
i

dτ
= Fα

i (n) + εfα
i (n) (5.1)

where n is the vector(
n1

1, n
1
2, . . . , n

1
N1
, n2

1, n
2
2, . . . , n

2
N2
, . . . , nα

1 , n
α
2 , . . . , n

α
Nα
, . . . , nA

1 , n
A
2 , . . . , n

A
NA

)
Fα

i describes the fast processes affecting nα
i and εfα

i describes the slow
processes affecting nα

i . The parameter ε is small and means that the speed
of the processes described in fα

i are slow. This model is assumed to contain
all the details that we want to include in the description. It governs the so
called micro-variables nα

i which are those associated to a detailed level. We
denote by k the number of micro-variables, that is the dimension of n. More
precisely, we have:
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k =
A∑

α=1

Nα

We want now to build a model which describes the system at the macro-
level. We thus define a set of macro-variables. In this framework, a macro-
variable is a variable varying slowly, that is a first integral of the fast dynamics.
More precisely, let us define Yj , j = 1, . . . , N the macro-variables. A such
variable can be defined as a function of n. The fact that Yj is a slow variable
means that its derivative with respect to τ is of order ε:

Yj = Φj (n) , j = 1, . . . , N (5.2a)

dYj

dτ
=

A∑
α=1

Nα∑
i=1

∂Φj (n)
∂nα

i

dnα
i

dτ
= O (ε) (5.2b)

The second equation (5.2b), associated with the equation (5.1), implies the
following equality:

A∑
α=1

Nα∑
i=1

∂Φj (n)
∂nα

i

Fα
i (n) = 0, j = 1, . . . , N (5.3)

Finally, the equations for the macro-variables read:

dYj

dτ
= ε

A∑
α=1

Nα∑
i=1

∂Φj (n)
∂nα

i

fα
i (n) (5.4)

Since the system is more detailed at the micro-level, we should have N <<
k. In order to use the macro-variables, we replace N micro-variables in the
complete model (5.1) by some expressions depending of the macro-variables
and this can be done under the following conditions. We suppose that the set
of N equations (5.2a) permits to write N variables among the micro-variables
nα

i , α = 1, . . . , A, i = 1, . . . , Nα, as functions of the N macro-variables Yj ,
j = 1, . . . , N . We thus have to deal with k variables among which N are
macro-variables and k − N are micro-variables. This system is formed by
k − N equations of system (5.1) and the N equations of system (5.4). In
other words, we perform a change of variables (X,Y ) �→ n (X,Y ) where X is
a k−N vector for which the coordinates are taken among the micro-variables
nα

i . With this change of variables, the complete system reads:

dXi

dτ
= Fi (X,Y ) + εfi (X,Y ) , i = 1, . . . , k −N (5.5a)

dYj

dτ
= εGj (X,Y ) , j = 1, . . . , N (5.5b)

where

Gj (X,Y ) =
A∑

α=1

Nα∑
i=1

∂Φj (n (X,Y ))
∂nα

i

fα
i (n (X,Y ))
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In this form, the model (5.5) is a so-called slow-fast system of differential
equations, or slow-fast vector field. The Geometrical Singular Perturbation
(GSP) theory provides some results to deal with such systems and the most
important point is that, under some conditions, we can reduce the complete
model to an aggregated model governing only the macro-variables. We now
first recall some important points of this theory and then explain the condi-
tions for the reduction and their consequences.

5.2.2 Normally Hyperbolic Manifolds and GSP Theory

There exists lots of results concerning the reduction of the dimension of a
dynamical system in order to facilitate its study. For instance, we can find
several statements of the centre manifold theorem in various contexts (or-
dinary differential equations, partial differential equations, delay differential
equations, difference equations). Carr’s book [32] gives a detailed description
of the theorem with many applications. The centre manifold theorem states
some conditions under which there exists a regular manifold containing the
non trivial part of the dynamics. This kind of manifolds are associated to
non hyperbolic singularities and are local ones. In 1971, Fenichel [49] stated
a theorem which provides conditions under which an invariant manifold per-
sists to small enough perturbations, in the case of vector fields. In the same
time, Hirsch et al. in [50] gave some necessary conditions for the persistence
and developed the normally hyperbolic manifolds theory. The perturbations
of invariant manifolds theory originates from the works of Krylov and Bogoli-
ubov [56]. Nowadays, this theory has lots of applications and some illustrations
can be found in Pliss and Sell [72]. Furthermore, Wiggins [95] gives a com-
plete description of the theory in finite dimension, this book is based on the
Fenichel original paper. In these references, the conditions of normal hyper-
bolicity are based on geometrical considerations, which are not always useful
in applications. Sakamoto [80] gave similar conditions by using eigenvalues of
Jacobian matrices. His proof may also be obtained by Fenichel’s methods. Our
reduction method is based on this approach, see Auger et al. [9,11], and Auger
and Poggiale [12–15]. Note that the Fenichel theorem has been extended to
semi-groups on Banach spaces by Bates et al. [19, 20].

5.2.3 Reduction Theorem

In order to perform the analysis, we add to system (5.5) the equation dε
dτ = 0:

dXi

dτ
= Fi (X,Y ) + εfi (X,Y ) , i = 1, . . . , k −N (5.6a)

dYj

dτ
= εGj (X,Y ) , j = 1, . . . , N (5.6b)

dε

dτ
= 0 (5.6c)



5 Aggregation of Variables and Applications to Population Dynamics 215

The system (5.6) can be considered as an ε -perturbation of the system
obtained with ε = 0. The situation where ε = 0 refers to the unperturbed
problem. The conditions for the reduction are:

– (C1) When ε is null in system (5.6), then Y is a constant. We assume that,
for each Y ∈ IRN , there exists at least one equilibrium (X = X∗ (Y ) , Y, 0),
defined by Fi (X∗ (Y ) , Y ) = 0, i = 1, . . . , k −N . We define the set:

M0 = {(X,Y, ε) ;X = X∗ (Y ) ; ε = 0}

This invariant set for the unperturbed system shall play the role of the
invariant normally hyperbolic manifold mentioned in the GSP theory.

– (C2) Let us denote J (Y ) the linear part of system (5.6) around the equilib-
rium (X∗ (Y ) , Y, 0). We assume that the Jacobian matrix J (Y ) has k−N
eigenvalues with negative real parts and N + 1 null eigenvalues. With this
condition, the set M0 is normally hyperbolic since, at each point in M0,
the restriction of the linear part to the M0 normal space has negative
eigenvalues. We now give the statement of the main theorem.

Theorem 1. Under the conditions (C1) and (C2), for each compact subset
Ω in IRN and for each integer r > 1, there exists a real number ε0 and a Cr

function Ψ ,
Ψ : Ω × [0; ε0] → IRk−N

(Y, ε) �−→ X = Ψ (Y, ε)

such that:
(1) Ψ (Y, 0) = X∗ (Y );
(2) The graphW of Ψ is invariant under the flow defined by the vector

field (5.6);
(3) At each (X∗ (Y ) , Y, 0) ∈ M0, W is tangent to the central

eigenspace Ec associated with the eigenvalues of J (Y ) with null real parts.

This means that we can consider the restriction of the vector field to the
invariant manifold which allows us to reduce the dimension of the model. The
reduced system, called aggregated model, is:

dYj

dt
= Gj (Ψ (Y, ε) , Y )

where t = ετ . Usually, since ε is small, we approximate the previous system by:

dYj

dt
= Gj (Ψ (Y, 0) , Y )

Moreover, since Ψ is Cr, we can calculate a Taylor expansion of the invari-
ant manifold with respect to the small parameter ε in order to increase the
accuracy of the reduced system. The reduction and the Taylor expansion are
illustrated in the following example. In this example, the zero order term in the
expansion leads to a non structurally stable system. It means that the ε term
is important to understand the real dynamics. This term is then calculated
and the dynamics of the complete and reduced models are compared.
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Nontrivial Example of Application

This example has been completely studied in Poggiale and Auger [77]. It
illustrates the application of the previous theorem in a nontrivial case where
a Taylor expansion of the application Ψ with respect to the small parameter ε
is needed to understand how the reduced model is similar to the complete one.
We consider a two patches predator–prey system. The prey can move on both
patches while the predator remains on patch 1. The patch 2 is a refuge for the
prey. We denote by ni the prey density on patch i, i = 1, 2. We denote by p
the predator density. On each patch, the prey population growth rate and the
predator population death rate are linear, the predation rate is bilinear, that
is proportional to prey and predator densities and the predator growth rate
is proportional to the predation rate. The model is given by the following set
of three ordinary differential equations:

dn1

dτ
= m2n2 −m1n1 + εn1(r1 − ap) (5.7a)

dn2

dτ
= m1n1 −m2n2 + εn2r2 (5.7b)

dp

dτ
= εp(bn1 − d) (5.7c)

where mi are respectively the proportions of prey populations leaving patch i
by displacement per unit time, ri is the prey population growth rate on patch
i, d is the predator population death rate, a is the predation rate on patch 1
and bn1 is the per capita predator growth rate. ε << 1 is a small parameter
which means that movements have a larger speed than that associated to
growth and death processes.

Let n = n1 + n2 be the total amount of prey. It follows that u1 = n1
n and

u2 = n2
n are the proportions of prey on patch 1 and patch 2 respectively. With

these variables, we can write the system (5.7) in the following equivalent way:

du1

dτ
= m2 − (m1 +m2)u1 + εu1(1− u1)(r1 − r2 − ap) (5.8a)

dn

dτ
= εn

(
r1u1 + r2u2 − au1p

)
(5.8b)

dp

dτ
= εp

(
bu1n− d

)
(5.8c)

We now build a two dimensional system governing the dynamics of the total
populations densities n and p. Moreover, this system gives the same dynamics
as that obtained for n and p in the system (5.8). This will facilitate the
mathematical study of system (5.7).

Let us start to calculate the fast equilibrium, that is the equilibrium value
of the fast variables ui, i = 1, 2. In order to get this equilibrium value, we put
ε = 0 in system (5.8). The result is:
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u∗1 =
m2

m1 +m2
and u∗2 =

m1

m1 +m2
(5.9)

By replacing ui by u∗i in (5.8b) and in (5.8c), we get the following two dimen-
sional system:

dn

dt
= n(r − a1p) (5.10a)

dp

dt
= p(b1n− d) (5.10b)

where t = ετ , r = r1u
∗
1 + r2u∗2, a1 = au∗1 and b1 = bu∗1.

The system (5.10) is a classical Lotka–Volterra model. All the solutions of
this system with initial conditions in the positive quadrant are periodic. There
is a positive equilibrium which is a center (see Murray’s book for instance,
[66]). However, the dynamics of n and p in the system (5.7) do not match
with the Lotka–Volterra dynamics, as illustrated on Figs. 5.1 and 5.2. Indeed,
when we replace the fast variable by its equilibrium value, we make an error
of order of ε. Since the Lotka–Volterra model is not structurally stable, the
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Fig. 5.1. Comparison between the dynamics of x and y given by the complete
system (5.7) (black line) and that obtained with the two dimensional system (5.10)
(thick grey line). Above are the prey densities and below are the predator densities.
On the left column, the term of order of ε is neglected while on the right column,
this term is taken into account, which improve the similarity between the reduced
and complete systems simulations. The parameters values used in the simulation
are: m1 = 2, m2 = 1, r1 = 1, r2 = 2, a = 1, d = 2, b = 0.9 and ε = 0.1
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Fig. 5.2. Comparison between the dynamics of x and y given by the complete
system (5.7) (black line) and that obtained with the two dimensional system (5.10)
(thick grey line). Above are the prey densities and below are the predator densities.
On the left column, the term of order of ε is neglected while on the right column,
this term is taken into account, which improve the similarity between the reduced
and complete systems simulations. The parameters values used in the simulation
are: m1 = 2, m2 = 1, r1 = 1, r2 = 2, a = 1, d = 2, b = 0.9 and ε = 0.05

ε-error plays an important role in the dynamics. The Fenichel theorem claims
that there is an invariant manifoldMε = {u1 = u1(n, p, ε)} in the phase space
(u1, n, p, ε). Since the fast equilibrium is hyperbolically stable, the manifold
M0 is normally hyperbolically stable. The previous approximation we made
is thus a zero order approximation of the manifold Mε.

We now get a first order approximation of the manifold. Let us write:

u1(n, p, ε) = u∗1 + εw1(n, p) + o(ε) (5.11)

We have to determine w1 and then to replace u1 by its expression (5.11) in
the system (5.7) in order to improve the approximate two dimensional model
(5.10). We can note that the asymptotic expansion of the derivative du1

dτ with
respect to the small parameter ε, can be written in two different ways. The
first one consists in replacing u1 by the expression (5.11) in the equation
(5.8a). The second way consists in writing:

du1

dτ
=
∂u1

∂n

dn

dτ
+
∂u1

∂p

dp

dτ
= O

(
ε2
)

(5.12)
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Then we identify the terms of order of ε in both formulas, we get:

−(m2 +m1)w1(n, p) + u∗1(1− u∗1)(r1 − r2 − ap) = 0 (5.13)

which allows us to conclude, in this case, that w1 is a function depending only
on p:

w1(p) =
u∗1(1− u∗1)
m2 +m1

(r1 − r2 − ap) (5.14)

It follows that the system on the invariant manifold is reduced to:

dn

dt
= n(r − a1p) + εnw1(p)

(
r1 − r2 − a1p

)
(5.15a)

dp

dt
= p(b1n− d) + εnpb1w1(p) (5.15b)

A numerical simulation has been performed and is shown on Figs. 5.1 and 5.2,
in order to illustrate that this reduced model provides a good approximation
of the dynamics of the total population densities governed by the four di-
mensional system (5.7). Those figures show that a decrease of ε increases the
similarity between the complete and aggregated model.

5.2.4 Limits of the Method and Possible Extensions

How to Define the Slow and Fast Variables in a Given System

An ecosystem involves a large number of variables and processes. It is largely
recognised that some processes are much faster than others. However, each
variable may be affected by fast and slow processes. It follows that, when
we write a model, the slow and fast processes are mixed in the differential
systems and it is not clear that some variables are faster than other ones.
According to the previous notations, the problem is, given the system (5.1), is
there an algorithm allowing to define the slow variables Y ? This is generally a
crucial problem. From the mathematical point of view, a such algorithm per-
mits to transform system (5.1) into system (5.5). Moreover, from the applied
point of view, it would permit to define the variables of interest for the long
time dynamics on the basis of the detailed description. In our framework, the
slow variables are defined by the fact that they are first integrals of the fast
processes. But it is not always easy to find such functions and this problem
can limit practical applications.

Loss of Normal Hyperbolicity and Multiaggregated Models

There is an interesting phenomenon, which has a wide range of possible appli-
cations. It occurs when the invariant manifold loses its normal hyperbolicity.
For instance, we can easily imagine that the normal attraction of the manifold
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is more or less important depending on the position of the manifold: some re-
gions of the manifold are more attractive than other ones. We can even have
the situation where there are some regions on the manifold in which it is
normally repulsive. Let us now assume that a trajectory starting from an
initial point in the phase space is going toward the invariant manifold in a
region where it is normally hyperbolic and attracting. According to the pre-
vious theorems, the trajectory will stay along the invariant manifold but then
it can reach a region where the manifold is normally repulsive. Before that
region, the trajectory shall cross a line where the manifold is not normally
hyperbolic, the normal hyperbolicity is lost. The precise description of the
trajectory behavior is no longer trivial: shall the trajectory leave or stay for a
while along the manifold? In the case of leaving, what is the global dynamics?
Some works have been dedicated to this kind of analysis and the exchange
lemma can be a useful tool for this [54]. In some situations, this loss of normal
hyperbolicity leads to a strange process named delayed bifurcation. Indeed,
a region of the invariant manifold where it is normally hyperbolic and at-
tracting corresponds to the case where the Jacobian matrix associated to the
linearised vector field at a point in the region has eigenvalues in the negative
complex half plane in the normal directions. The loss of normal hyperbolicity
corresponds to a situation where at least one of these eigenvalues is vanish-
ing, leading to a bifurcation. A priori, if the trajectory close to the manifold
enters into a region where it is normally repulsive (positive real parts of the
previous eigenvalues), it should leave the vicinity of the manifold. However,
in some cases, the trajectory stays along the manifold for a transient time
and leaves it only after a while, leading to a delayed bifurcation. This phe-
nomenon has also been named “canard” and has been described by Benoit
in [21,22] and Diener [43,44] and [23]. More recently, a geometrical approach
of this process has been provided by Dumortier and Roussarie [46,47]. In these
works, the method, based on blowing up of singularities, is presented through
some examples but it is very general and can be extended. It provides an GSP
theory approach of the “canard” phenomenon. A large number of possible ap-
plications of this method can be found in ecological works [42, 65, 91, 92], for
instance).

This loss of normal hyperbolicity has another interesting consequence. In-
deed, let us consider that the normally hyperbolic manifold is everywhere
normally stable and contains an omega limit set. If a trajectory is entering in
a small vicinity of the manifold, it can reach the above omega limit set and
then stays close to the invariant manifold for an infinitely long time. In this
case, the reduction applies without time limitation and the dynamics of the
complete system can be analysed by the study of the dynamics reduced to the
manifold. However, let us now suppose that the invariant manifold contains
a region R1 where it is normally hyperbolically attracting and another region
R2 where it is normally hyperbolically repulsive. If a trajectory approaches
the manifold in the region R1, it shall stay close to the manifold as long as it
remains in R1. We can apply the reduction method as long as the trajectory
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is close to the invariant manifold. But if, after a transient time, the trajectory
leaves the vicinity of R1 and enters in the vicinity of R2, then it may leave
the neighborhood of the manifold. The reduction loses its validity.

If there are several invariant normally hyperbolic manifolds, a trajectory
of the complete system can visit the neighborhood of each of them succes-
sively. For each invariant manifold, we can define a reduced system. Then
the complete system shall be approximated by different aggregated models
when time is running. This means that even if the study of the complete
model is simplified by considering reduced systems, the whole dynamics may
remain complex. For example, the oscillation–relaxation phenomenon can be
approached by this way, refer to [10] for an example.

Note that the method can easily be extended to the situation where the
fast dynamics exhibits a limit cycle instead of an equilibrium [78].

5.2.5 Aggregation and Emergence

Relation Between Aggregation and Emergence

Aggregation not only provides a reduction of the dimension of the initial model
and its simplification, but it also provides interesting information about the
emergence of fast processes at a global level in the long run. Indeed, the
invariant manifold on which the reduction is performed is a graph on the slow
variables X = Ψ (Y, ε). In other words, at a fast time scale, the fast variables
reach an attractor, for instance an equilibrium, which depends on the slow
variables. From the practical point of view, the reduced model is obtained
by replacing the fast variables by Ψ (Y, ε) in the slow variables equations.
Consequently, if the fast part of the model is changed, then Ψ is modified
and the aggregated model as well. This application Ψ contains the effects of
the fast part on the long term dynamics. These effects can lead to emerging
properties. The concept of emergence has been widely developed in ecology.
We provide here two kinds of emergence properties by using the aggregation
approach. These properties are then compared and we show that there are
differences.

Functional and Dynamical Emergences

Let us consider a system in which the equations governing the slow variables
have, for each of them, the same mathematical form. It means that if we do not
consider the fast part, the models for the slow variables are identical, maybe
with different parameters values. Now, by considering the fast processes, we
shall find an aggregated model governing the slow variables. We shall say that
there is functional emergence if the equations in the aggregated model do not
have the same mathematical form as the slow part of the complete system.
More precisely, let us consider the following complete system:



222 P. Auger et al.

dXi

dτ
= Fi (X,Y ) + εfi (X,Y ) , i = 1, . . . , k −N

dYj

dτ
= εGj (X,Y ) , j = 1, . . . , N

We suppose that, for each fixed X, the functions Y �→ fi (X,Y ) are the
same functions f , with potentially different parameters values. The aggregated
model reads:

dYj

dt
= Gj (Ψ (Y, ε) , Y )

Definition 1. There is functional emergence if at least one of the functions
Y �→ Gj (Ψ (Y, ε) , Y ) do not have the same mathematical expressions as f .

We now provide two examples, one without functional emergence, the other
one with functional emergence.

Example 1. Let us consider a population on two patches. We denote by
X1 and X2 the amount of individuals on patch 1 and 2 respectively. On each
patch, we assume that the subpopulation has a logistic growth. The model
reads:

dX1

dτ
= m2X2 −m1X1 + εrX1

(
1− X1

K

)
dX2

dτ
= −m2X2 +m1X1 + εrX2

(
1− X2

K

)

where m1 and m2 are the migration rates from patch 1 to patch 2 and from
patch 2 to patch 1 respectively, r and K are the intrinsic growth rate and
the carrying capacity respectively. It follows that the f function is a second
degree polynomial of the form:

f (x) = rx
(
1− x

K

)
Let Y = X1 +X2, the previous system can be written as follows:

dX1

dτ
= m2Y − (m1 +m2)X1 + εrX1

(
1− X1

K

)
dY

dτ
= εr

(
Y − 2X2

1 + Y 2 − 2X1Y

K

)

The aggregated model is obtained by considering the equilibrium of the
fast part:

X1 =
m2

m1 +m2
Y

and by replacing X1 by this expression in the slow part, which gives the
following aggregated model:
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dY

dτ
= εr

(
Y − 2u2

1Y
2 + Y 2 − 2u1Y

2

K

)
= εrY

(
1− Y

K̃

)

where u1 = m2
m1+m2

and K̃ = K
2u2

1+1−2u1
= K

1−2u1(1−u1)
. The aggregated model

is a logistic equation thus it has the same mathematical formulation as those
on each patch. In this case, there is no functional emergence.

Example 2. For the sake of simplicity, we shall consider a purely theoretical
example similar to the previous one. The complete model reads:

dX1

dτ
= m2X2 −m1X1 + εr1X1

dX2

dτ
= −m2X2 +m1X1 + εr2X2

Let us suppose that the individuals have a repulsive behaviour on patch
1. This can be formulated by assuming that the migration rate from patch
one to patch two is proportional to the amount of individuals on patch one,
that is m1 = αX1, making the individuals leave patch 1 faster when their
number on this patch is higher. In this case, the equilibrium of the fast part
is obtained by solving the equation:

m1X1 = m2 (Y −X1)

where Y = X1 +X2. By writing m1 = αX1, this equation reads:

αX2
1 +m2X1 −m2Y = 0

This is a second order equation for which the discriminant is always pos-
itive (∆ = m2

2 + 4αm2Y ). Thus the equation has two distinct roots among
which only one is positive and is the equilibrium:

X1 =
−m2 +

√
m2

2 + 4αm2Y

2α

We get the aggregated model by replacing the fast variable X1 by its
equilibrium value given above in the slow variable equation:

dY

dτ
= ε (r1X1 + r2 (Y −X1)) = ε

(
(r1 − r2)

−m2 +
√
m2

2 + 4αm2Y

2α
+ r2Y

)

The aggregated model is not linear while the mathematical models on each
patch are linear. As a consequence, a new formulation occurs and it describes
the impact of the repulsive behaviour of the individuals on the population
dynamics. We call this functional emergence.

The previous definition describes the emergence of a new formulation for
the long term processes induced by the fast processes.

We shall now give another definition which considers the situation where
there is a new dynamics of the slow variables when the fast processes are taken
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into account. This is the dynamical emergence. More precisely, we consider
the following system:

dYj

dτ
= εGj (X,Y ) , j = 1, . . . , N

where X is a fixed vector in Rk−N .

Definition 2. There is dynamical emergence if the previous system is not
topologically equivalent to the aggregated model.

We now provide two examples, one without dynamical emergence, the
other one with dynamical emergence.

Example 3. In the above Example 1, there is no dynamical emergence since
on each patch there is a logistic growth and the slow variable also has a logistic
growth and two logistic dynamics are topologically equivalent.

Example 4. In Example 2, if r1 < r2, there is a positive equilibrium while
the dynamics on each patch are linear. Thus, if r1 < r2, there is dynamical
emergence.

Despite the results presented on the previous examples, there is no direct
link between functional and dynamical emergence. We can exhibit examples
with functional emergence and no dynamical emergence and examples without
functional emergence and with dynamical emergence (see [12] for instance).

5.3 Aggregation Methods of Discrete Models

Let us suppose in this section a population in which evolution is described
in discrete time. Apart from that, the population is generally divided into
groups, and each of these groups is divided into several subgroups. We will
represent the state at time t of a population with q groups by a vector n(t) :=
(n1(t), . . . ,nq(t))T ∈ R

N
+ where T denotes transposition. Every vector ni(t) :=

(ni1(t), . . . , niNi

(t)) ∈ R
Ni

+ , i = 1, . . . , q, represents the state of the ith group
which is divided into N i subgroups, with N = N1 + · · · +Nq. Following the
terminology of the previous section nij are the micro-variables.

In the evolution of the population we will consider two processes which
corresponding characteristic time scales, and consequently their projection
intervals, that is their time units, are very different from each other. We will
refer to them as the fast and the slow processes or, still, as the fast and the slow
dynamics. We will start with the simplest case by considering both processes
to be linear and go on with the presentation of a general nonlinear setting.

5.3.1 Linear Discrete Models

We present in details the results concerning the basic autonomous case as
developed in Sánchez et al. [82] and Sanz and Bravo de la Parra [85].
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We represent fast and slow processes by two different matrices F and S.
The characteristic time scale of the fast process gives the projection interval
associated to matrix F , that is, the state of the population due to the fast
process, after one fast time unit, is Fn(t). Analogously, the effect of the slow
process after one slow time unit is calculated by multiplying by matrix S. In
order to write a single discrete model combining both processes, and therefore
their different time scales, we have to choose its time unit. Two possible
and reasonable choices are the time units associated to each one of the two
processes. We use here as time unit of the model the one corresponding to the
slow dynamics, i.e., the time elapsed between times t and t+1 is the projection
interval associated to matrix S. We then need to approximate the effect of the
fast dynamics over a time interval much longer than its own. In order to do so
we will suppose that during each projection interval corresponding to the slow
process matrix F has operated a number k of times, where k is a big enough
integer that can be interpreted as the ratio between the projection intervals
corresponding to the slow and fast dynamics. Therefore, the fast dynamics
will be modelled by F k and the proposed model will consist in the following
system of N linear difference equations that we will call general system:

nk(t+ 1) = SF knk(t). (5.16)

In order to reduce the system we must make some assumptions on fast
dynamics. We suppose that for each group i = 1, . . . , q the fast dynamics
is internal, conservative of a certain global variable, macro-variable, for the
group and with an asymptotically stable distribution among the subgroups.
These assumptions are met if we represent the fast dynamics for each group
i by an N i × N i projection matrix Fi which is primitive with 1 as strictly
dominant eigenvalue, for example a regular stochastic matrix. The matrix
F that represents the fast dynamics for the whole population is then F :=
diag(F1, . . . , Fq). Every matrix Fi has, associated to eigenvalue 1, positive
right and left eigenvectors, vi and ui, respectively column and row vectors,
verifying Fivi = vi, uiFi = ui and ui · vi = 1. The Perron–Frobenius theorem
applies to matrix Fi and we denote F̄i := limk→∞ F k

i = viui, where F k
i is the

k-th power of matrix Fi. Denoting F̄ := diag(F̄1, . . . , F̄q), we also have that:

F̄ = lim
k→∞

F k = V U. (5.17)

where V := diag(v1, . . . , vq)N×q and U := diag(u1, . . . , uq)q×N .
If we think that the ratio of slow to fast time scale tends to infinity, i.e.

k →∞, or, in other words, that the fast process is instantaneous in relation to
the slow process, we can approximate system (5.16) by the following so-called
auxiliary system:

n(t+ 1) = SF̄n(t), (5.18)

which using (5.17) can be written as

n(t+ 1) = SV Un(t).
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Here we see that the evolution of the system depends on Un(t) ∈ R
q, what

suggests that dynamics of the system could be described in terms of a smaller
number of variables, the global variables or macro-variables defined by

Y (t) := Un(t). (5.19)

The auxiliary system (5.18) can be easily transformed into a q-dimensional
system premultiplying by matrix U , giving rise to the so-called aggregated
system or macro-system Y (t + 1) = USV Y (t), where we denote S̄ = USV
and obtain

Y (t+ 1) = S̄Y (t). (5.20)

The solutions to the auxiliary system can be obtained from the solutions to
the aggregated system. It is straightforward that the solution {n(t)}t∈N of
system (5.18) for the initial condition n0 is related to the solution {Y (t)}t∈N

of system (5.20) for the initial condition Y0 = Un0 in the following way:
n(t) = SV Y (t − 1) for every n ≥ 1. The auxiliary system is an example of
perfect aggregation in the sense of Iwasa et al. [52].

Once the task of building up a reduced system is carried out, the impor-
tant issue is to see if the dynamics of the general system (5.16) can also be
studied by means of the aggregated system (5.20). In Sánchez et al. [82] it
is proved that the asymptotic elements defining the long term behaviour of
system (5.16) can be approximated by those of the corresponding aggregated
system when the matrix associated to the latter is primitive.

Hypothesis (H): S̄ is a primitive matrix.
Assuming hypothesis (H), let λ > 0 be the strictly dominant eigenvalue

of S̄, and w̄l and w̄r its associated left and right eigenvectors, respectively.
We then have that, given any non negative initial condition Y0, system (5.20)
verifies

lim
t→∞

Y (t)
λn

=
w̄l · Y0

w̄l · w̄r
w̄r

Concerning the asymptotic behaviour of the auxiliary system (5.18), it is
proved that the same λ > 0 is the strictly dominant eigenvalue of SF̄ , UTw̄l

its associated left eigenvector and SV w̄r its associated right eigenvector.
The asymptotic behaviour of the general system (5.16) could be ex-

pressed in terms of the asymptotic elements of the aggregated system (5.18)
by considering SF k as a perturbation of SF̄ . To be precise, let us order
their eigenvalues of F according to decreasing modulus in the following way:
λ1 = . . . = λq = 1 > |λq+1| ≥ . . . ≥ |λN |. So, if ‖ ∗ ‖ is any consistent
norm in the space MN×N of N × N matrices, then for every α > |λq+1| we
have ‖SF k − SF̄‖ = o(αk) (k → ∞). This last result implies, see [93], that
matrix SF k has a strictly dominant eigenvalue of the form λ + O(αk), an
associated left eigenvector UTw̄l +O(αk) and an associated right eigenvector
SV w̄r + O(αk). Having in mind that α can be chosen to be less than 1, we
see that the elements defining the asymptotic behaviour of the aggregated
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Fig. 5.3. Transition graph of a population structured in two age classes and two
patches

and the general systems can be related in a precise way as a function of the
separation between the two time scales.

Example 5. We consider a population with juveniles (age class 1) and
adults (age class 2) in a two-patch environment. Let nij(t) be the density of
the subpopulation aged i on patch j at time t. On each patch, the population
grows according to a Leslie model. Individuals belonging to a given age-class
also move from patch to patch, see Fig. (5.3).

Let sj be the survival rate of juveniles on patch j and fij the fertility
rate of age class i on patch j. The matrix describing the demography of the
population in both patches is the following:

L =

⎛
⎜⎜⎝
f11 0 f21 0
0 f12 0 f22
s1 0 0 0
0 s2 0 0

⎞
⎟⎟⎠ .

The migration of individuals of age i is described by the following migration
matrix

Pi =
(

1− pi qi
pi 1− qi

)
,

where pi (respectively qi) is the migration rate from patch 1 to patch 2 (re-
spectively from patch 2 to patch 1) for individuals of age i. So the matrix
describing the migration process of the population is:

P =

⎛
⎜⎜⎝

1− p1 q1 0 0
p1 1− q1 0 0
0 0 1− p2 q2
0 0 p2 1− q2

⎞
⎟⎟⎠
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Furthermore, it is assumed that the migration process is fast in comparison
to the demographic process.

The dynamics of the four variables n11, n12, n21 and n22 is thus described
by a discrete system of four equations which reads as follows:

n(t+1)=LP kn(t)=

⎛
⎜⎜⎝
f11 0 f21 0
0 f12 0 f22
s1 0 0 0
0 s2 0 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝

1− p1 q1 0 0
p1 1− q1 0 0
0 0 1− p2 q2
0 0 p2 1− q2

⎞
⎟⎟⎠

k

n(t).

(5.21)

where k represents the ratio between the projection intervals corresponding
to the slow and fast processes.

We now proceed to reduce system (5.21). For that we need the matrices U
and V used in expression (5.17) which are composed of left and right eigen-
vectors of matrices Pi associated to eigenvalue 1. So they can be expressed in
the following way:

U =
(

1 1 0 0
0 0 1 1

)
and V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q1
p1 + q1

0

p1
p1 + q1

0

0
q2

p2 + q2

0
p2

p2 + q2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The aggregated system governing the total populations of juveniles and adults
is the system of two equations Y (t+ 1) = ULV Y (t).

Y (t+ 1) =
(

1 1 0 0
0 0 1 1

)⎛⎜⎜⎝
f11 0 f21 0
0 f12 0 f22
s1 0 0 0
0 s2 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q1
p1 + q1

0

p1
p1 + q1

0

0
q2

p2 + q2

0
p2

p2 + q2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Y (t)

which is a classical two ages Leslie model.

Y (t+ 1) =
(
F1 F2

S 0

)
Y (t)

where Y (t) = (Y1(t), Y2(t)), Y1(t) = n11(t)+n12(t) and Y2(t) = n21(t)+n22(t).
In the following we use specific values for all the coefficients appearing in
system (5.21):
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n(t+ 1) =

⎛
⎜⎜⎝

0 0 3 0
0 0.5 0 2

0.3 0 0 0
0 0.7 0 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝

0.3 0.4 0 0
0.7 0.6 0 0
0 0 0.5 0.8
0 0 0.5 0.2

⎞
⎟⎟⎠

k

n(t)

the corresponding aggregated system is:

Y (t+ 1) =

⎛
⎜⎜⎝

7
22

34
13

61
110

0

⎞
⎟⎟⎠Y (t)

To illustrate the method we include below a table where we can see the dom-
inant eigenvalue associated to the complete model for different values of k as
well as the dominant eigenvalue associated to the aggregated model.

k Dominant Eigenvalue
2 1.3641662953971971997
5 1.3740916698468009220
10 1.3738576343292195643
20 1.3738581986146791779
30 1.3738581986180111511

Aggregated 1.3738581986180111707

In Sanz and Bravo de la Parra [85] these results are extended to more gen-
eral linear cases where the projection matrices Fi defining the fast dynamics
in each group need not be primitive.

In Blasco et al. [25] the fast process is still considered linear but changing
at the fast time scale. The fast dynamics is described by means of the first k
terms of a converging sequence of different matrices. This case is called the
fast changing environment case. Under certain assumptions the limit of the
sequence of matrices plays the same role as the matrix F̄ in (5.17) obtaining
an aggregated system. Similar results to the already described relating the
asymptotic properties of the complete and the aggregated systems are proved.

It is also possible to build the general system using as time unit the pro-
jection interval of the fast dynamics, see Sánchez et al. [82], Bravo de la Parra
et al. [28, 29] and Bravo de la Parra and Sánchez [30]. As we are using the
projection interval associated to matrix F we need, therefore, to approximate
the effect of matrix S over a projection interval much shorter than its own.
For that we use matrix Sε = εS + (1− ε)I where I is the identity matrix and
ε a positive small number reflecting the ratio of slow to fast time scale. Ma-
trix Sε has the following property: if S has a dominant eigenvalue λ with an
associated eigenvector v̄, then Sε has ελ+ (1− ε) as strictly dominant eigen-
value and v̄ is also its associated eigenvector; what implies that the dynamics
associated to S and Sε have the same asymptotically stable stage distribution
but S has a much greater growth rate than Sε because ελ+ (1− ε) is closer
to 1 than λ.
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The complete model reads now as follows

nε(t+ 1) = SεFnε(t), (5.22)

the auxiliary system, supposing that fast dynamics has already attained its
asymptotic state, is

n̄ε(t+ 1) = SεF̄ n̄ε(t). (5.23)

and the aggregated system, for the same global variables Y (t) = Un(t),
becomes

Yε(t+ 1) = USεV Yε(t) = S̄εYε(t) (5.24)

where S̄ε = εUSV + (1 − ε)I = εS̄ + (1 − ε)I Assuming hypothesis (H), if
λ > 0 is the strictly dominant eigenvalue of S̄, and w̄l and w̄r its associated
left and right eigenvectors, we have that ελ+ (1− ε) is the strictly dominant
eigenvalue of S̄ε, and w̄l and w̄r its associated left and right eigenvectors. For
the auxiliary system (5.23), we conclude that the strictly dominant eigenvalue
of SεF̄ is also ελ + (1 − ε), and UTw̄l and V w̄r its associated left and right
eigenvectors. Finally, we obtain that the elements defining the asymptotic
behaviour of the complete system (5.17) can be expressed in terms of those of
the aggregated system in the following way: the strictly dominant eigenvalue
of matrix SεF is of the form ελ+ (1− ε) +O(ε2) and the corresponding left
and right eigenvectors UTw̄l +O(ε) and V w̄r +O(ε).

The approximate aggregation methods for time discrete linear models have
been extended to non-autonomous and stochastic cases. The complete model
in all these extensions is written using the slow time unit.

The case of time varying environments, non-autonomous case, is treated
in Sanz and Bravo de la Parra [84] where the variation in time is periodic
or tending to a steady state. These two cases admit similar results to the
autonomous case. In Sanz and Bravo de la Parra [87] it is studied the case of
a general non-autonomous complete system. The property of weak ergodicity,
which has to do with the capacity of a system to become asymptotically
independent of initial conditions, is compared for the complete and aggregated
systems. Related to that work, Sanz and Bravo de la Parra [88] obtained
different bounds for the error we incur in when we describe the dynamics of
the complete system in terms of the aggregated one. Finally the results in [87]
are extended for fast changing environments in Blasco et al. [26].

Two papers of Sanz and Bravo de la Parra [86, 89] are devoted to extend
previous results to simplify the study of discrete time models for populations
that live in an environment that changes randomly with time. They present
the reduction of a stochastic multiregional model in which the population,
structured by age and spatial location, lives in a random environment and in
which migration is fast with respect to demography. However, the technique
could work in much more general settings. The state variables of the complete
system and the global variables of the aggregated system are related in the case
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the pattern of temporal variation is Markovian. Strong stochastic ergodicity
for the original and reduced systems are compared, as well as the different
measures of asymptotic population growth for these systems.

5.3.2 Nonlinear Discrete Models

The previous framework can be extended to include general nonlinear fast and
slow processes. We present the complete model which will be reduced. Both
processes, fast and slow, are defined respectively by two mappings

S, F : ΩN → ΩN ; S, F ∈ C1(ΩN )

where ΩN ⊂ R
N is a nonempty open set.

We first choose a time step of the model that corresponds to the slow
dynamics as we did in the linear case, see Sanz et al. [90]. We still assume
that during this time step the fast process acts k times before the slow process
acts. Therefore, denoting by nk(t) ∈ R

N the vector of state variables at time
t, the complete system is defined by

nk(t+ 1) = S(F k(nk(t))) (5.25)

where F k denotes the k-fold composition of F with itself.
In order to reduce the system (5.25), we have to impose some conditions

to the fast process. In what follows we suppose that the following hypotheses
are met. For each initial condition X ∈ ΩN , the fast dynamics tends to an
equilibrium, that is, there exists a mapping F̄ : ΩN → ΩN , F̄ ∈ C1(ΩN ) such
that for each X ∈ ΩN , limk→∞ F k(X) = F̄ (X). This equilibrium depends on
a lesser number of variables in the following form: there exists a non-empty
open set Ωq ⊂ R

q with q < N and two mappings G : ΩN → Ωq, G ∈ C1(ΩN ),
and E : Ωq → ΩN , E ∈ C1(Ωq), such that F̄ = E ◦G.

Now, we proceed to define the so-called auxiliary system which approxi-
mates (5.25) when k →∞, i.e., when the fast process has reached an equilib-
rium. Keeping the same notation as in the linear case, this auxiliary system is

n(t+ 1) = S(F̄ (n(t))) (5.26)

which can be also written as n(t+ 1) = S ◦ E ◦G(n(t)).
The global variables in this case are defined through

Y (t) := G(n(t)) ∈ R
q. (5.27)

Applying G to both sides of (5.26) we have Y (t + 1) = G(n(t + 1)) = G ◦
S ◦ E ◦ G(n(t)) = G ◦ S ◦ E(Y (t)) which is an autonomous system in the
global variables Y (t). Summing up, we have approximated system (5.25) by
the reduced or aggregated system defined by

Y (t+ 1) = S̄(Y (t)) (5.28)
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where we denote S̄ = G ◦ S ◦ E.
Now we present some results relating the behavior of systems (5.25) and

(5.28), for big enough values of parameter k. All the results in this section
are presented in more general setting in [90]. First we compare the solutions
of both systems for a fixed value of t. The next theorem states that the
dynamics of the auxiliary system is completely determined by the dynamics
of the reduced system and that the solution to the complete system, given
mild extra assumptions, for each t fixed can be approximated by the solution
to the aggregated model.

Theorem 2. Let n0 ∈ ΩN and let Y0 = G(n0) ∈ Ωq. Then:

(i) The solution {n(t)}t=1,2,.. to (5.26) corresponding to the initial condition
n0 and the solution {Y (t)}t=1,2,.. to (5.28) corresponding to the initial
condition Y0 are related by the following expressions

Y (t) = G(n(t)) and n(t) = S ◦ E(Y (t− 1)), n = 1, 2, . . . (5.29)

(ii) Let t be a fixed positive integer and let us assume that there exists a non-
empty bounded open set Ω such that Ω̄ ⊂ ΩN , Ω contains the points n(0),
n(i + 1) = S ◦ E(Yi) (i = 0, . . . , n − 1), and such that limk→∞ F k = F̄
uniformly in Ω. Then the solution nk(t) to (5.25) corresponding to the
initial condition n(0) and the solution Y (t) to (5.28) corresponding to the
initial condition Y0 are related by the following expressions

Y (t) = lim
k→∞

G(nk(t)) and lim
k→∞

nk(t) = S ◦ E(Y (t− 1)).

Now we turn our attention to the study of some relationships between the
fixed points of the original and reduced systems. Concerning the auxiliary sys-
tem, relations (5.29) in Theorem 2 yield straightforward relationships between
the fixed points of the auxiliary and reduced systems: if n∗ ∈ ΩN is a fixed
point of (5.26) then Y ∗ = G(n∗) ∈ Ωq is a fixed point of (5.28); conversely, if
Y ∗ is a fixed point of (5.28) then n∗ = S ◦ E(Y ∗) is a fixed point of (5.26).
The corresponding fixed points in the auxiliary and aggregated systems are
together asymptotically stable or unstable.

In the following result, it is guaranteed that, under certain assumptions,
the existence of a fixed point Y ∗ for the aggregated system implies, for large
enough values of k, the existence of a fixed point n∗

k for the original system,
which can be approximated in terms of Y ∗. Moreover, in the hyperbolic case
the stability of Y ∗ is equivalent to the stability of n∗

k and in the asymptotically
stable case, the basin of attraction of n∗

k can be approximated in terms of the
basin of attraction of Y ∗.

Theorem 3. Let us assume that F̄ ∈ C1(ΩN ) and that limk−→∞ F k = F̄ ,
limk−→∞DF k = DF̄ uniformly on any compact set K ⊂ ΩN .

Let Y ∗ ∈ R
q be a hyperbolic fixed point of (5.28) which is asymptotically

stable (respectively unstable). Then there exists k0 ∈ N such that for each
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k ≥ k0, k ∈ N, there exists a hyperbolic fixed point n∗
k of (5.25) which is

asymptotically stable (respectively unstable) and that satisfies limk→∞ n∗
k =

S ◦ E(Y ∗).
Moreover, let n0 ∈ ΩN , if the solution Y (t) to (5.28) corresponding to

the initial condition Y0 = G(n0) is such that limt→∞ Y (t) = Y ∗ then for
each k ≥ k0, k ∈ N, the solution nk(t) to (5.25) corresponding to n0 verifies
limt→∞ nk(t) = n∗

k.

Particular models where this last result applies are presented in Bravo de
la Parra et al. [31] and the review paper Auger and Bravo de la Parra [8].

As in the linear case we can build the general system using as time unit the
one of fast dynamics. In Bravo de la Parra et al. [28] and Bravo de la Parra
and Sánchez [30] a system with linear fast dynamics and general nonlinear
slow dynamics is reduced by means of a center manifold theorem.

The mapping representing fast dynamics is expressed in terms of a matrix
F , F (X) = FX, where we are naming equally the map and the matrix.
Matrix F is considered to have the same properties stated in the linear case,
in particular the asymptotic behaviour associated to it is reflected in the
following equality F̄ = limk→∞ F k = V U . So, for each initial condition X ∈
R

N , the fast dynamics tends to limk→∞ F k(X) = limk→∞ F kX = F̄X =
F̄ (X) and we have G : R

N → R
q, G(X) = UX and E : R

q → R
N , E(Y ) =

V Y , such that F̄ = E ◦G.
Concerning the slow dynamics we represent it by a general mapping S :

ΩN → ΩN , S ∈ C1(ΩN ). To approximate the effect of mapping S over the
projection interval of fast dynamic we use mapping Sε(X) = εS(X)+(1−ε)X.
The complete model reads now as follows

nε(t+ 1) = Sε(Fnε(t)) (5.30)

In Bravo de la Parra et al. [28] it is developed a center manifold theorem
which applies to system (5.30). It suffices to write it in the following form

nε(t+ 1) = Fnε(t) + ε(S(Fnε(t))− Fnε(t)) (5.31)

For any small enough fixed ε there exists a locally attractive invariant man-
ifold that allows us to study the dynamics of system (5.31) by means of its
restriction to it. The system restricted to the center manifold is what we call
the aggregated system. Though, in general, it is not possible to find out ex-
plicitly the map defining the aggregated system we can calculate its expansion
in ε powers. Using the expansion to the first order we get the simplest form
of the aggregated system,

Yε(t+ 1) = Yε(t) + ε(US(V Yε(t))− Yε(t)) +O(ε2) (5.32)

in common applications, for instance when studying hyperbolic fixed points,
the term O(ε2) is negligible and the reduced system to be analysed is

Yε(t+ 1) = ε(US(V Yε(t)) + (1− ε)Yε(t) = S̄ε(Yε(t)) (5.33)

which has much the same aspect as its linear counterpart, system (5.24).
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5.4 Aggregation of Partial Differential Equations (PDE)
and Delayed Differential Equations (DDE)

In this section we will apply the aggregation of variables method in the linear
case to structured population dynamics models formulated in terms of partial
differential equations and to models formulated in terms of delayed differential
equations. The different time scales introduce into the model a small para-
meter ε > 0 which gives rise to a singular perturbation problem. Although
both contexts are mathematically very different, the underlying ideas in the
construction of the aggregated model are similar in both cases, due to the
structure of the fast dynamics: it is supposed that this dynamics is repre-
sented by a matrix K whose spectrum allows the decomposition of the space
RN in a direct sum of the eigenspace kerK associated to the eigenvalue 0 and
generated by a vector ν, plus a complementary stable subspace S correspond-
ing to the remaining part of the spectrum, which are eigenvalues with negative
real part. The aggregated model is constructed by projecting the global dy-
namics onto kerK. The theory of semi-groups allows a unified formulation of
both situations aimed at obtaining approximation results for the solutions Xε

to the perturbed global model by the solutions s0 to the aggregated model,
using the same technique in both cases. Projecting the global system onto
the subspaces kerK and S and using a variation-of-constants formula, this
perturbed system can be transformed into a fixed point problem for the pro-
jection of Xε onto kerK. Roughly speaking, in both contexts the conclusion
is reached that Xε = s0ν +O(ε), (ε→ 0+).

5.4.1 Aggregation in Structured Population Models

In this section we apply aggregation of variables methods to a general linear
structured population dynamics model with both a continuous age structure
and a finite spatial structure. It is assumed that discrete migration processes
take place between spatial patches at a frequency much higher than the de-
mographic events, so high that one almost cannot see them. The impression is
that of a spatially homogeneous age-dependent population governed by a Von
Foerster equation with birth and death coefficients averaged from the origi-
nal patch-dependent coefficients through a weighted average. The weights are
computed in terms of a migration matrix and are in fact the mark of the
hidden underlying spatial structure. See [1, 2, 27] for the details.

The Model

We consider an age-structured population, with age a and time t being
continuous variables. The population is divided into N spatial patches. The
evolution of the population is due to the migration process between the dif-
ferent patches at a fast time scale and to the demographic process at a slow
time scale.
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Let ni(a, t) be the population density in patch i (i = 1, . . . , N) so that∫ a2

a1
ni(a, t) da represents the number of individuals in patch i whose age a ∈

[a1, a2] at time t and

n(a, t) := (n1(a, t), . . . , nN (a, t))T .

Let µi(a) and βi(a) be the patch and age-specific mortality and fertility rates
respectively and

M(a) := diag {µ1(a), . . . , µN (a)}; B(a) := diag {β1(a), . . . , βN (a)}.

Let kij(a) be the age-specific migration rate from patch j to patch i, i �= j,
and

K(a) := (kij(a))1≤i,j≤N with kii(a) := −
N∑

j=1,j 
=i

kji(a).

A crucial assumption is that the jump process is conservative with respect
to the life dynamics of the population, that is, no death or birth is directly
incurred by spatial migrations.

The model based upon the classical McKendrick-Von Foerster model for
an age-structured population is as follows:
Balance law:

∂n
∂t

(a, t) +
∂n
∂a

(a, t) =
[
−M(a) +

1
ε
K(a)

]
n(a, t) (a > 0 , t > 0) (5.34)

Birth law:

n(0, t) =
∫ +∞

0

B(a)n(a, t) da (t > 0) (5.35)

where ε > 0 is a constant small enough and completed with an initial age
distribution

n(a, 0) = Φ(a) := (Φ1(a), . . . , ΦN (a))T , (a > 0)

In what follows we assume that

Hypothesis 1 The matrix K(a) is irreducible for every a > 0.

As a consequence 0 is a simple eigenvalue larger than the real part of any
other eigenvalue. The left eigenspace of matrixK(a) associated with the eigen-
value 0 is generated by vector 1 := (1, . . . , 1)T ∈ RN . The right eigenspace is
generated by vector ν(a) := (ν1(a), . . . , νN (a))T and is unique if we choose it
having positive entries and verifying 1T ν(a) = 1.

For each initial age distribution Φ ∈ X := L1(R+;RN ), the problem
(5.34)–(5.35) has a unique solution nε. Moreover we can associate with it a
strongly continuous semi-group of linear bounded operators (C0-semi-group)
{Tε(t)}t≥0 on X, defined by Tε(t)Φ := nε(·, t).
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The Aggregated Model

We build up a model which describes the dynamics of the total population:

n(a, t) :=
N∑

i=1

ni(a, t) (global variable).

The exact model satisfied by the new variable n(a, t) is obtained by adding
up the variables ni(a, t) in system (5.34) and (5.35):

∂n

∂t
(a, t) +

∂n

∂a
(a, t) = −

N∑
i=1

µi(a)ni(a, t), (a, t > 0)

n(0, t) =
∫ +∞

0

(
N∑

i=1

βi(a)ni(a, t)

)
da, (t > 0)

together with the initial condition n(a, 0) = ϕ(a) :=
∑N

i=1 Φi(a) (a > 0).
In order to obtain a system with the global variable as the unique state

variable, we propose the following approximation:

νi(a, t) :=
ni(a, t)
n(a, t)

≈ νi(a) i = 1, . . . , N

which implies that

N∑
i=1

µi(a)ni(a, t) ≈
(

N∑
i=1

µi(a)νi(a)

)
n(a, t) := µ∗(a)n(a, t)

N∑
i=1

βi(a)ni(a, t) ≈
(

N∑
i=1

βi(a)νi(a)

)
n(a, t) := β∗(a)n(a, t).

The aggregated model for the density of the total population is the following

∂n

∂t
(a, t) +

∂n

∂a
(a, t) = −µ∗(a)n(a, t), (a, t > 0) (5.36)

n(0, t) =
∫ +∞

0

β∗(a)n(a, t) da, (t > 0) (5.37)

together with the initial condition n(a, 0) = ϕ(a), (a > 0).
It is a classical Sharpe–Lotka–McKendrick linear model to which the gen-

eral theory applies. Under some technical conditions which are specified in [1]
the solutions to this problem define a C0-semi-group on L1(R+), which has
the so-called asynchronous exponential growth property, namely
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Proposition 1. There exists a unique λ0 ∈ R (malthusian parameter)
such that

lim
t→+∞ e

−λ0tn(a, t) = c(ϕ)θ0(a)

where c(ϕ) > 0 is a constant depending on the initial value ϕ ∈ L1(R+) and

θ0(a) := e−λ0ae
−
∫ a

0
µ∗(σ) dσ

is the asymptotic distribution.

Approximation Result

Let us say a few words about the nature of the convergence of the solutions
to the perturbed problem (5.34) and (5.35) when ε → 0+ to the solutions to
the aggregated model (5.36) and (5.37).

To this end, let us consider the following direct sum decomposition, whose
existence is ensured by Hypothesis 1:

RN = [ν(a)]⊕ S (5.38)

where [ν(a)] is the one-dimensional subspace generated by the vector ν(a) and
S := {v ∈ RN ; 1T ·v = 0}. Notice that S is the same for all a, and moreover
KS(a), the restriction of K(a) to S is an isomorphism on S with spectrum
σ(KS(a)) ⊂ {λ ∈ C ; Reλ < 0}.

We decompose the solutions to the perturbed problem according to (5.38),
that is

nε(a, t) := pε(a, t)ν(a) + qε(a, t); qε(a, t) ∈ S

giving

∂pε

∂t
(a, t) +

∂pε

∂a
(a, t) = −µ∗(a)pε(a, t)− 1TM(a)qε(a, t) (5.39)

∂qε

∂t
(a, t) +

∂qε

∂a
(a, t) = −[MS(a)ν(a) + ν′(a)]pε(a, t)

+
[
1
ε
KS(a)−MS(a)

]
qε(a, t) (5.40)

pε(a, t) =
∫ +∞

0

β∗(a)pε(a, t) da+
∫ +∞

0

1TB(a)qε(a, t) da (5.41)

qε(0, t) =
∫ +∞

0

BS(a)ν(a)pε(a, t) da+
∫ +∞

0

BS(a)qε(a, t) da (5.42)

whereMS(a), BS(a) are the projections ofM(a) and B(a) respectively onto S.
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Notice that the solutions to the homogeneous problem

∂q
∂t

(a, t) +
∂q
∂a

(a, t) =
[
1
ε
KS(a)−MS(a)

]
q(a, t)

q(0, t) =
∫ +∞

0

BS(a)q(a, t) da

define a C0-semi-group {Uε(t)}t≥0 which satisfies the estimation

‖Uε(t)‖ ≤ C1e
(C2−C3/ε)t, t ≥ 0, (C1, C2, C3 > 0).

Under some technical conditions and using a variation-of-constants formula,
we can express the solution to the nonhomogeneous system (5.40)–(5.42) in
terms of Uε(t) and pε. Then substituting this expression in (5.39)–(5.41), we
can transform these equations into a fixed point problem for pε which can be
solved giving the following result of approximation:

Theorem 4. For each ε > 0 small enough, we have

nε(a, t) = n(a, t)ν(a) + (Uε(t)q0)(a) +O(ε)

where n(a, t) is the solution to the aggregated model corresponding to the initial
age distribution p0 and Φ := p0ν + q0 (q0 ∈ S) is the initial age distribution
for the perturbed system.

We point out that the above formula is of interest mainly in the case
when λ0 ≥ 0. In this case, it can be concluded from the above formula that
nε(·, t) ≈ n(·, t)ν(·) as t→ +∞ uniformly with respect to ε > 0 small enough.
Also, if λ0 < 0 then nε(·, t) → 0 as t → +∞ and this is again uniform
with respect to ε > 0 small enough. In this case, however, n(·, t)ν(·) does not
dominate in general the terms O(ε).

See [1] for the details. In this chapter it is also shown that the semi-
group {Tε(t)}t≥0 has the asynchronous exponential growth property. Roughly
speaking, it is shown that for ε > 0 small enough, each solution nε(a, t) of the
perturbed system is such that

nε(a, t) ≈ C(Φ)eλεtΨε(a) (t→ +∞)

where C(Φ) > 0 is a constant depending on the initial age distribution and

lim
ε→0+

λε = λ0; lim
ε→0+

Ψε = νθ0

where λ0 and θ0 are, respectively, the Malthus parameter and the associated
asymptotic distribution of the aggregated system mentioned in Proposition 1.
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5.4.2 Aggregation of Variables in Linear Delayed Differential
Equations

Let us describe in some detail the aggregation of variables method in a simple
linear model with a discrete delay. On one side, this case is interesting in
itself and clarifies other abstract formulations while on the other, it has its
own methods for the step-by-step construction of the solution.

The Model

The model consists of the following system of linear delayed differential equa-
tions, depending on a small parameter ε > 0, that we call the perturbed
system: {

X ′(t) = (1/ε)KX(t) +AX(t) +BX(t− r), t > 0
X(t) = Φ(t) , t ∈ [−r, 0] ; Φ ∈ C([−r, 0];RN ) (5.43)

where X(t) := (x1(t), . . . ,xq(t))
T , xj(t) :=

(
x1

j (t), . . . , x
Nj

j (t)
)T

, j = 1, . . . , q.
K, A and B are N ×N real constant matrices with N = N1 + · · · +Nq.

As usual, C([−r, 0];RN ) represents the Banach space of RN -valued con-
tinuous functions on [−r, 0], (r > 0), endowed with the norm ‖ϕ‖C :=
supθ∈[−r,0] ‖ϕ(θ)‖.

System (5.43) can be solved by the classical step-by-step procedure.
Throughout this section, we suppose that matrix K is a block-diagonal

matrix
K := diag{K1, . . . ,Kq}

in which each diagonal block Kj has dimensions Nj × Nj , j = 1, . . . , q and
satisfies the following hypothesis

Hypothesis 2 For each j = 1, . . . , q, the following holds:

(i) σ(Kj) = {0} ∪ Λj, with Λj ⊂ {z ∈ C; Re z < 0}, where σ(Kj) is the
spectrum of matrix Kj.

(ii) 0 is a simple eigenvalue of Kj.

As a consequence, kerKj is generated by an eigenvector associated to
eigenvalue 0, which will be denoted vj . The corresponding left eigenspace is
generated by a vector v∗

j and we choose both vectors verifying the normaliza-
tion condition: (v∗

j )T vj = 1.

The Aggregated Model

In order to build the aggregated system of system (5.43), we define the follow-
ing matrices:

V∗ := diag{(v∗
1)

T , . . . , (v∗
q)T }; V := diag{v1, . . . ,vq}.
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As a consequence of Hypothesis 2, we can consider the following direct
sum decomposition of space RN :

RN = kerK ⊕ S (5.44)

where kerK is a q-dimensional subspace generated by the columns of matrix
V and S := ImK = {v ∈ RN ; V∗v = 0}.

We now define the q aggregated variables:

s(t) := (s1(t), . . . , sq(t))T = V∗X(t)

which satisfy a linear differential system obtained by premultiplying both sides
of (5.43) by V∗. We get the aggregated variables on the left-hand side but we
fail on the right-hand side. To avoid this difficulty, we write X(t) according
to the decomposition (5.44) so that X(t) = Vs(t) +XS(t) and then

s′(t) = V∗AVs(t) + V∗BVs(t− r) + V∗AXS(t) + V∗BXS(t− r).

Let us observe that for t ∈ [0, r] we have

s′(t) = V∗AVs(t) + V∗AXS(t) + V∗BΦ(t− r).

Therefore, we propose as aggregated model the following approximated system

s′(t) = As(t) +Bs(t− r), t > r (5.45)

where A := V∗AV, B := V∗BV, and

s′(t) = As(t) + V∗BΦ(t− r), t ∈ [0, r]. (5.46)

Equation (5.45) is a delayed linear differential system of equations which can
be solved by a standard step-by-step procedure from an initial data in [0, r]
which is the solution to (5.46), that is:

s(t) = etA
[
V∗Φ(0) +

∫ t

0

e−σAV∗BΦ(σ − r) dσ
]
. (5.47)

Comparison Between the Solutions to Systems (5.43) and (5.45)

Decomposing the system (5.43) according to the direct sum decomposition
(5.44) and solving it with the help of a variation-of-constants formula in a
similar way of the previous section, we can obtain a comparison between the
solutions of both systems (5.43) and (5.45). See [81] for the details.

Theorem 5. Under Hypothesis 2, for each initial data Φ ∈ C([−r, 0];RN ),
Φ = Vψ+ϕ, the corresponding solution Xε to system (5.43) can be written as:

∀t ≥ r, Xε(t) = Vs0(t) + rε(t)
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where s0 is the solution to the aggregated system (5.45) for t ≥ r, with the
initial data defined ∀t ∈ [0, r] by (5.47).

Moreover, there exist three constants C > 0, C∗ > 0, γ > 0, such that

∀t ≥ r, ‖rε(t)‖ ≤ ε(C + C∗eγt)‖Φ‖C .

Therefore, for each T > r, limε→0+ Xε = Vs0 uniformly in the interval [r, T ].

This approximation result is similar to that obtained in the previous sec-
tion for continuous time structured models formulated in terms of partial
differential equations, but we have to point out that the delay introduces sig-
nificant differences due to the influence of the initial data on the solution in
the interval [0, r]. In fact, the approximation when ε→ 0 is valid only for t ≥ r
and hence the initial data in [0, r] for the aggregated system is V∗Xε(t), which
is the projection on kerK of the exact solution to system (5.43), constructed
in [0, r] from an initial data Φ ∈ C([−r, 0];RN ).

The above procedure can be generalized to the following perturbed system
of linear delayed differential equations:{

X ′(t) = L(Xt) + (1/ε)KX(t), t > 0
X0 = Φ ∈ C([−r, 0];RN ) (5.48)

where L : C([−r, 0];RN ) −→ RN is a bounded linear operator andXt, (t ≥ 0),
is the section of function X at time t, namely, Xt(θ) := X(t+ θ), θ ∈ [−r, 0].

The aggregated model is

s′(t) = L(st), t ≥ r

where L is the linear bounded operator defined by:

L : C([−r, 0];Rq) −→ Rq, L(ψ) := V∗L(Vψ).

As in the previous case, the initial data in [0, r] should be constructed, but
in this abstract setting it presents higher mathematical difficulties. In partic-
ular, we should use the Riesz representation theorem of bounded linear op-
erators on C([−r, 0];RN ). Operator L can be written as a Riemann–Stieltjes
integral:

∀Φ ∈ C([−r, 0];RN ); L(Φ) =
∫

[−r,0]

[dη(θ)]Φ(θ)

where η(θ) is a bounded variation N × N matrix-valued function. It can be
shown that the contributions of sections of the initial data Φ = Vψ+ϕ to the
aggregated model in [0, r] is given by the Riemann–Stieltjes integral:

I(t, ϕ) :=
∫

[−r,−t]

[dη(θ)]ϕ(t+ θ).
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5.5 Applications to Population Dynamics

In this section, we present several examples which illustrate how to use the
methods described above and what kind of results can be expected with these
methods. We have chosen examples where the fast and the slow parts are usual
models which are combined. For instance, if we are interested in the effect of
the behaviour of predator individuals on the population dynamics, we choose
in this section a classical model for the behaviour of the predators and a
classical model for the population dynamics and we analyse their interaction.
The aggregation methods permit to analyse the models and to understand how
the behavioral interaction emerges at the population level. All our examples
are simple enough to make the calculations rather easy. However, some of them
are not trivial and give an idea of the problems which occur when playing with
these time scales arguments. In order to illustrate the whole chapter, we gave
examples corresponding to the different sections. Other applications can be
found in the literature. We would like to say that the method described in the
ODE’s section may for instance be applied to get some general results on the
model proposed in Sect. 6 of Chap. 4, even if some of the dispersal rates are
null or small. Indeed, only some of the dispersal rates must be high enough
to satisfy the reduction conditions.

5.5.1 Aggregation for Ordinary Differential Equations

In this subsection, we give two examples which show the effect of prey or
predator individuals behaviours on the populations dynamics. The first case
deals with the assumption under which the prey individuals attract the preda-
tors. This is done by considering that the predator movements are prey density
dependent. By using the aggregated model ,we show that a supercritical Hopf
bifurcation can occur at the population level. The second example illustrates
the situation where the prey avoids the predator, by considering that the prey
movements are predator dependent. In this case, there is also a Hopf bifur-
cation. However, the bifurcation is degenerate for the aggregated model and
it is not obvious a priori that the bifurcation has the same properties for the
complete model. We show that this is the case. Thus these examples illus-
trates how to deal with bifurcation analysis for the complete model by using
the bifurcation analysis of the aggregated model.

Preys Attracting Predators

In Auger et al. [10] and in Auger and Lett [6], a single population dynamics
in a two-patch environment connected by fast migrations was studied. We
extended this approach to the case of a predator–prey community in a two-
patch environment. In a series of papers, Mchich et al. [62–64] we investigated
the effects of density dependent dispersal of prey (respectively predator) with
respect to predator (respectively prey) density on the global stability of the
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system. Let us consider a predator–prey system in a two-patch environment.
This example is based on the paper Mchich et al. [64]. The model reads as
follows:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dn1
dτ = (k12n2 − k21n1) + ε

(
r1n1(1− n1

K1
)− a1n1p1

)
dn2
dτ = (k21n1 − k12n2) + ε

(
r2n2(1− n2

K2
)− a2n2p2

)
dp1
dτ = (m12(n2)p2 −m21(n1)p1) + ε (−µ1p1 + b1n1p1)
dp2
dτ = (m21(n1)p1 −m12(n2)p2) + ε (−µ2p2 + b2n2p2)

(5.49)

where the prey migration rates k12 and k21 are constant and predator dispersal
rates are assumed to be prey density dependent:

m21(n1) =
1

k0 + kn1
(5.50)

and:
m12(n2) =

1
k0 + kn2

(5.51)

where k0 and k are positive parameters. These prey density dependent dis-
persal rates for predators assume that:

– If few preys are present in a patch, predators leave this patch
– If many preys are available in a patch, predators remain on that patch

The slow part of the model assumes a Lotka–Volterra model on each patch
with logistic growth of the prey. ri andKi are respectively the growth rate and
the carrying capacity of the prey on patch i. µi is the death rate for predator
on patch i. ai and bi are predation parameters on patch i. These assumptions
can be justified as follows: we consider the heterogeneous environment as a
set of homogeneous patches and then the interaction on each homogeneous
patch are based on the Mass Action Law, which claims that the reaction rates
are proportional to the meeting rates. Using aggregation methods described
in the first section, this model can be aggregated as follows:{

dn
dt = rn(1− n

K )−A(n)np+O (ε)
dp
dt = −µ(n)p+B(n)np+O (ε)

(5.52)

where r and K are global growth rate and carrying capacity for the prey.
A(n), µ(n) and B(n) are not constant but depend on total prey density ac-
cording to functions which are not given here. For details we refer to [64]. This
case shows an example of functional emergence and of qualitative emergence.
Indeed, it can be shown, [64], that the dynamics of the aggregated model is
qualitatively different from the local dynamics on each patch. The local model
predicts either predator extinction or predator–prey coexistence at a positive
gas equilibrium. The aggregated model predicts the same situations but also
periodic solutions for the total prey and predator densities. A stable limit
cycle can occur via a supercritical Hopf bifurcation, see Fig. 5.4.
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Fig. 5.4. Phase portrait of the aggregated model (5.52) exhibiting a limit cycle

Repulsive Effects of Predators on Preys

Let us consider a predator–prey system in a two-patch environment. The
complete model, proposed in [62], reads as follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dn1
dτ = (k12(p2)n2 − k21(p1)n1) + ε (r1n1 − a1n1p1)
dn2
dτ = (k21(p1)n1 − k12(p2)n2) + ε (r2n2 − a2n2p2)

dp1
dτ = (m12p2 −m21p1) + ε (−µ1p1 + b1n1p1)
dp2
dτ = (m21p1 −m12p2) + ε (−µ2p2 + b2n2p2)

(5.53)

where the prey dispersal rate is assumed to be predator density dependent:

k21(p1) = α0 + αp1 (5.54)

and:
k12(p2) = α0 + βp2 (5.55)

where m0 and m are positive parameters. This predator density dependent
dispersal rate for preys assumes that:

– If few predators are present in a patch, preys remain on this patch.
– If many predators are located in a patch, preys leave this patch.

The slow model is a classical Lotka–Volterra model with linear growth
rate on each patch for the prey. All parameters have the same meaning as in
previous section.

Using aggregation methods, this model can be aggregated as follows:{
dn
dt = 1

d0+dp (rn+ anp− bnp2) +O (ε)
dp
dt = −µp+ 1

d0+dp (bnp+ cnp2) +O (ε)
(5.56)
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Fig. 5.5. This figure illustrates the degenerate Hopf bifurcation of the complete
model. (a) corresponds to a stable focus, (b) is a centre and (c) is an unstable focus.
One curve is obtained with the complete model while the other curve is obtained
with the aggregated model. The set of parameters used for these simulations is:
α0 = 1, α = 1, β = 0.5, m12 = 2, m21 = 1, r1 = 1.1, r2 = 1.2, a1 = 1, a2 = 0.9,
µ1 = 0.9, µ2 = 0.8, b1 = 1, b2 = 1 and ε = 0.1

where global parameters r, a, b, c, d0 and d are expressed in terms of local
parameters. For details we refer to [62]. This case also shows an example of
functional emergence and of qualitative emergence. It can be shown that the
dynamics of the aggregated model is qualitatively different from the local
dynamics on each patch. The local model is a classical Lotka–Volterra models
and therefore predicts periodic solutions according to center trajectories. For
the aggregated model, [62], one can show that there is a degenerate Hopf
bifurcation. Therefore, as it is presented on Fig. 5.5 and according to the
parameters values:

– Prey and predator can coexist at constant densities
– The predator–prey system is not persistent
– At bifurcation, there exists periodic solutions (centers)

To conclude this section devoted to spatial predator–prey dynamics, let us
mention that the most general case combining the two previous effects (attrac-
tion of predators by preys and repulsion of preys by predators) is under study.
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We mention here a series of articles where the effects of different individual de-
cisions on the global dynamics of a prey–predator system, in an heterogeneous
environment, have been studied [4, 24,40,61,79].

Effects of Competitive Behaviour of Predators on a Predator–Prey
System Dynamics

In a previous contribution [7], we investigated the effects of contests between
predators disputing preys on the stability of a predator–prey Lotka–Volterra
model. Roughly, it was assumed that when a predator captures a prey, another
predator is coming and the two predators come into contest. Predators can
be aggressive (hawk) or non aggressive (dove).

In another article [5], we considered a detailed version of a predator–prey
model with hawk-dove contests between predators at the fast time scale.

On the individual level, predator individuals [51] have three possible states
of behaviour: they can be searching for prey, finding a prey or defending it.
Individuals in each of these subpopulations can play the hawk or dove tactics.
We denote by pSD, pFD, pDD, pSH , pFH and pDH the biomass of searching
and dove predators, finding and dove predators, defending and dove predators,
searching and hawk predators, finding and hawk predators and defending and
hawk predators respectively. The individuals can change their tactics only in
the defending subpopulation. Let:

pS = pSD + pSH , (5.57a)

pF = pFD + pFH , (5.57b)

pD = pDD + pDH , (5.57c)

be the biomass of searching predators, finding predators and defending preda-
tors, respectively. We denote n the prey density.

In this model, searching predators can capture preys according to the mass
action law. When a predator has captured a prey, it comes into the finding
state. It takes some time for a finding predator to manipulate a prey before
returning to the searching state (1/β). However, another searching predator
can find a predator when it manipulates its prey. We assume the mass action
law for searching and finding predators encountering rates. When a manip-
ulating predator is found by a searching one, both predators come into the
defending state, come into contest and dispute for the prey. Defending preda-
tors play against each other using hawk and dove strategies. After some time
(1/γ), defending predators return to the searching state. The complete model
is thus a set of seven ODE’s governing the prey and six predator densities,
obtained by coupling the predator behavioural model at a fast time scale, see
Fig. 5.6, to a predator–prey model at a slow time scale as follows:
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Fig. 5.6. Scheme of the possible states for the predator individuals and flux between
these states

dpSD

dτ
= −bpF pSD − anpSD + βpFD + γpDD

+ ε
(
α (βpFD + (Au)DpDD)− µpSD

)
, (5.58a)

dpFD

dτ
= −bpSpFD + anpSD − βpFD − εµpFD, (5.58b)

dpDD

dτ
= bpF pSD − γpDD + bpSpFD + cpDD

(
(Au)D − uT Au

)
− εµpDD,

(5.58c)
dpSH

dτ
= −bpF pSH − anpSH + βpFH + γpDH

+ ε
(
α (βpFH + (Au)HpDH)− µpSH

)
, (5.58d)

dpFH

dτ
= −bpSpFH + anpSH − βpFH − εµpFH , (5.58e)

dpDH

dτ
= bpF pSH − γpDH + bpSpFH + cpDH

(
(Au)H − uT Au

)
− εµpDH ,

(5.58f)
dn

dτ
= ε
(
rn(1− n

K
)− anpS

)
. (5.58g)

where (Au)D and (Au)H respectively represent the gain of dove and hawk
individuals. The meaning of the different parameters of the fast part of the
model can be understood from the flows shown in Fig. 5.6. The slow part of
the model, of order ε, contains a logistic growth for preys, a type I func-
tional response, a constant predator natural mortality and a predator growth
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depending on the consumption of preys either in the finding state or in the
defending state. For more details see [5].

Using aggregation methods, this complete model can be aggregated into
two different systems of 2 ODE’s governing the prey and the total predator,
denoted p, densities. At fast equilibrium, gain is γ and cost is δ. These two
systems correspond either to the mixed hawk-dove fast equilibrium or to the
pure hawk fast equilibrium:

– If γ < δ then we have the dimorphic case (mixed hawk and dove predators)
which we call model I:

dn

dt
= rn

(
1− n

K

)
− anp∗S , (5.59a)

dp

dt
= −µp+ α

(
βp∗F +

γ

2
(1− γ

δ
)p∗D

)
. (5.59b)

– If γ > δ then we have the monomorphic case (only hawk predators) which
we call model II:

dn

dt
= rn

(
1− n

K

)
− anp∗S , (5.60a)

dp

dt
= −µp+ α

(
βp∗F +

γ

2
(1− δ

γ
)p∗D

)
, (5.60b)

where the values of p∗S , p∗F and p∗D are fast equilibrium values which can
be expressed in terms of n and p.

The aggregated model has been studied by bifurcation analysis. Two im-
portant parameters have been chosen, the cost of an escalated contest C and
the carrying capacity of the prey K. Using these two parameters, all other
parameters being fixed, one can capture the essential of the dynamics, see
Fig. 5.7.

As expected in a prey–predator model, at constant cost, when the carrying
capacity of the prey increases, predator invades (TC), and then, for small and
large cost values where there is no coexistence of two limit cycles, there is a
supercritical Hopf bifurcation with the appearance of a stable limit cycle [5].
This is the so called “paradox of enrichment”. However, if one assumes that
the prey carrying capacity K is bounded above, there always exists a cost-
window in which there is no “paradox of enrichment”. Indeed, as shown on
Fig. 5.7, there is a cost-domain where for any value of K, predator and prey
can coexist at constant densities. This stability domain occurs for pure hawk
as well as for a mixed predator population. This last result shows that contests
between predators can make the predator–prey system more stable.

We also mention earlier articles on the dynamics of a population of two
competing populations using fast game dynamics (Auger and Pontier [17],
Sánchez et al. [83], Auger et al. [18]).
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Fig. 5.7. Bifurcation diagram in the parameters space (C, K). Note that there is a
domain around C = 1 where, for every K, the prey and its predator coexist at fixed
densities

5.5.2 Discrete Models

We provide two discrete models examples. We have chosen examples for which
aggregation methods presented in the previous section of discrete models can
be applied. The first example is linear (linear fast model and linear slow
model) and, the second one is nonlinear (linear fast model but, nonlinear slow
model). The first one concerns the effects of habitat fragmentation on an in-
sect population dynamics. It is based on the article by Pichancourt et al. [71].
The second example deals with the problem of spatial synchrony of a host–
parasitoid systems. It is based on two articles by Nguyen Huu et al. [67, 68].
In this second example, we analyze the effect of the time scale factor, that
is the ratio between fast time scale unit and slow time scale unit, on spatial
synchrony which is needed to proceed to spatial aggregation. Among other
results, we show that this ratio does not need to be very high and that ag-
gregation methods can thus be useful in very realistic and concrete ecological
situations.

Effects of Habitat Fragmentation on Insect Population Dynamics

In Pichancourt et al. [71], we studied the effect of habitat fragmentation on in-
sect population dynamics, Abax parallelepipedus (coleoptera, carabidae). This
insect population is considered to have a metapopulation structure in the
agricultural landscape in Brittany. Roughly speaking, the landscape can be
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represented by a network of patches of four different kinds, the agricultural
matrix, pieces of woods, lanes and hedgerows. The agricultural matrix usu-
ally represents a large proportion of about 0.80 of the total landscape and
is an unfavorable habitat for insects which cannot survive for a long time in
this habitat (as well as in hedgerows). On the contrary, woods and lanes are
favorable habitats.

The complete model reads as follows:

n(t+ 1) = LP kn(t) (5.61)

where n(t) is the population vector structured by age and habitat at time
step t. k is a parameter which represents the number of dispersal events that
are performed during one time step. This number can be assumed to be large
and thus migration between patches is assumed to be fast with respect to
demography. The time step of the model corresponds to one year which is
also the duration of each stage. We considered three stages, larvae (L), adults
aged 1 (A1) which do not reproduce and adults aged 2 and more (A2) which
can reproduce. There are four different types of habitat, agricultural matrix
(M), wood (W), lane (L) and, hedgerow (H). As we consider 3 stages and 4
habitats, the complete model deals with 12 variables.
P = diag [I, PA, PA] is a migration matrix between different types of habi-

tat. It is a block diagonal matrix. Each block matrix represents the migration
process between the different types of habitats for individuals belonging to a
given stage, with constant proportions of migrants from patch to patch: I is
the identity matrix corresponding to the larvae L which do not move, while
PA corresponds to both A1 and A2 movements. Therefore, the fast model is
linear.
L is a Leslie multiregional matrix (Caswell [33]) which describes the insect

life cycle in each type of habitat. The matrix L incorporates survival as well
as fecundities for each stage and for each habitat. All parameters of the Leslie
matrix have been obtained from experimental data and for details we refer
to [71].

To summarize the life cycle of Abax parallelepipedus in the different habi-
tats, insects cannot reproduce in agricultural matrix and hedgerows. Fecundity
is high in woods and lanes. Larvae cannot survive in agricultural matrix and
hedgerows. Larvae can survive only in woods and lanes in proportion up to
0.50 from year to year. Adult insects cannot survive in agricultural matrix.
Adult insects survive in a proportion up to 0.45 in woods and lanes. Survival
as well as fecundity are constant. Therefore, the slow model is also linear.
Figure 5.8 shows life cycles in (a) favorable and (b) unfavorable habitats.

In [71], we investigated the effects of habitat fragmentation on viability
of the overall insect population. In this model, two parameters allow to take
into account an increase of habitat fragmentation. First, the landscape is
more fragmented when the overall proportion of favorable habitat decreases.
Secondly, for a constant proportion of each habitat, fragmentation increases
when the average size of a favorable habitat decreases. In other words, at



5 Aggregation of Variables and Applications to Population Dynamics 251

Fig. 5.8. Life cycles in (a) favourable and (b) unfavourable habitats for Abax paral-
lelepipedus. SL, SA1 and SA2 , represent respectively the proportions of larvae, adults
aged 1 and adults aged 2 of a generation which survive to the next generation. FA2

is the fecundity of adults aged 2

constant total wood proportion, a landscape with many small pieces of woods
is more fragmented than a landscape with a single large piece of wood.

The first effect can be taken into account in the model because migration
rates, for example from wood to agricultural matrix, depend on the propor-
tion of the different habitats, for details see [71]. The second effect can also
be taken into account by increasing parameter k of the complete model pre-
sented below. Indeed, if the average size of a patch of favorable habitat is
small, insects come more frequently to a boundary with another habitat and
are more likely to change habitat. Thus, parameter k represents at constant
proportion of habitats, the degree of fragmentation of the landscape, from
small fragmentation (small k) to high fragmentation (large k).

In the limit case, k >> 1, which corresponds to a highly fragmented land-
scape, one can perform a “spatial aggregation”. Indeed, let us first consider
the fast system which reads as follows, na being either adults 1 or adults 2 of
Abax parallelepipedus:

na(t+ 1) = PAna(t) (5.62)

This fast model is conservative because the total insect population does
not vary at the fast time scale. Therefore, it has a dominant eigenvalue equal
to 1. The corresponding eigenvector has non negative components. When nor-
malized to 1, these components represent constant proportions of insects of
the different stages in the different habitats. Following the method presented
in the previous section of aggregation of discrete models, we can build an ag-
gregated model governing two global variables representing the overall adult
1 and adult 2 densities, obtained by summation over all habitats of the land-
scape, and two more variables for larvae densities in the two habitats where
they can survive, i.e (W) and (L).

The aggregated model reads as follows:

n(t+ 1) = L̄n(t) (5.63)
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where n(t) is a dimension 4 population vector structured by stage at time
step t. L̄ is an aggregated matrix with dimension 4. Thus, using aggregation
methods, we reduced the dimension from 12 (complete model) to 4 (aggre-
gated model). As shown in the above section about aggregation of discrete
models, when k tends to infinity, dominant eigenvalues of complete and ag-
gregated models tend to the same value. Therefore, the aggregated model can
be used to find the asymptotic behavior of the complete model. Remember
that the dominant eigenvalue has a significant ecological interpretation, as it
represents the asymptotic growth rate of the overall insect population. When
the dominant eigenvalue is bigger than 1, the total population grows, when
it is smaller than 1, the total population goes extinct. In [71], we have shown
that the dominant eigenvalues of complete and aggregated models are close at
less than 0.05 for a k-value larger than 12, which corresponds to one dispersal
event per month and is rather realistic for insects in Brittany landscape.

In [71], we studied the particular case of only two types of habitats, a
favorable habitat (W) and an unfavorable one (L), see Fig. 5.9. Figure 5.10

Fig. 5.9. Life cycles of Abax parallelepipedus for the aggregated model with two
habitats (W) and (L). νW∗

and νL∗
are the proportion of adults on habitat (W) and

(L) respectively. S̄A1 and S̄A2 represent the proportion of adults 1 and 2 surviving
to the next generation, and SW

L and SL
L the survival of larvae in both habitats

Fig. 5.10. Effect of W-fragmentation on asymptotic population growth rate λ for
landscapes with only W and M
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shows domains where the overall asymptotic growth rate of the insect popula-
tion is bigger than 1 (global survival) and smaller than 1 (global extinction) as
a function of global proportion of favorable habitat (W) and of parameter k.
Results showed that fragmentation has a negative effect on overall population
viability. For large k-values, a proportion of 1/3 of woods is needed for insect
persistence. Below this critical wood proportion, insect population goes ex-
tinct. Moreover, for very small k-values, the insect population can survive even
for small proportion of woods. This is due to the fact that a very large patch
of wood (even with small overall wood proportion) can promote viability be-
cause insects can always remain in the favorable patch from year to year and
never go to the matrix where they die. The article [71] had also investigated
several other cases with four types of habitats in different proportions.

Aggregation of a Spatial Model for a Host–Parasitoid Community

We investigated the effects of fast migration on the global stability of a host–
parasitoid community in a two patch model [57] and in the case of a linear
chain of patches [58]. We have also been studying the case of a host–parasitoid
community in a 2-Dimensional network of patches ([67] and [68]).

Let us consider the Nicholson–Bailey model with logistic growth of the
hosts: {

n(t+ 1) = n(t) exp
(
r
(
1− n(t)

K

))
exp (−ap(t))

p(t+ 1) = cn(t) (1− exp (−ap(t)))
(5.64)

where r is the host growth rate, K its carrying capacity. a is a positive pa-
rameter, the searching efficiency of the parasitoid. c is a positive parameter,
the average number of hosts merging from a single infected host. This model
has a unique positive equilibrium which can be stable or unstable according
to parameters values. The model can exhibit periodic solutions and chaotic
dynamics. Trajectories can also tend asymptotically to an invariant curve,
see [48].

Now, we consider a two-dimensional network of patches on a square lattice.
The size of the network is A2. We further assume that individuals can move
to the eight neighbouring patches according to the following dispersal model
at any patch (i, j) of the network:{

n(t+ 1) = (1− µn)n(t) + µn

8

∑
n(t)

p(t+ 1) = (1− µp) p(t) + µp

8

∑
p(t)

(5.65)

where the sum holds for the eight nearest patches around a given patch. For
simplicity, we omit the patch index position (i, j). µn (respectively µp) is
the proportion of host (respectively parasitoid) which disperses during a time
step of dispersal. Numerical simulations are made by considering that during a
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generation, individuals first disperse according to the dispersal submodel and
then locally interact according to the logistic Nicholson–Bailey submodel. The
dynamics of this spatial host–parasitoid community has been widely studied
and we refer to an early paper [41]. According to mobility values, after some
transient dynamics, the system can exhibit crystal structures, spirals or else
chaotic dynamics.

In order to introduce time scales, fast dispersal with respect to local dy-
namics, we are going to consider a new complete model written in the same
form as in equation (5.25):

X(t + 1) = S
(
F kX(t)

)
(5.66)

where X(t) = (n(t),p(t)) is the spatial host and parasitoid population density
vector. n(t) (respectively p(t)) is the host (respectively parasitoid) density
vector with A2 components. In the previous system, S represents the local
Nicholson–Bailey dynamics. F is the dispersal matrix corresponding to the
previous dispersal submodel. k is an integer which is assumed to be large,
k >> 1. During one generation, individuals disperse k times and interact
locally one time. Therefore, when k is large, the dispersal process becomes
fast in comparison to local interactions.

Figure 5.11 shows the effect of an increase of k on the spatial distribution
which is “Gaussian” centered on the initial position with a variance increasing

Fig. 5.11. Distribution of the distance from an initial position after one generation
with respect to the parameter k when a proportion of 1/2 of the individuals leave
the patch
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with k. Hosts and parasitoids are flying insects and it is realistic to assume
that during one generation an insect can fly not only to the nearest patches
but farther.

Using aggregation methods, one can obtain an aggregated model for the
total density of host (N(t) =

∑
n(t)) and parasitoids (P (t) =

∑
P (t)), where

the sum holds for any patch of the network. This aggregated model assumes
that a fast dispersal equilibrium is reached. This fast dispersal equilibrium
corresponds to a situation of spatial synchrony with constant and equal pro-
portions of insects on any patch which is simply 1

A2 , i.e. the inverse of the
total number of patches. The use of the aggregated model implies that the
local insect density is proportional to the total density at each patch. In that
case, the aggregated model reads:⎧⎨

⎩N(t+ 1) = exp
(
r
(
1− N(t)

KA2

))
exp
(
−aP (t)

A2

)
P (t+ 1) = cN(t)

(
1− exp

(
−ap(t)

A2

)) (5.67)

The aggregated model depends on the size of the two-dimensional network.
We compare the aggregated model and the complete model with parameters
r = 0.5, a = 0.2, K = 14.47, c = 1, A = 50, µn = 0.2 and µp = 0.89
leading to a stable equilibrium. We use an initial condition with a few hosts
and parasitoids located on the same patch at t = 0.

This example illustrates that even with a low value of k, the dynamics of
the aggregated model and the complete model are very close. Both dynamics
tend toward the same equilibrium, as shown in Fig. 5.12.

Fig. 5.12. Dynamics of the complete model (in black) and the aggregated model (in
grey) for k = 10 and parameters r = 0.5, a = 0.2, K = 14.47, c = 1, A = 50, µn = 0.2
and µp = 0.89. To make the figure more readable, points near the equilibrium have
not been represented
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5.5.3 Aggregation of Variables in Linear Delayed Differential
Equations

Example: A Structured Model of Population Dynamics
with Two Time Scales

Let us consider a continuous-time two-stage structured model of a population
living in an environment divided into two different sites. Let us refer to the
individuals in the two stages as juveniles and adults, so that ji(t) and ni(t) de-
note the juvenile and adult population respectively at site i, i = 1, 2. Changes
in the juvenile population at site i occur through birth, maturation to the
adult stage and death. Therefore, in absence of migrations, the growth rate
is expressed as βini(t) − e−µ∗

i riβini(t − ri) − µ∗i ji(t) where βi, µ
∗
i , µi ≥ 0 are

the fecundities and per capita death rates of juveniles and adults respectively
and ri > 0 is the juvenile-stage duration in site i. Without loss of generality,
we suppose 0 < r1 < r2.

In a similar way, the adult population growth rate in site i must con-
tain recruitment and mortality terms so that in absence of migrations reads
e−µ∗

i riβini(t− ri)− µini(t).
We consider a model which includes the demographic processes described

below, together with a fast migration process between sites for the adult
population defined by two parameters: m1 > 0 represents the migration rate
from site 1 to site 2 and m2 > 0 is the migration rate from site 2 to site 1.

The difference between the two time scales: slow (demography) and fast
(migration) is represented by a small parameter ε > 0:⎧⎪⎪⎨

⎪⎪⎩
j′1(t) = β1n1(t)− e−µ∗

1r1β1n1(t− r1)− µ∗1j1(t)
j′2(t) = β2n2(t)− e−µ∗

2r2β2n2(t− r2)− µ∗2j2(t)
n′1(t) = (1/ε)[m2n2(t)−m1n1(t)] + e−µ∗

1r1β1n1(t− r1)− µ1n1(t)
n′2(t) = (1/ε)[m1n1(t)−m2n2(t)] + e−µ∗

2r2β2n2(t− r2)− µ2n2(t)

As we notice, the last two equations of the above system are autonomous, so
we can reduce the system into them:

n′(t) =
1
ε
Kn(t) +An(t) +B1n(t− r1) +B2n(t− r2) (5.68)

where

n(t) :=
(
n1(t)
n2(t)

)
; K :=

(
−m1 m2

m1 −m2

)
; A =

(
−µ1 0

0 −µ2

)

B1 :=
(
e−µ∗

1r1β1 0
0 0

)
; B2 :=

(
0 0
0 e−µ∗

2r2β2

)
together with an initial condition Φ(t) := (Φ1(t), Φ2(t))

T , t ∈ [−r2, 0].
Matrix K satisfies Hypothesis 2 and in order to build the aggregated model

of (5.68) we choose the right and left eigenvectors associated to eigenvalue
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λ = 0 ofK as v := 1/(m1+m2) (m2,m1)
T , v∗ := (1, 1)T , so that we construct

an aggregated model for the total adult population:

n(t) := (v∗)T n(t) = n1(t) + n2(t).

Due to the two different delays this model does not fit in the formulation given
by (5.43). Therefore we apply (5.48) so that we have

∀Φ ∈ C([−r2, 0];R2), L(Φ) := AΦ(0) +B1Φ(−r1) +B2Φ(−r2)

and then, ∀ψ ∈ C([−r2, 0];R):

L(ψ) := −µ∗ψ(0) + ν∗1ψ(−r1) + ν∗2ψ(−r2)

with

µ∗ :=
µ1m2 + µ2m1

m1 +m2
; ν∗1 :=

e−µ∗
1r1β1m2

m1 +m2
; ν∗2 :=

e−µ∗
2r2β2m1

m1 +m2
.

The aggregated model is, for t ≥ r2:

n′(t) = −µ∗n(t) + ν∗1n(t− r1) + ν∗2n(t− r2) (5.69)

together with the initial condition defined by:

n(t) = Φ1(t) + Φ2(t), t ∈ [−r2, 0]
n′(t) = µ∗n(t) + e−µ∗

1r1β1Φ1(t− r1) + e−µ∗
2r2β2Φ2(t− r2), t ∈ [0, r1]

n′(t) = µ∗n(t) + ν∗1n(t− r1) + e−µ∗
2r2β2Φ2(t− r2), t ∈ [r1, r2]

We have reduced the initial complete system of four equations to a single
equation governing the total adult population. If the solution to this equation
is given, then the juvenile population densities can be derived from it.

It can be shown that, for each T > r2, the solution to system (5.68) satisfies

lim
ε→0+

(
n1ε(t)
n2ε(t)

)
=

1
m1 +m2

(
m2

m1

)
n(t)

uniformly in [r2, T ], n(t) being the solution to the aggregated model (5.69).

5.6 Perspectives and Conclusions

Regarding applications to population dynamics, aggregation methods have
also been used in the following cases:

– Modelling the effect of migrations processes on the population dynamics
(Poggiale et al. [73–77]).
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– Modelling a trout fish population in an arborescent river network com-
posed of patches connected by fast migrations (Charles et al. [34–36],
Chaumot et al. [37–39]).

– Modelling a sole larvae population with a continuous age with fast migra-
tion between different spatial patches (Bravo et al. [27]).

– Modelling food chain structures (Kooi et al. [55]).

In this chapter, we have presented aggregation methods in several contexts,
ODE’s, Discrete models, PDE’s and DDE’s. However, there are still works to
be done to show that a complete detailed mathematical model can be replaced
by a reduced aggregated model. For example, there is no doubt that more work
should be devoted to the case of stochastic models.

In our opinion, a major problem relates to the understanding of mecha-
nisms which are responsible for the emergence of individual behaviour at the
population and community level. In many cases, biologists prefer to use an
Individual Based Model (IBM) because they want to take into account many
individuals of different kinds and to model how they interact at the individ-
ual level. The IBM is then simulated with a computer and is used to look for
global emerging properties at the level of the population and of the commu-
nity. However, it can be difficult to obtain robust and general results from a
complete and detailed IBM.

In this chapter, we have shown that in some cases, interactions between
individuals can also be taken into account by classical models with differential
equations. When two time scales are involved in the model, aggregation meth-
ods allow to proceed to a significant reduction of the dimension of the model
and sometimes to a complete analysis of the aggregated model. This reduced
model is useful to understand how the individual behaviour can influence the
dynamics of the total population and its community (Dubreuil et al. [45]).
Therefore, aggregation methods can be considered as a new and promising
tool for the study of emergence of global properties in complex systems with
many potential applications in ecological dynamics.
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