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Abstract

Approximate aggregation techniques allow one to transform a complex system involving many coupled variables into a simpler
reduced model with a lesser number of global variables in such a way that the dynamics of the former can be approximated by
that of the latter. In ecology, as a paradigmatic example, we are faced with modelling complex systems involving many variables
corresponding to various interacting organization levels. This review is devoted to approximate aggregation methods that are based
on the existence of different time scales, which is the case in many real systems as ecological ones where the different organization
levels (individual, population, community and ecosystem) possess a different characteristic time scale. Two main goals of variables
aggregation are dealt with in this work. The first one is to reduce the dimension of the mathematical model to be handled analytically
and the second one is to understand how different organization levels interact and which properties of a given level emerge at other
levels. The review is organized in three sections devoted to aggregation methods associated to different mathematical formalisms:
ordinary differential equations, infinite-dimensional evolution equations and difference equations.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Mathematical ecology provided a first generation of simple models involving a small number of state variables and
parameters. The time continuous Lotka–Volterra models, published in the beginning of the XXth century, [1–3] as
well as the discrete host-parasite Nicholson–Bailey models [4,5] can be found among many other examples in many
biomathematical textbooks as the book by Edelstein-Keshet [6] and the book by Murray [7]. In population dynamics
models, the state variables are frequently chosen as the population densities and the model is a set of a few number of
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nonlinear coupled ordinary differential equations (ODE’s) or discrete equations. These simple models involving few
variables and parameters are in general more likely to be handled analytically.

During the last decades, supported by the fast development of computers, a new generation of ecological models
has appeared. Nowadays, lots of ecological models consider more and more details. Incorporating more details in
models is necessary to advance toward a more realistic description of ecological systems and to understand how living
organisms respond to the forcing imposed by their environment changes. The drawback of a detailed description of
systems is the fact that models become more complex, involving an increasing number of variables and parameters.
A mathematical study with general and robust results is then difficult to perform. For this reason, it is important to
find which details are really relevant and must be incorporated in a model. An important goal of ecological modelling
should thus be to describe tractable models.

In ecology, the problem of aggregation of variables may be set in this way: when considering a detailed system with
various interacting organization levels, is there a way to find, at each level, a reduced set of variables describing the
dynamics of this level? How to find such variables? How to find the relations between these macro variables and the
micro variables associated to the detailed description? Under which assumptions these questions could be dealt with?
Do these assumptions have a realistic basis? This review aims to describe some mathematical methods of aggregation
of variables which have been developed in the recent years to give answers to two main goals. The first one is to reduce
the dimension of the mathematical model to be handled analytically. The second one is to understand how different
organization levels interact and which properties of a given level emerge at other levels.

Aggregation of variables was introduced in the field of economics and was made popular in ecology by Iwasa,
Andreasen and Levin in 1987, in [8]. In general, the aggregation of a system consists of defining a small number of
global variables, functions of all state variables, and to derive a system describing their dynamics. In this review, we
focus on approximate aggregation [9] which are methods of reduction where the consistency between the dynamics
of the global variables in the complete system and the aggregated system is only approximate.

This review is devoted to present approximate aggregation methods that are based on the existence of different
time scales. Indeed, it is usual in ecology to consider different ecological levels of organization, see [10], the indi-
vidual, population, community and ecosystem levels to which different characteristic time scales are associated. For
example, a fast time scale would correspond to individual processes while a slower time scale could be associated to
demographic ones. It is then possible to take advantage of these time scales in order to reduce the dimension of the
initial complete model and to build a simplified system describing the dynamics of a few number of global variables.
Such methods originated in Auger [11] and were presented in a rigorous mathematical form for ODEs in Auger and
Roussarie in 1994 [12] and in Auger and Poggiale in 1998 [13], and were extended to discrete models in Sanchez et
al. in 1995 [14] and in Bravo de la Parra et al. in 1995 [15], and also to PDEs in Arino et al. in 1999 [16] and to DDEs
in Sánchez et al. in [17]. The review is organized in three main sections corresponding to aggregation methods and
applications in ODEs, some infinite-dimensional dynamical systems and difference equations respectively.

2. Aggregation of variables for ODE’s systems

2.1. Notation and position of the problem

Let us consider a population dynamics model describing the interactions between A populations and let us assume
that each population is structured in subpopulations. We denote by nα

i the abundance of subpopulation i in popula-
tion α, α = 1, . . . ,A and i = 1, . . . ,Nα where Nα is the number of subpopulations in population α. We now assume
that the dynamics of the subpopulation i in population α results from the interactions of a set of processes among
which some are much faster than the other ones. The complete model reads:

(1)
dnα

i

dτ
= Fα

i (n) + εf α
i (n),

where n is the vector (n1
1, n

1
2, . . . , n

1
N1

, n2
1, n

2
2, . . . , n

2
N2

, . . . , nα
1 , nα

2 , . . . , nα
Nα

, . . . , nA
1 , nA

2 , . . . , nA
NA

), Fα
i describe the

fast processes affecting nα
i and εf α

i describes the slow processes affecting nα
i . The parameter ε is small and means

that the speed of the processes described in f α
i are slow. This model is assumed to contain all the details that we want

to include in the description. It governs the so-called micro-variables nα which are those associated to a detailed level.
i
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We denote by k the number of micro-variables, that is the dimension of n. More precisely, we have:

k =
A∑

α=1

Nα.

We want now to build a model which describes the system at a macro level. We thus define a set of macro-variables.
In this framework, a macro-variable is a variable varying slowly, that is a first integral of the fast dynamics. More
precisely, let us define Yj , j = 1, . . . ,N , the macro-variables. Such a variable can be defined as a function of n. The
fact that Yj is a slow variable means that its derivative with respect to τ is of order of ε:

(2a)Yj = Φj(n), j = 1, . . . ,N,

(2b)
dYj

dτ
=

A∑
α=1

Nα∑
i=1

∂Φj (n)

∂nα
i

dnα
i

dτ
= O(ε).

The second equation (2b), associated with Eq. (1), implies the following equality:

(3)
A∑

α=1

Nα∑
i=1

∂Φj (n)

∂nα
i

F α
i (n) = 0, j = 1, . . . ,N.

Finally, the equations for the macro-variables read:

(4)
dYj

dτ
= ε

A∑
α=1

Nα∑
i=1

∂Φj (n)

∂nα
i

f α
i (n).

Since the system is more detailed at the micro-level, we should have N � k. In order to use the macro-variables,
we replace N micro-variables in the complete model (1) by some expressions depending of the macro-variables and
this can be done under the following conditions. We suppose that the set of N Eqs. (2a) permits to write N variables
among the micro-variables nα

i , α = 1, . . . ,A, i = 1, . . . ,Nα , as functions of the N macro-variables Yj , j = 1, . . .N .
We thus have to deal with k variables among which N are macro-variables and k − N are micro-variables. This
system is formed by k − N equations of system (1) and the N equations of system (4). In other words, we perform
a change of variables (X,Y ) �→ n(X,Y ) where X is a k − N vector for which the coordinates are taken among the
micro-variables nα

i . With this change of variables, the complete system reads:

(5a)
dXi

dτ
= Fi(X,Y ) + εfi(X,Y ), i = 1, . . . , k − N,

(5b)
dYj

dτ
= εGj (X,Y ), j = 1, . . . ,N,

where

Gj(X,Y ) =
A∑

α=1

Nα∑
i=1

∂Φj (n(X,Y ))

∂nα
i

f α
i

(
n(X,Y )

)
.

In this form, the model (5) is a so-called slow–fast system of differential equations, or slow–fast vector field. The
Geometrical Singular Perturbation (GSP) theory provides some results to deal with such systems and most important
is that, under some conditions, we can reduce the complete model into an aggregated model governing only the macro-
variables. We now first recall some important points of this theory and then explain the conditions for the reduction
and their consequences.

2.2. Normally hyperbolic manifolds and GSP theory

There exist lots of results concerning the reduction of the dimension of a dynamical system in order to facilitate its
study. For instance, we can find several statements of the center manifold theorem in various contexts (ordinary dif-
ferential equations, partial differential equations, delay differential equations, difference equations). Carr’s book [18]



82 P. Auger et al. / Physics of Life Reviews 5 (2008) 79–105
gives a detailed description of the theorem with many applications. The center manifold theorem states some condi-
tions under which there exists a regular manifold containing the nontrivial part of the dynamics. This kind of manifolds
are associated to nonhyperbolic singularities and are local ones. In 1971, Fenichel [19] stated a theorem which pro-
vides conditions under which an invariant manifold persists to small enough perturbations, in the case of vector fields.
In the same time, Hirsch et al. in [20] gave some necessary conditions for the persistence and developed the normally
hyperbolic manifolds theory. The perturbations of invariant manifolds theory originates from the works of Krylov and
Bogoliubov [21]. Nowadays, this theory has lots of applications and some illustrations can be found in Pliss and Sell’s
book [22]. Furthermore, Wiggins [23] gives a complete description of the theory in finite dimension, this book is based
on the Fenichel original paper. In these references, the conditions of normal hyperbolicity are based on geometrical
considerations, which are not always useful in applications. In 1990, Sakamoto [24] gave similar conditions by using
eigenvalues of Jacobian matrices. His proof may also be obtained by Fenichel’s methods. Our reduction method is
based on this approach, Auger et al. in 1999 [25], Auger et al. in 2000 [26], Auger and Poggiale in 1995, 1996 and
1998 [13,27–29]. Note that the Fenichel theorem has been extended to semi-groups on Banach spaces by Bates et al.
in 1998 and in 2000 [30,31].

2.3. Reduction theorem

In order to perform the analysis, we add to system (5) the equation dε/dτ = 0:

(6a)
dXi

dτ
= Fi(X,Y ) + εfi(X,Y ), i = 1, . . . , k − N,

(6b)
dYj

dτ
= εGj (X,Y ), j = 1, . . . ,N,

(6c)
dε

dτ
= 0.

The system (6) can be considered as an ε-perturbation of the system obtained with ε = 0. The situation where
ε = 0 refers to the nonperturbed problem. The conditions for the reduction are:

(C1) When ε is null in system (6), then Y is a constant. We assume that, for each Y ∈ R
N , there exists at least one

equilibrium (X = X∗(Y ),Y,0), defined by Fi(X
∗(Y ),Y ) = 0, i = 1, . . . , k − N . We define the set:

M0 = {
(X,Y, ε); X = X∗(Y ); ε = 0

}
.

This invariant set for the nonperturbed system shall play the role of the invariant normally hyperbolic manifold
mentioned in the GSP theory.

(C2) Let us denote J (Y ) the linear part of system (6) around the equilibrium (X∗(Y ),Y,0). We assume that the
Jacobian matrix J (Y ) has k − N eigenvalues with negative real parts and N + 1 null eigenvalues. With this
condition, the set M0 is said normally hyperbolic since, at each point in M0, the restriction of the linear part to
the M0 normal space has negative eigenvalues. We now give the statement of the main theorem.

Theorem 1. Under the conditions (C1) and (C2), for each compact subset Ω in R
N and for each integer r > 1, there

exists a real number ε0 and a Cr application Ψ ,

Ψ : Ω × [0; ε0] → R
k−N

(Y, ε) �→ X = Ψ (Y, ε)

such that:

(1) Ψ (Y,0) = X∗(Y );
(2) the graph W of Ψ is invariant under the flow defined by the vector field (6);
(3) at each (X∗(Y ),Y,0) ∈ M0, W is tangent to the central eigenspace Ec associated to the eigenvalues of J (Y )

with null real parts.

This means that we can consider the restriction of the vector field to the invariant manifold which allows us to
reduce the dimension of the model. The reduced system, called aggregated model, is:
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dYj

dt
= Gj

(
Ψ (Y, ε),Y

)
,

where t = ετ . Usually, since ε is small, we approximate the previous system by:

dYj

dt
= Gj

(
Ψ (Y,0), Y

)
.

Moreover, since Ψ is Cr , we can calculate a Taylor expansion of the invariant manifold with respect to the small
parameter ε in order to increase the accuracy of the reduced system. The reduction and the Taylor expansion are
illustrated on the following example. In this example, the zero order term in the expansion leads to a nonstructurally
stable system. It means that the ε term is important to understand the real dynamics. This term is then calculated and
the dynamics of the complete and reduced models are compared.

2.3.1. Nontrivial example of application
Let us consider the following system based upon a model of a marine Bacteriophage infection by Beretta and

Kuang [32]:⎧⎪⎪⎨
⎪⎪⎩

dS
dt

= rS
(
1 − S

K

) − kSV,

dI
dt

= kSV − λI,

dV
dt

= βλI − kSV − μV,

where we assume that β and λ are much larger than the other parameters. We thus introduce a new dimensionless small
parameter ε and let: α = εβ and γ = ελ. Moreover, we introduce the new variable H = S + I + ε V

α
and rescaling the

time by τ = t/ε, the previous system reads:⎧⎪⎪⎨
⎪⎪⎩

dS
dτ

= εrS
(
1 − S

K

) − kαS(H − S − I ),

dI
dτ

= kαS(H − S − I ) − γ I,

dH
dτ

= εrS
(
1 − S

K

) − ε(μ + kS)(H − S − I ).

Now the system has the slow fast form that allows the aggregation method to be applied. We first consider the case
ε = 0:⎧⎪⎪⎨

⎪⎪⎩
dS
dτ

= −kαS(H − S − I ),

dI
dτ

= kαS(H − S − I ) − γ I,

dH
dτ

= 0.

It follows that on a short time scale, H is constant and (0,0) and (H,0) are the equilibria in the (S, I ) space. The
Jacobian matrices of the fast system near the equilibria are respectively:

J(0,0) =
(−αkH 0

αkH −γ

)
and J(H,0) =

(
αkH αkH

−αkH −αkH − γ

)
.

The eigenvalues of the first matrix are −αkH and −γ while the second matrix has a negative determinant, meaning
that (0,0) is a locally stable node and (H,0) is a saddle point. Thus, when ε = 0, there are two invariant manifolds,
the first one is normally stable while the other one is normally unstable. They cross each other at (S, I,H) = (0,0,0),
where they lose their normal hyperbolicity.

According to Theorem 1 we can conclude that for each H > 0 the aggregation method applies. In other words, for
each H > 0, there exists ε0 such that we can aggregate the complete system for all ε < ε0. However, ε0 depends on H

and if H is too small, then Theorem 1 does not apply anymore. In this case we must proceed as follows: since (S, I )

tends to (0,0), we replace (S, I ) by (0,0) in the H equation to get the aggregated model:

dH

dt
= −μH + O(ε).
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It follows that H goes to zero. The problem is thus that after a transient time, the value of H becomes of order of ε

and thus one of the above referred eigenvalues, −αkH , is close to zero. In other words, the invariant manifold is not
normally hyperbolic. The way to solve the problem is considering more carefully the point (0,0,0) in the phase space
by performing a blow up:⎧⎨

⎩
S = εs,

I = εi,

H = εh.

The system reads then:⎧⎪⎪⎨
⎪⎪⎩

ds
dτ

= rεs
(
1 − εs

K
) − εkαs(h − s − i),

di
dτ

= εkαs(h − s − i) − γ i,

dh
dτ

= rεs
(
1 − εs

K

) − ε(μ + kεs)(h − s − i).

Once again, it is a slow fast system on which we apply the aggregation method. When ε = 0, the system is:⎧⎪⎪⎨
⎪⎪⎩

ds
dτ

= 0,

di
dτ

= −γ i,

dh
dτ

= 0.

Thus i is the only fast variable and it reaches 0. In fact, the GSP theory says more precisely that there exists an
invariant manifold given by:

i = εω1(s, h) + o(ε).

In order to determine the function ω1, we calculate the ε expansion of di/dτ in two ways. From the previous
expression, we get:

di

dτ
= ε

∂ω1

∂s

ds

dτ
+ ε

∂ω1

∂h

dh

dτ
= O(ε2).

On the other hand, from the i equation in the model, we have:

di

dτ
= εkαs(h − s) − εγω1(s, h) + O(ε2).

As a consequence, the term of order ε in the previous equation vanishes and we get:

ω1(s, h) = αks(h − s)

γ
.

If we replace i by its equilibrium value 0 in the (s, h) equations of the model, we get:{
ds
dt

= rs − kαs(h − s) + O(ε),

dh
dt

= rs − μ(h − s) + O(ε).

Letting y = h − s, the system becomes:{
ds
dt

= rs − kαsy + O(ε),

dy
dt

= −μy + kαsy + O(ε).

This is an ε-perturbation of the Lotka–Volterra predator-prey model, which is not structurally stable. The ε term
must then be made explicit. We get:⎧⎨

⎩
ds
dt

= rs − kαsy − εr s2

K
+ ε

(αk)2s2y
γ

+ O(ε2),

dy
dt

= −μy + kαsy + ε(μ − αks)
αksy

γ
− εksy + O(ε2).
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In the positive quadrant, the trajectories of this system are unchanged by dividing each equation by the positive
function (s, y) �→ sy. We shall thus analyze the trajectories of:⎧⎨

⎩
ds
dt

= r
y

− kα − εr s
Ky

+ ε
(αk)2s

γ
+ O(ε2),

dy
dt

= −μ
s

+ kα + ε(μ − αks)αk
γ

− εk + O(ε2).

Let F(s, y) = μ ln(s) − αks + r ln(y) − αky. The dual differential form of the previous system is:

ω = dF + εη + o(ε),

where

η = −
(

(μ − αks)
αk

γ
+ k

)
ds +

(
r

s

Ky
− (αk)2s

γ

)
dy.

In order to understand how the ε-perturbation modifies the center associated to the nonperturbed system, we con-
sider a half-line starting at the positive equilibrium point (close to (s, y) = (μ/αk, r/αk)) and we parameterize this
line by level curves F = f . On this half line, there exists a Poincaré map P and we define the displacement function
δ(f ) = P(f ) − f . If this number is positive, then P(f ) > f meaning that the trajectory leaves the equilibrium while
a negative value means that the trajectory is going closer to the equilibrium. The Poincaré lemma claims that:

δ(f ) = −ε

∫
{F=f }

η + o(ε).

Thus the sign of δ(f ) is given by the sign of − ∫
{F=f } η if ε is small enough. By the Stokes theorem, we get:

−
∫

{F=f }
η = −

∫ ∫
{F�f }

dη

=
∫ ∫
{F�f }

(
(αk)2

γ
− r

Ky

)
ds ∧ dy

= (αk)2

γ

∫ ∫
{F�f }

ds ∧ dy − r

K

∫ ∫
{F�f }

1

y
ds ∧ dy

= A(f ) − r

K

∫ ∫
{F�f }

1

y
ds ∧ dy,

where A(f ) is the area of the domain {F � f }. If f is large, then the domain contains some points (s, y) for which y is
very small, thus the negative term in the last expression is very large. Consequently, trajectories initiated far away from
the equilibrium point are coming back to the equilibrium. Let us now consider trajectories close to the equilibrium. In
this case, y � r/αk and the sign of − ∫

{F=f } η is then the same as the sign of (αk)2/γ − αk/K = αk(αk/γ − 1/K).
Thus if we consider, for instance, the carrying capacity (nutritive richness of the environment) as a bifurcation
parameter, we see that a bifurcation occurs when K � γ /αk. If K is smaller than the bifurcation value, then
αk(αk/γ − 1/K) < 0 and the equilibrium point is stable (see Fig. 1). However, when K is increased and becomes
larger than the bifurcation value � γ /αk, then the equilibrium is unstable. Since trajectories far away from the equi-
librium are getting closer to the equilibrium, the Poincaré–Bendixon theorem claims that at least a limit cycle exists
(see Fig. 2).

2.4. How to define the slow and fast variables in a given system

An ecosystem involves a large number of variables and processes. It is largely recognized that some processes are
much faster than others. However, each variable may be affected by fast and slow processes. It follows that, when we
write a model, the slow and fast processes are mixed in the differential systems and it is not clear that some variables
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Fig. 1. This figure is obtained from the complete model simulation. The parameter values are: r = 1, K = 0.5, k = 1, α = 1, γ = 1, μ = 0.6 and
ε = 0.2. The bifurcation value in this case is thus approximately 1. Since K < 1, the equilibrium is stable.

Fig. 2. This figure is obtained from the complete model simulation. The parameter values are: r = 1, K = 2, k = 1, α = 1, γ = 1, μ = 0.6 and
ε = 0.2. The bifurcation value in this case is thus approximately 1. Since K > 1, the equilibrium is unstable and a limit cycle exists.

are faster than other ones. According to the previous notations, the problem is, given the system (1), is there an
algorithm allowing to define the slow variables Y ? This is generally a crucial problem. From the mathematical point
of view, such an algorithm permits to transform system (1) into system (5). Moreover, from the applied point of view,
it would permit to define the variables of interest for the long time dynamics on the basis of the detailed description.
In our framework, the slow variables are defined by the fact that they are first integrals of the fast processes. But it is
not always easy to find such functions and this problem can limit practical applications.
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2.5. Relation between aggregation and emergence

Aggregation not only provides a reduction of the dimension of the initial model and its simplification, but it also
provides interesting information about the emergence of fast processes at a global level in the long run. Indeed, the
invariant manifold on which the reduction is performed is a graph on the slow variables X = Ψ (Y, ε). In other words,
at a fast time scale, the fast variables reach an attractor, for instance, an equilibrium, which depends on the slow
variables. From the practical point of view, the reduced model is obtained by replacing the fast variables by Ψ (Y, ε)

in the slow variables equations. Consequently, if the fast part of the model is changed, then Ψ is modified and the
aggregated model as well. This application Ψ contains the effects of the fast part on the long term dynamics. These
effects can lead to emerging properties. The concept of emergence has been widely developed in ecology. In [13],
we provided two kinds of emergence concepts by using the aggregation approach. A detailed explanation can also be
found in [33].

3. Aggregation of variables in linear infinite-dimensional dynamical systems

In this section we will apply the aggregation of variables method to linear models of population dynamics formu-
lated mathematically in an infinite-dimensional abstract setting. To be precise, we will consider two situations: an age
structured model formulated as a system of linear partial differential equations (P.D.E.) and another one formulated in
terms of delayed differential equations (D.D.E.). The different time scales introduce into the model a small parameter
ε > 0 which gives rise to a singular perturbation mathematical problem. Although both contexts are mathematically
very different, the underlying ideas in the construction of the aggregated model are similar in both cases, due to the
structure of the fast dynamics: it is supposed that this dynamics is represented by a matrix K whose spectrum allows
the decomposition of the space RN into a direct sum of the eigenspace kerK associated to the eigenvalue 0 and
generated by a vector ν, plus a complementary stable subspace S corresponding to the remaining part of the spec-
trum, which are eigenvalues with negative real part. The aggregated model is constructed by adequately projecting
the global dynamics onto kerK . The theory of semigroups allows a unified formulation of both situations aimed at
obtaining approximation results for the solutions to the perturbed global model by the solutions to the aggregated
model, using the same technique in both cases: with the help of a variation-of-constants formula, the perturbed system
is transformed into a fixed point problem for the projection of the solution onto kerK .

3.1. Aggregation in age structured population models

We will apply the aggregation of variables method to a linear age-structured population dynamics model with
age a and time t being continuous variables. The population is distributed into N spatial patches. The evolution of
the population is due to the migration process between different patches at a fast time scale and to the demographic
process at a slow time scale. The impression is that of a spatially homogeneous age-dependent population governed
by a Von Foerster equation with birth and death coefficients averaged from the original patch-dependent coefficients
through a weighted average. The weights are computed in terms of a migration matrix and are in fact the mark of the
hidden underlying spatial structure. See [16,34,35] for the details.

Let ni(a, t) be the population density in patch i (i = 1, . . . ,N ) so that
∫ a2
a1

ni(a, t) da represents the number of
individuals in patch i whose age a ∈ [a1, a2] at time t and

n(a, t) := (
n1(a, t), . . . , nN(a, t)

)T
.

Let μi(a) and βi(a) be the patch and age-specific mortality and fertility rates respectively and

M(a) := diag
{
μ1(a), . . . ,μN(a)

}; B(a) := diag
{
β1(a), . . . , βN(a)

}
.

Let kij (a) be the age-specific migration rate from patch j to patch i, i 	= j , and

K(a) := (
kij (a)

)
1�i,j�N

with kii(a) := −
N∑

j=1,j 	=i

kji(a).
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A crucial assumption is that the jump process is conservative with respect to the life dynamics of the population, that
is to say, no death or birth is directly incurred by spatial migrations.

The model based upon the classical McKendrick–Von Foerster model for an age-structured population is as follows:

(7)

⎧⎪⎨
⎪⎩

∂n
∂t

(a, t) + ∂n
∂a

(a, t) = [−M(a) + 1
ε
K(a)]n(a, t) (a > 0, t > 0),

n(0, t) = ∫ +∞
0 B(a)n(a, t) da (t > 0),

n(a,0) = Φ(a) := (Φ1(a), . . . ,ΦN(a))T (a > 0),

where ε > 0 is a constant small enough which takes into account the two different time scales.
For each initial age distribution Φ ∈ X := L1(R+;RN), the problem (7) has a unique solution nε that defines a

strongly continuous semigroup of linear operators (C0-semigroup) on X, {Tε(t)}t�0, such that Tε(t)Φ := nε(·, t).
In what follows we will assume that the matrix K(a) is irreducible for every a > 0. As a consequence 0 is a

simple eigenvalue larger than the real part of any other eigenvalue. The left eigenspace of matrix K(a) associated
with the eigenvalue 0 is generated by vector 1 := (1, . . . ,1)T ∈ RN . The right eigenspace is generated by vector
ν(a) := (ν1(a), . . . , νN(a))T and is unique if we choose it having positive entries and verifying 1T ν(a) = 1.

3.1.1. The aggregated model
We build up a model which describes the dynamics of the total population:

n(a, t) :=
N∑

i=1

ni(a, t) (global variable)

with the help of the approximation:

νi(a, t) := ni(a, t)

n(a, t)
≈ νi(a), i = 1, . . . ,N,

which leads to the following aggregated model for the density of the total population:

(8)

⎧⎪⎪⎨
⎪⎪⎩

∂n
∂t

(a, t) + ∂n
∂a

(a, t) = −μ∗(a)n(a, t) (a, t > 0),

n(0, t) = ∫ +∞
0 β∗(a)n(a, t) da (t > 0),

n(a,0) = ϕ(a) := ∑N
i=1 Φi(a) (a > 0),

where

μ∗(a) :=
N∑

i=1

μi(a)νi(a); β∗(a) :=
N∑

i=1

βi(a)νi(a).

It is a classical Sharpe–Lotka–McKendrick linear model to which the general theory applies. Under some technical
conditions which are specified in [16] the solutions to this problem define a C0-semigroup on L1(R+), which has the
so-called asynchronous exponential growth property, namely

Proposition 1. There exists a unique λ0 ∈ R (Malthusian parameter) such that limt→+∞ e−λ0t n(a, t) = c(ϕ)θ0(a),
where c(ϕ) > 0 is a constant depending on the initial value ϕ ∈ L1(R+) and θ0(a) := e−λ0ae− ∫ a

0 μ∗(σ ) dσ is the
asymptotic distribution.

3.1.2. Approximation result
Let us say a few words about the nature of the convergence of the solutions to the perturbed problem (7) when

ε → 0+ to the solutions to the aggregated model (8).
The irreducibility of matrix K(a) allows the direct sum decomposition RN = [ν(a)] ⊕ S in which [ν(a)] is the

one-dimensional subspace generated by the vector ν(a) and S := {v ∈ RN ; 1T · v = 0}. Notice that S is the same for
all a, and moreover KS(a), the restriction of K(a) to S is an isomorphism on S with spectrum σ(KS(a)) ⊂ {λ ∈ C;
Reλ < 0}.
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According to it, we can decompose the solutions to the perturbed problem, that is to say

nε(a, t) := pε(a, t)ν(a) + qε(a, t); qε(a, t) ∈ S

giving

(9)
∂pε

∂t
(a, t) + ∂pε

(a, t)
= −μ∗(a)pε(a, t) − 1T M(a)qε(a, t),

(10)
∂qε

∂t
(a, t) + ∂qε

∂a
(a, t) = −[

MS(a)ν(a) + ν′(a)
]
pε(a, t) +

[
1

ε
KS(a) − MS(a)

]
qε(a, t),

(11)pε(a, t) =
+∞∫
0

β∗(a)pε(a, t) da +
+∞∫
0

1T B(a)qε(a, t) da,

(12)qε(0, t) =
+∞∫
0

BS(a)ν(a)pε(a, t) da +
+∞∫
0

BS(a)qε(a, t) da,

where MS(a), BS(a) are the projections of M(a) and B(a) respectively onto S.
The solutions to the homogeneous problem associated to qε define a C0-semigroup {Uε(t)}t�0 which satisfies the

estimation∥∥Uε(t)
∥∥ � C1e

(C2−C3/ε)t , t � 0 (C1,C2,C3 > 0).

Therefore, under some technical conditions and using a variation-of-constants formula, we can express the solution
to the nonhomogeneous system (10)–(12) in terms of Uε(t) and pε . Then substituting this expression in (9)–(11), we
can transform these equations into a fixed point problem for pε that can be solved using standard techniques, which
provide the following result of approximation:

Theorem 2. For each ε > 0 small enough, we have

nε(a, t) = n(a, t)ν(a) + (
Uε(t)q0

)
(a) + O(ε),

where n(a, t) is the solution to the aggregated model corresponding to the initial age distribution p0 and Φ :=
p0ν + q0 (q0 ∈ S) is the initial age distribution for the perturbed system.

We point out that the above formula is of interest mainly in the case when λ0 � 0. In this case, it can be concluded
from the above formula that nε(·, t) ≈ n(·, t)ν(·) as t → +∞ uniformly with respect to ε > 0 small enough. Also,
if λ0 < 0 then nε(·, t) → 0 as t → +∞ and this is again uniform with respect to ε > 0 small enough. In this case,
however, n(·, t)ν(·) does not dominate in general the terms O(ε).

See [16] for the details. In this paper it is also shown that the semigroup {Tε(t)}t�0 has the asynchronous exponen-
tial growth property. Roughly speaking, it is shown that for ε > 0 small enough, each solution nε(a, t) of the perturbed
system is such that

nε(a, t) ≈ C(Φ)eλεtΨε(a) (t → +∞),

where C(Φ) > 0 is a constant depending on the initial age distribution and limε→0+ λε = λ0, limε→0+ Ψε = νθ0,
where λ0 and θ0 are, respectively, the Malthus parameter and the associated asymptotic distribution of the aggregated
system mentioned in Proposition 1.

3.2. Aggregation of variables in linear delayed differential equations

Let us describe in some detail the aggregation of variables method in a simple linear model with a discrete delay.
On one side, this case is interesting in itself and clarifies other abstract formulations while on the other, it has its own
methods for the step-by-step construction of the solution.
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The model consists of the following system of linear delayed differential equations, depending on a small parameter
ε > 0, that we call the perturbed system:

(13)

{
dX(t)/dt = (1/ε)KX(t) + AX(t) + BX(t − r), t > 0,

X(t) = Φ(t), t ∈ [−r,0]; Φ ∈ C([−r,0];RN),

where X(t) := (x1(t), . . . ,xq(t))T , xj (t) := (x1
j (t), . . . , x

Nj

j (t))T , j = 1, . . . , q .

K , A and B are N × N real constant matrices with N = N1 + · · · + Nq . As usual, C([−r,0];RN) repre-
sents the Banach space of RN -valued continuous functions on [−r,0] (r > 0), endowed with the norm ‖ϕ‖C :=
supθ∈[−r,0] ‖ϕ(θ)‖. System (13) can be solved by the classical step-by-step procedure, see [36].

Throughout this section, we suppose that matrix K is a block-diagonal matrix K := diag{K1, . . . ,Kq} in which
each diagonal block Kj has dimensions Nj × Nj , j = 1, . . . , q , whose spectra σ(Kj ) can be written as σ(Kj ) =
{0} ∪ Λj , Λj ⊂ {z ∈ C; Re z < 0} and 0 is a simple eigenvalue of Kj .

As a consequence, kerKj is generated by an eigenvector associated to eigenvalue 0, which will be denoted vj .
The corresponding left eigenspace is generated by a vector v∗

j and we choose both vectors verifying the normalization

condition: (v∗
j )

T vj = 1.

3.2.1. The aggregated model
In order to build the aggregated system of system (13), we define the matrices: V∗ := diag{(v∗

1)
T , . . . , (v∗

q)T },
V := diag{v1, . . . ,vq} and consider the following direct sum decomposition of space RN = kerK ⊕ S, where kerK
is a q-dimensional subspace generated by the columns of matrix V and S := ImK = {v ∈ RN ; V∗v = 0}.

We now define the q aggregated variables:

s(t) := (
s1(t), . . . , sq(t)

)T = V∗X(t),

which satisfy a linear differential system obtained by premultiplying both sides of (13) by V∗. We get the aggregated
variables on the left-hand side but we fail to on the right-hand side. To avoid this difficulty, we use the above sum
direct decomposition, so that X(t) = Vs(t) + XS(t) and then

ds(t)/dt = V∗AVs(t) + V∗BVs(t − r) + V∗AXS(t) + V∗BXS(t − r).

Therefore, we propose as aggregated model the following approximated system

(14)ds(t)/dt = As(t) + Bs(t − r), t > r; A := V∗AV, B := V∗BV .

Eq. (14) is a delayed linear differential system of equations which can be solved by a standard step-by-step proce-
dure from an initial data in [0, r] which is given by:

(15)s(t) = etA

[
V∗Φ(0) +

t∫
0

e−σAV∗BΦ(σ − r) dσ

]
.

3.2.2. Comparison between the solutions to systems (13)–(14)
Decomposing the system (13) according to the above direct sum decomposition and solving it with the help of

a variation-of-constants formula in a similar way of the previous section, we can obtain a comparison between the
solutions of both systems (13) and (14). See [17] for the details.

Theorem 3. For each initial data Φ ∈ C([−r,0];RN), Φ = Vψ + ϕ, the corresponding solution Xε to system (13)
can be written as:

∀t � r, Xε(t) = Vs0(t) + rε(t),

where s0 is the solution to the aggregated system (14) for t � r , with the initial data defined ∀t ∈ [0, r] by (15).
Moreover, there exist three constants C > 0, C∗ > 0, γ > 0, such that

∀t � r,
∥∥rε(t)

∥∥ � ε
(
C + C∗eγ t

)‖Φ‖C.

Therefore, for each T > r , limε→0+ Xε = Vs0 uniformly in the interval [r, T ].
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This approximation result is similar to that obtained in the previous section for continuous time structured models
formulated in terms of partial differential equations, but we have to point out that the delay introduces significant
differences due to the influence of the initial data on the solution in the interval [0, r]. In fact, the approximation when
ε → 0 is valid only for t � r and hence the initial data in [0, r] for the aggregated system is V∗Xε(t), which is the
projection on kerK of the exact solution to system (13), constructed in [0, r] from an initial data Φ ∈ C([−r,0];RN).

The above procedure can be generalized to the following perturbed system of linear delayed differential equations:

(16)

{
dX(t)/dt = L(Xt) + (1/ε)KX(t), t > 0,

X0 = Φ ∈ C([−r,0];RN),

where L :C([−r,0];RN) → RN is a bounded linear operator and Xt (t � 0), is the section of function X at time t ,
namely, Xt(θ) := X(t + θ), θ ∈ [−r,0].

The aggregated model is

ds(t)/dt = L(st ), t � r; L(ψ) := V∗L(Vψ).

As in the previous case, the initial data in [0, r] should be constructed, but in this abstract setting it presents higher
mathematical difficulties. In particular, we should use the Riesz representation theorem of bounded linear operators
on C([−r,0];RN).

3.2.3. Application to a structured model of population dynamics with two time scales
Let us consider a continuous-time two-stage structured model of a population living in an environment divided

into two different sites. Let us refer to the individuals in the two stages as juveniles and adults, so that ji(t) and ni(t)

denote the juvenile and adult population respectively at site i, i = 1,2. Changes in the juvenile population at site i

occur through birth, maturation to the adult stage and death. Therefore, in absence of migrations, the growth rate is
expressed as βini(t)− e−μ∗

i ri βini(t − ri)−μ∗
i ji(t) where βi,μ

∗
i ,μi � 0 are the fecundities and per capita death rates

of juveniles and adults, respectively, and ri > 0 is the juvenile-stage duration in site i. Without loss of generality, we
suppose 0 < r1 < r2.

In a similar way, the adult population growth rate in site i must contain recruitment and mortality terms so that in
absence of migrations reads e−μ∗

i ri βini(t − ri) − μini(t).
We consider a model which includes the demographic processes described below, together with a fast migration

process between sites for the adult population defined by two parameters: m1 > 0 represents the migration rate from
site 1 to site 2 and m2 > 0 is the migration rate from site 2 to site 1.

The difference between the two time scales: slow (demography) and fast (migration) is represented by a small
parameter ε > 0:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
dj1(t)/dt = β1n1(t) − e−μ∗

1r1β1n1(t − r1) − μ∗
1j1(t),

dj2(t)/dt = β2n2(t) − e−μ∗
2r2β2n2(t − r2) − μ∗

2j2(t),

dn1(t)/dt = (1/ε)[m2n2(t) − m1n1(t)] + e−μ∗
1r1β1n1(t − r1) − μ1n1(t),

dn2(t)/dt = (1/ε)[m1n1(t) − m2n2(t)] + e−μ∗
2r2β2n2(t − r2) − μ2n2(t).

As we notice, the last two equations of the above system are autonomous, so we can reduce the system into them:

(17)dn(t)/dt = 1

ε
Kn(t) + An(t) + B1n(t − r1) + B2n(t − r2),

where

n(t) :=
(

n1(t)

n2(t)

)
; K :=

(−m1 m2
m1 −m2

)
; A =

(−μ1 0
0 −μ2

)
;

B1 :=
(

e−μ∗
1r1β1 0
0 0

)
; B2 :=

(
0 0
0 e−μ∗

2r2β2

)

together with an initial condition Φ(t) := (Φ1(t),Φ2(t))
T , t ∈ [−r2,0].

In order to build the aggregated model of (17) we choose the right and left eigenvectors associated to eigenvalue
λ = 0 of K as v := 1/(m1 +m2)(m2,m1)

T , v∗ := (1,1)T , so that we construct an aggregated model for the total adult
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population:

n(t) := (v∗)T n(t) = n1(t) + n2(t).

Due to the two different delays this model does not fit in the formulation given by (13). Therefore we apply (16) so
that we have

∀Φ ∈ C
([−r2,0];R2), L(Φ) := AΦ(0) + B1Φ(−r1) + B2Φ(−r2)

and then, ∀ψ ∈ C([−r2,0];R):

L(ψ) := −μ∗ψ(0) + ν∗
1ψ(−r1) + ν∗

2ψ(−r2)

with

μ∗ := μ1m2 + μ2m1

m1 + m2
; ν∗

1 := e−μ∗
1r1β1m2

m1 + m2
; ν∗

2 := e−μ∗
2r2β2m1

m1 + m2
.

The aggregated model is, for t � r2:

(18)dn(t)/dt = −μ∗n(t) + ν∗
1n(t − r1) + ν∗

2n(t − r2)

together with the initial condition defined by:

n(t) = Φ1(t) + Φ2(t), t ∈ [−r2,0],
dn(t)/dt = −μ∗n(t) + e−μ∗

1r1β1Φ1(t − r1) + e−μ∗
2r2β2Φ2(t − r2), t ∈ [0, r1],

dn(t)/dt = −μ∗n(t) + ν∗
1n(t − r1) + e−μ∗

2r2β2Φ2(t − r2), t ∈ [r1, r2].
We have reduced the initial complete system of four equations to a single equation governing the total adult popu-

lation. If the solution to this equation is given, then the juvenile population densities can be derived from it.
It can be shown that, for each T > r2, the solution to system (17) satisfies

lim
ε→0+

(
n1ε(t)

n2ε(t)

)
= 1

m1 + m2

(
m2
m1

)
n(t)

uniformly in [r2, T ], n(t) being the solution to the aggregated model (18).

4. Aggregation methods of discrete models

Let us suppose in this section a population whose evolution is described in discrete time. Apart from that, the
population is generally divided into groups, and each of these groups divided into several subgroups. We will represent
the state at time t of a population with q groups by a vector n(t) := (n1(t), . . . ,nq(t))T ∈ R

N+ where T denotes

transposition. Every vector ni (t) := (ni1(t), . . . , niNi
(t)) ∈ R

Ni

+ , i = 1, . . . , q , represents the state of the i group
which is divided into Ni subgroups, with N = N1 + · · · + Nq . Following the terminology of previous sections, the
nij are the micro-variables. The total population is ‖n(t)‖, where ‖ ∗ ‖ denotes the 1-norm.

In the evolution of the population we will consider two processes which corresponding characteristic time scales,
and consequently their projection intervals, that is their time units, are very different from each other. We will refer
to them as the fast and the slow processes or, still, as the fast and the slow dynamics. We will start with the sim-
plest case by considering both processes to be linear and autonomous and go on with the presentation of the linear
nonautonomous and linear stochastic setting. Finally we will present the nonlinear case.

4.1. Linear discrete models

We present in detail the results concerning the basic autonomous case as developed in Sánchez et al. [14] and Sanz
and Bravo de la Parra [37].

We represent fast and slow processes by two different matrices F and S. The characteristic time scale of the
fast process gives the projection interval associated to matrix F , that is, the state of the population, due to the fast
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process, after one fast time unit is Fn(t). Analogously, the effect of the slow process after one slow time unit is
calculated multiplying by matrix S. In order to write a single discrete model combining both processes, and therefore
their different time scales, we have to choose its time unit. Two possible and reasonable choices are the time units
associated to each one of the two processes. We use here as time unit of the model that corresponding to the slow
dynamics, i.e., the time elapsed between times t and t + 1 is the projection interval associated to matrix S. We then
need to approximate the effect of the fast dynamics over a time interval much longer than its own. In order to do
so we will suppose that during each projection interval corresponding to the slow process matrix F has operated a
number k of times, where k is a big enough integer that can be interpreted as the ratio between the projection intervals
corresponding to the slow and fast dynamics. Therefore, the fast dynamics will be modeled by Fk and the proposed
model will consist in the following system of N linear difference equations that we will call general system:

(19)nk(t + 1) = SFknk(t).

In order to reduce the system we must make some assumptions on the fast dynamics. We suppose that for each
group i = 1, . . . , q the fast dynamics is internal, conservative of a certain global variable, macro-variable, for the
group and with an asymptotically stable distribution among the subgroups. These assumptions are met if we represent
the fast dynamics for each group i by a Ni × Ni projection matrix Fi which is primitive with 1 as strictly dominant
eigenvalue, for example, a regular stochastic matrix. The matrix F that represents the fast dynamics for the whole
population is then F := diag(F1, . . . ,Fq). Every matrix Fi has, associated to eigenvalue 1, positive right and left
eigenvectors, vi and ui , respectively column and row vectors, verifying Fivi = vi , uiFi = ui and ui · vi = 1. The
Perron–Frobenius theorem applies to matrix Fi and we denote F̄i := limk→∞ Fk

i = viui , where Fk
i is the kth power

of matrix Fi . Denoting F̄ := diag(F̄1, . . . , F̄q), we also have that:

(20)F̄ = lim
k→∞Fk = V U,

where V := diag(v1, . . . , vq)N×q and U := diag(u1, . . . , uq)q×N .
If we think that the ratio of slow to fast time scale tends to infinity, i.e., k → ∞, or, in other words, that the fast

process is instantaneous in relation to the slow process, we can approximate system (19) by the following so-called
auxiliary system:

(21)n(t + 1) = SF̄n(t),

which using (20) can be written as

n(t + 1) = SV Un(t).

Here we see that the evolution of the system depends on Un(t) ∈ R
q , what suggests that dynamics of the system could

be described in terms of a lesser number of variables, the global variables or macro variables defined by

(22)Y(t) := Un(t).

The auxiliary system (21) can be easily transformed into a q-dimensional system premultiplying by matrix V , giving
rise to the so-called aggregated system or macro system Y(t + 1) = USV Y(t), where we denote S̄ = USV and obtain

(23)Y(t + 1) = S̄Y (t).

The solutions to the auxiliary system can be obtained from the solutions to the aggregated system. It is straightforward
that the solution {n(t)}t∈N of system (21) for the initial condition n0 is related to the solution {Y(t)}t∈N of system (23)
for the initial condition Y0 = Un0 in the following way: n(t) = SV Y(t − 1) for every n � 1. The auxiliary system is
an example of perfect aggregation in the sense of Iwasa et al. [8].

Once the task of building up a reduced system is carried out, the important issue is to see if the dynamics of the
general system (19) can also be studied by means of the aggregated system (23). In Sánchez et al. [14] it is proved
that the asymptotic elements defining the long term behavior of system (19) can be approximated by those of the
corresponding aggregated system when the matrix associated to the latter is primitive.

Hypothesis (H). S̄ is a primitive matrix.
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Assuming Hypothesis (H), let λ > 0 be the strictly dominant eigenvalue of S̄, and w̄l and w̄r its associated left and
right eigenvectors, respectively. We then have that, given any nonnegative initial condition Y0, system (23) verifies

lim
t→∞

Y(t)

λn
= w̄l · Y0

w̄l · w̄r

w̄r .

Concerning the asymptotic behavior of the auxiliary system (21), it is proved that the same λ > 0 is the strictly
dominant eigenvalue of SF̄ , UT w̄l its associated left eigenvector and SV w̄r its associated right eigenvector.

The asymptotic behavior of the general system (19) could be expressed in terms of the asymptotic elements of the
aggregated system (21) by considering SF k as a perturbation of SF̄ . To be precise, let us order the eigenvalues of
F according to decreasing modulus in the following way: λ1 = · · · = λq = 1 > |λq+1| � · · · � |λN |. So, if ‖ ∗ ‖ is
any consistent norm in the space MN×N of N × N matrices, then for every α > |λq+1| we have ‖SFk − SF̄‖ =
o(αk) (k → ∞). This last result implies, see [38], that matrix SFk has a strictly dominant eigenvalue of the form
λ+O(αk), an associated left eigenvector UT w̄l +O(αk) and an associated right eigenvector SV w̄r +O(αk). Having
in mind that α can be chosen to be less than 1, we see that the elements defining the asymptotic behavior of the
aggregated and the general systems can be related in a precise way as a function of the separation between the two
time scales.

In Sanz and Bravo de la Parra [37] these results are extended to more general linear cases where the projection
matrices Fi defining the fast dynamics in each group need not be primitive.

In Blasco et al. [39] the fast process is still considered linear but changing at the fast time scale. The fast dynamics
is described by means of the product of the first k terms of a converging sequence of different matrices. This case is
called the fast changing environment case. Under certain assumptions the limit of the sequence of matrices plays the
same role than matrix F̄ in (20) obtaining an aggregated system. Similar results to the already described relating the
asymptotic properties of the complete and the aggregated systems are proved.

It is also possible to build the general system using as time unit the projection interval of the fast dynamics, see
Sánchez et al. [14], Bravo de la Parra et al. [15,40] and Bravo de la Parra and Sánchez [41].

4.1.1. Example: Multiregional model with fast demography and slow migrations
We consider a population with juveniles (age class 1) and adults (age class 2) in a two-patch environment. Let nij (t)

be the density of the subpopulation aged i on patch j at time t . On each patch, the population grows according to a
Leslie model. Individuals belonging to a given age-class also move from patch to patch.

Let Sj be the survival rate of juveniles on patch j and F i
j the fertility rate of age class i on patch j . Assuming the

following order of the state variables, n(t) = (n11(t), n21(t), n12(t), n22(t)), the matrix describing the demography of
the population in both patches is the following:

L =
⎛
⎜⎝

F 1
1 F 2

1 0 0
S1 0 0 0
0 0 F 1

2 F 2
2

0 0 S2 0

⎞
⎟⎠ .

The migration of individuals of age i is described by the following migration rates: pi (resp., qi ) is the migration
rate from patch 1 to patch 2 (resp., from patch 2 to patch 1). So the matrix describing the migration process of the
population is:

M =
⎛
⎜⎝

1 − p1 0 q1 0
0 1 − p2 0 q2
p1 0 1 − q1 0
0 p2 0 1 − q2

⎞
⎟⎠ .

The restrictions over the vital rates so that matrices

L1 =
(

F 1
1 F 2

1
S1 0

)
and L2 =

(
F 1

2 F 2
2

S2 0

)
have dominant eigenvalue 1 are F 1

1 + F 2
1 S1 = 1 and F 1

2 + F 2
2 S2 = 1. Besides we will suppose that F 1

1 , F 2
1 , F 1

2 , F 2
2 ,

S1 and S2 are positive and then matrices L1 and L2 are primitive. Vectors vi and ui are given by

v1 = 1
(1, S1)

T , v2 = 1
(1, S2)

T ,

1 + S1 1 + S2
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u1 = 1 + S1

1 + F 2
1 S1

(
1,F 2

1

)T
, u2 = 1 + S2

1 + F 2
2 S2

(
1,F 2

2

)T
.

Furthermore, it is assumed that the demographic process is fast in comparison to the migration process.
The dynamics of the four state variables n(t) = (n11(t), n21(t), n12(t), n22(t))T is thus described by the following

system:

(24)n(t + 1) = MLkn(t) =
⎛
⎜⎝

1 − p1 0 q1 0
0 1 − p2 0 q2
p1 0 1 − q1 0
0 p2 0 1 − q2

⎞
⎟⎠

⎛
⎜⎝

F 1
1 F 2

1 0 0
S1 0 0 0
0 0 F 1

2 F 2
2

0 0 S2 0

⎞
⎟⎠

k

n(t),

where k represents the ratio between the projection intervals corresponding to the slow and fast processes.
We now proceed to reduce system (24). For that we need the matrices U and V used in expression (20) which are

composed of left and right eigenvectors of matrices Li associated to eigenvalue 1. So they can be expressed in the
following way:

U =
⎛
⎝ 1+S1

1+F 2
1 S1

(1+S1)F
2
1

1+F 2
1 S1

0 0

0 0 1+S2
1+F 2

2 S2

(1+S2)F
2
2

1+F 2
2 S2

⎞
⎠ and V =

⎛
⎜⎜⎜⎝

1
1+S1

0
S1

1+S1
0

0 1
1+S2

0 S2
1+S2

⎞
⎟⎟⎟⎠ .

The global variables Y(t) = (Y1(t), Y2(t)) = Un(t), corresponding respectively to patches 1 and 2, are

Y1(t) = 1

1 + F 2
1 S1

n11(t) + F 2
1

1 + F 2
1 S1

n12(t),

Y2(t) = 1

1 + F 2
2 S2

n12(t) + F 2
2

1 + F 2
2 S2

n22(t)

which have a biological meaningful interpretation as they are the total population at each patch weighted by the
reproductive values of each age class. The aggregated system, Y(t + 1) = ULV Y(t), governing these weighted total
populations in both patches reads as follows:

(25)Y(t + 1) =
⎛
⎝ ((1−p1)+F 2

1 S1(1−p2))

1+F 2
1 S1

(1+S1)(q1+F 2
1 S1q2)

(1+S2)(1+F 2
1 S1)

(1+S2)(p1+F 2
2 S2p2)

(1+S1)(1+F 2
2 S2)

((1−q1)+F 2
2 S2(1−q2))

1+F 2
2 S2

⎞
⎠Y(t).

The results stated in the previous section allow us to approximate the asymptotic elements of system (24) in terms of
the corresponding elements of system (25). Thus, we can study the influence of the fast demographic process in the
reduced system, which evolves at the slow time scale corresponding to migration. Let us see an example; migration
is a conservative process for the total number of individuals, so if we consider a model in which migration is the only
process acting, the system will keep constant its total population. However, the matrix in system (25) does not have, in
the general case, 1 as its dominant eigenvalue and therefore, if we consider also demography in the model, the system
has a total population which, depending on the values of the migration and vital rates, either decays to zero or grows
exponentially.

4.2. Linear nonautonomous discrete models

The approximate aggregation methods for time discrete linear models have been extended to the linear nonau-
tonomous case, appropriate to model populations living in an environment that varies with time so that both the slow
and the fast process are functions of time.

Using the slow time unit as the time step of the complete model, we can build up the model simply by generalizing
the model corresponding to the autonomous case. Indeed following Sanz and Bravo de la Parra [42], we assume that
the matrices S(t) and F(t) that model the slow and the fast process respectively are functions of time and that, for
each value of t, the hypotheses following (19) concerning the fast process hold. Therefore the nonautonomous model
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reads

(26)nk(t + 1) = S(t)F k(t)nk(t),

where F(t) := diag(F1(t), . . . ,Fq(t)) and for all t = 0,1,2, . . . and i = 1, . . . , q matrices Fi(t) verify that are primi-
tive with 1 as strictly dominant eigenvalue.

We now build a nonautonomous model for a population with juveniles and adults in a two-patch environment, as
it is done in the previous section except that we consider migration fast with respect to demography, by allowing the
fecundity, survival and migration rates to be dependent on t , so we would obtain a model

n(t + 1) = L(t)P (t)kn(t)

=
⎛
⎜⎝

f11(t) 0 f21(t) 0
0 f12(t) 0 f22(t)

s1(t) 0 0 0
0 s2(t) 0 0

⎞
⎟⎠

⎛
⎜⎝

1 − p1(t) q1(t) 0 0
p1(t) 1 − q1(t) 0 0

0 0 1 − p2(t) q2(t)

0 0 p2(t) 1 − q2(t)

⎞
⎟⎠

k

n(t).

Coming back to system (26) and its reduction, and reasoning along the lines of the autonomous case, we define
vi(t) and ui(t) through the relationships Fi(t)vi(t) = vi(t), ui(t)Fi(t) = ui(t) and ui(t) · vi(t) = 1 and then consider
matrices F̄i(t) := limk→∞ Fk

i (t) = vi(t)ui(t) and F̄ (t) := diag(F̄1(t), . . . , F̄q(t)). Therefore letting k → ∞ in (26)
we obtain the auxiliary system

(27)nk(t + 1) = S(t)F̄ (t)nk(t)

that we can express in the form

(28)nk(t + 1) = S(t)V (t)U(t)nk(t),

where V (t) := diag(v1(t), . . . , vq(t))N×q and U(t) := diag(u1(t), . . . , uq(t))q×N . Now premultiplying both sides
of (28) by U(t + 1) and defining the vector of q global variables through

Y(t) := U(t)n(t),

we obtain the reduced system

(29)Y(t + 1) = S̄(t)Y (t),

where

S̄(t) = U(t + 1)S(t)V (t).

For any finite value of t , the population vector of the original system can be approximated through the knowledge
of the population vector for the reduced system. Indeed in Sanz and Bravo de la Parra [42] it is shown that for each
t � 0

(30)n(t) = S(t)V (t)Y (t) + o(αk),

where α verifies 0 < α < 1 and can be determined in a way that is analogous to the one described in the autonomous
case. The term o(αk) depends on t .

In order to examine the relationships between the original system (26) and the reduced one (29) we consider
three different patterns of temporal variation. In the first case, following Sanz and Bravo de la Parra [43], we deal
with the case in which the environment is periodic and therefore we have S(t + m) = S(t) and F(t + m) = F(t)

for a certain positive integer m. Let Ā := S̄(m − 1) · · · S̄(1)S̄(0) and let us assume this matrix is primitive and has
dominant eigenvalue μ and dominant right eigenvector s. Then, being a particular case of a linear periodic model (see
Skellam [44]), the population of the reduced system (29) grows asymptotically with an asymptotic growth rate per
time step given by μ1/m and, when t → ∞, Y(tm)/‖Y(tm)‖ tends to s/‖s‖, i.e., for large values of t the structure of
the population vector at time tm is defined by vector s/‖s‖. Then Sanz and Bravo de la Parra [43] show that if k is
large enough, for any initial condition the original system (26) grows asymptotically with an asymptotic growth rate
per time step given by μ1/m + o(αk) and limt→∞ nk(tm)/‖nk(tm)‖ = BV (0)s + o(αk) where matrix B is given by

B := S(m − 1)F̄ (m − 1) · · ·S(1)F̄ (1)S(0).
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In the second situation, contemplated in Sanz and Bravo de la Parra [43], we consider that the environment, al-
though changing with time, tends to stabilization, i.e., matrices S(t) and F(t) converge when t → ∞ to certain
matrices S∗ and F∗ = diag(F1∗, . . . ,Fq∗) that model the slow and the fast process in equilibrium. It can be shown that
the matrices S̄(t) corresponding to the reduced system converge to a certain matrix S̄∗ that represents the equilibrium
vital rates for the reduced system.

Let us consider the asymptotic behavior of general linear nonautonomous models in which the environment tends
to stabilize, i.e., models of the form

(31)z(t + 1) = A(t)z(t),

where matrices A(t) are nonnegative for all t � 0 and such that there exists the limit A∗ := limt→∞ A(t). If for all
t � 0 matrices A(t) have no zero columns (so that if z(0) 	= 0 then one has z(t) 	= 0 for all t � 0) and matrix A∗
is primitive then, roughly speaking, system (31) behaves qualitatively like an autonomous system with matrix A∗
[43,45]. More precisely, one can assure that limt→∞ ‖z(t + 1)‖/‖z(t)‖ = γ and limt→∞ z(t)/‖z(t)‖ = d where γ is
the dominant eigenvalue of matrix A∗ and d is its associated right eigenvector normalized so that ‖d‖ = 1.

Coming back to the reduced system (29), let us assume that for all t � 0 matrices S̄(t) have no zero columns and
that matrix S̄∗ is primitive with dominant eigenvalue γ and associated right eigenvector d normalized so that ‖d‖ = 1.
Then using the result above we can write

lim
t→∞

∥∥Y(t + 1)
∥∥/

∥∥Y(t)
∥∥ = γ ; lim

t→∞Y(t)/
∥∥Y(t)

∥∥ = d.

In Sanz and Bravo de la Parra [43] it is proved that under the mild assumption of matrix S∗ having no zero rows, then
for k large enough the matrices S(t)F k(t) have no zero columns for all t � 0. Moreover matrix S∗Fk∗ is primitive, and
its dominant eigenvalue γk verifies γk = γ + o(βk) where 0 < β < 1, whilst an associated right eigenvector can be
written S∗V∗d + o(βk) where V∗ is a certain matrix that can be obtained in terms of F∗. Therefore we can write

lim
t→∞

∥∥nk(t + 1)
∥∥/

∥∥nk(t)
∥∥ = γ + o

(
βk

); lim
t→∞ nk(t)/

∥∥nk(t)
∥∥ = S∗V∗d + o(βk)

and one can approximate the asymptotic behavior of the original system in terms of magnitudes calculated for the
reduced system.

Finally let us consider the study of the relationships between the original and the aggregated system in the case the
environment changes with time in a general fashion. First let us describe some features of the asymptotic behavior of
models of this kind, i.e., of models

z(t + 1) = A(t)z(t),

where matrices A(t) are nonnegative for all t � 0. Obviously, in that case it is not possible to expect that the pop-
ulation grows exponentially or that population structure converges to a certain vector. However, under quite general
circumstances the population structure z(t)/‖z(t)‖ “forgets its past” in the sense that two different initial populations,
subjected to the same sequence of environmental variation, have structures that become more and more alike (even
though they do not necessarily converge), i.e., for any nonzero initial conditions z(0) and z′(0) we have

(32)lim
n→∞

∥∥∥∥ A(n) · · ·A(1)A(0)z(0)

‖A(n) · · ·A(1)A(0)z(0)‖ − A(n) · · ·A(1)A(0)z′(0)

‖A(n) · · ·A(1)A(0)z′(0)‖
∥∥∥∥ = 0,

and in that case we say that the system is weakly ergodic. Actually the precise mathematical definition of weak
ergodicity is more elaborated and implies (32). We refer the reader to [45] for details.

The study of the property of weak ergodicity for the original and for the reduced system is carried out in Sanz and
Bravo de la Parra [42]. It is shown that under quite general conditions, if k is large enough then very general sufficient
conditions for weak ergodicity, that have to do with the positivity of the product of a consecutive number of matrices
in the system, is satisfied simultaneously for both systems.

In the works considered so far the relationship between the variables of the original system and the variables of the
reduced system is given by (30). However this expression is only useful in the limit when k tends to infinity. However,
in practice one can be interested in knowing the error we incur in when we approximate the variables n(t) through
S(t)V (t)Y (t) for finite values of k. In Sanz and Bravo de la Parra [46] different bounds are obtained for this error.
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Observe that the model (26) implicitly assumes that the fast process, modeled through F(t), can only change its
characteristics with the time step of the slow process. A more realistic model should allow the fast process to change
with its associated time step. Therefore within each time interval [t, t + 1) the fast process acts k times but each time
its characteristics can be different. In this way the model reads

nk(t + 1) = S(t)F (t, k) · · ·F(t,2)F (t,1)nk(t),

where for each t � 0 and s = 1, . . . , k matrix F(t, s) models the fast process during the sth subinterval of the time
interval [t, t +1). Of course, for one to be able to reduce the system the fast process must reach equilibrium, which can
be shown to hold if we assume that for all t � 0, matrices F(t, k) tend when k → ∞ to certain appropriate matrices.
The aggregation of this kind of models and the study of the relationships between the original and the corresponding
reduced system is carried out in Blasco et al. [47].

4.3. Stochastic discrete models

Let us now consider the reduction of time discrete linear models incorporating the so-called environmental stochas-
ticity, i.e., the randomness introduced when we consider random fluctuations in the environment and, consequently,
in the vital rates which affect the population.

First let us examine the general form of linear models that incorporate environmental stochasticity. Let us consider
a population living in an habitat in which that there are l different environmental conditions {1, . . . , l}. Let z(t) be
the population vector and let τt be the random variable that defines the environment under which the population lives
in the time step [t − 1, t). Now let matrix A(σ) be the matrix of vital rates for the population in environment σ ,
σ = 1, . . . , l. Then the model for the population reads

(33)z(t + 1) = A(τt+1)z(t).

In order to formulate a model with two time scales that incorporates the effect of environmental stochasticity, we
can consider (26) as a starting point and to allow the temporal variation to be random. Indeed, let us assume that there
are l different environmental conditions {1, . . . , l} and let τt be the random variable that defines the environment under
which the population lives in the time step [t − 1, t). Now let S(σ ) and F(σ) denote the matrices of vital rates for
the slow and the fast process respectively, in environment σ , σ = 1, . . . , l. Therefore, the model with two time scales
reads

(34)nk(t + 1) = S(τt+1)F
k(τt+1)nk(t).

The reduction of these kind of models is dealt with in Sanz and Bravo de la Parra [48] under quite general con-
ditions that basically imply that each one of the matrices Fi(σ ) is primitive and with dominant eigenvalue equal to
one. In order to simplify this exposition we will deal with the particular case in which the Fi(σ ) are primitive sto-
chastic matrices. For each i = 1, . . . , l, we define vectors vi(σ ) > 0 through the relationships Fi(σ )vi(σ ) = vi(σ ) and
‖vi(σ )‖ = 1 and then consider matrices F̄i(σ ) := limk→∞ Fk

i (σ ) = vi(σ )1, where 1 denotes a row vector with all its
components equal to 1, and F̄ (σ ) := diag(F̄1(σ ), . . . , F̄q(σ )). Reasoning along the lines of the nonautonomous case,
we let k → ∞ in (34) and we obtain the auxiliary system

nk(t + 1) = S(τt+1)F̄ (τt+1)nk(t)

that we can express in the form

(35)nk(t + 1) = S(τt+1)V (τt+1)Unk(t),

where V (σ) := diag(v1(σ ), . . . , vq(σ ))N×q and U(t) := diag(1, . . . ,1)q×N . Now premultiplying both sides of (35)
by U and defining the vector of q global variables through

Y(t) = (
y1(t), . . . , yq(t)

) := Un(t) = (
n11(t) + · · · + n1N1

(t), . . . , nq1(t) + · · · + nqNq

(t)
)

so that yi(t) corresponds to the total population in group i, we obtain the reduced system

(36)Y(t + 1) = S̄(τt+1)Y (t),
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where

S̄(σ ) = US(σ)V (σ ), σ = 1, . . . , l.

Let us examine the relationships between the original system (34) and the reduced one (36). As it was the case in
the nonautonomous setting, for any finite value of t the population vector of the original system can be approximated
through the knowledge of the aggregated system

nk(t) = S(τt )V (τt )Y (t − 1) + o
(
δk

)
, k → ∞,

where δ verifies 0 < δ < 1 and o(δk) depends on t. In Sanz and Bravo de la Parra [49] bounds are obtained for the
“error” we incur in when we approximate nk(t) by S(τt )V (τt )Y (t − 1) for finite values of t .

Let us now concentrate in the case, of great practical importance, in which the environmental process τt is Markov-
ian. In this case one has that under some hypotheses each realization of the system grows (or decays) exponentially
with the same rate. More specifically, let us consider system (33) and let us assume the following hypothesis:

Hypothesis (H1). τt is an homogeneous Markov chain such that its matrix of transition probabilities is primitive.
Moreover, the set {A(1), . . . ,A(l)} is “ergodic”, i.e., there exists a positive integer r such that the product of any r

matrices drawn from this set is a positive matrix.

Under Hypothesis (H1) (see Tuljapurkar [50]) there exists the following limit with probability one

(37)a := lim
t→∞

log‖z(t)‖
t

,

where a, the so-called stochastic growth rate (s.g.r.) of the system, is a fixed (nonrandom) number independent of the
initial probabilities of the chain and of the initial (nonzero) population vector z(0) � 0. The s.g.r. is the most important
parameter in order to characterize the behavior of models of the kind (33). Therefore, and coming back to the study of
the relationships between the systems (34) and (36), it is important to study the conditions for the existence of a s.g.r.
for these systems and the relationship between them.

Let us assume that τt is an homogeneous Markov chain with a primitive matrix of transition probabilities, and
let us assume that set of matrices {S̄(1), . . . , S̄(l)} is an ergodic set. Therefore the reduced system (36) verifies the
sufficient conditions (H1) for the existence of a s.g.r. a := limt→∞ log‖Y(t)‖/t , where the limit is with probability
one. Sanz and Bravo de la Parra [49] show that if matrices S(1), . . . , S(l) have no zero rows, then for large enough k

the set {S(1)F k(1), . . . , S(l)F k(l)} is ergodic and therefore the original system (34) verifies that there exists a s.g.r.
ak := limt→∞ log‖nk(t)‖/t . Besides, it is proved that limk→∞ ak = a and therefore, if k is large enough, we can
approximate the s.g.r. ak of the original system through that of the reduced system. Moreover, [49] derives bounds for
|ak − a| for finite values of k, so we can estimate the error we incur in when we approximate the study of (34) through
that of (36). Finally, [48] shows that for all positive integer m, the asymptotic behavior when t → ∞ of the moments
of order m of system (34) can be approximated through the behavior of the corresponding moments for the reduced
system (36).

4.4. Nonlinear discrete models

The previous framework can be extended to include general nonlinear fast and slow processes. We present the
complete model which will be susceptible of being reduced. Both processes, fast and slow, are defined, respectively,
by two mappings

S,F :ΩN → ΩN ; S,F ∈ C1(ΩN),

where ΩN ⊂ R
N is a nonempty open set.

We first choose as time step of the model that corresponding to the slow dynamics as we did in the linear case, see
Sanz et al. [51]. We still assume that during this time step the fast process acts k times before the slow process acts.
Therefore, denoting by nk(t) ∈ R

N the vector of state variables at time t , the complete system is defined by

(38)nk(t + 1) = S
(
Fk

(
nk(t)

))
,

where Fk denotes the k-fold composition of F with itself.
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In order to reduce the system (38), we have to impose some conditions to the fast process. In what follows
we suppose that the following hypotheses are met. For each initial condition X ∈ ΩN , the fast dynamics tends
to an equilibrium, that is, there exists a mapping F̄ :ΩN → ΩN , F̄ ∈ C1(ΩN) such that for each X ∈ ΩN ,
limk→∞ Fk(X) = F̄ (X). This equilibrium depends on a lesser number of variables in the following form: there ex-
ists a nonempty open set Ωq ⊂ R

q with q < N and two mappings G :ΩN → Ωq , G ∈ C1(ΩN), and E :Ωq → ΩN ,
E ∈ C1(Ωq), such that F̄ = E ◦ G.

Now, we proceed to define the so-called auxiliary system which approximates (38) when k → ∞, i.e., when the
fast process has reached an equilibrium. Keeping the same notation as in the linear case, this auxiliary system is

(39)n(t + 1) = S
(
F̄

(
n(t)

))
which can be also written as n(t + 1) = S ◦ E ◦ G(n(t)).

The global variables in this case are defined through

(40)Y(t) := G
(
n(t)

) ∈ R
q .

Applying G to both sides of (39) we have Y(t + 1) = G(n(t + 1)) = G ◦ S ◦ E ◦ G(n(t)) = G ◦ S ◦ E(Y(t)) which is
an autonomous system in the global variables Y(t). Summing up, we have approximated system (38) by the reduced
or aggregated system defined by

(41)Y(t + 1) = S̄
(
Y(t)

)
,

where we denote S̄ = G ◦ S ◦ E.
Now we present some results relating the behavior of systems (38) and (41), for big enough values of parameter k.

All the results in this section are presented in a more general setting in [51]. First we compare the solutions of
both systems for a fixed value of t . The next theorem states that the dynamics of the auxiliary system is completely
determined by the dynamics of the reduced system and that the solution to the complete system, given mild extra
assumptions, for each t fixed can be approximated by the solution to the aggregated model.

Theorem 4. Let n0 ∈ ΩN and let Y0 = G(n0) ∈ Ωq . Then:

(i) The solution {n(t)}t=1,2,... to (39) corresponding to the initial condition n0 and the solution {Y(t)}t=1,2,... to (41)
corresponding to the initial condition Y0 = G(n0) are related by the following expressions

(42)Y(t) = G
(
n(t)

)
and n(t) = S ◦ E

(
Y(t − 1)

)
, n = 1,2, . . . .

(ii) Let t be a fixed positive integer and let us assume that there exists a nonempty bounded open set Ω such that
Ω̄ ⊂ ΩN , Ω contains the points n(0), n(i + 1) = S ◦ E(Yi) (i = 0, . . . , n − 1), and such that limk→∞ Fk = F̄

uniformly in Ω . Then the solution nk(t) to (38) corresponding to the initial condition n(0) and the solution Y(t)

to (41) corresponding to the initial condition Y0 are related by the following expressions

Y(t) = lim
k→∞G

(
nk(t)

)
and lim

k→∞ nk(t) = S ◦ E
(
Y(t − 1)

)
.

Now we turn our attention to the study of some relationships between the fixed points of the original and reduced
systems. Concerning the auxiliary system, relations (42) in Theorem 4 yield straightforward relationships between the
fixed points of the auxiliary and reduced systems: if n∗ ∈ ΩN is a fixed point of (39) then Y ∗ = G(n∗) ∈ Ωq is a fixed
point of (41); conversely, if Y ∗ is a fixed point of (41) then n∗ = S ◦E(Y ∗) is a fixed point of (39). The corresponding
fixed points in the auxiliary and aggregated systems are together asymptotically stable or unstable.

In the following result, it is guaranteed that, under certain assumptions, the existence of a fixed point Y ∗ for the
aggregated system implies, for big enough values of k, the existence of a fixed point n∗

k for the original system, which
can be approximated in terms of Y ∗. Moreover, in the hyperbolic case the stability of Y ∗ is equivalent to the stability
of n∗

k and in the asymptotically stable case, the basin of attraction of n∗
k can be approximated in terms of the basin of

attraction of Y ∗.
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Theorem 5. Let us assume that F̄ ∈ C1(ΩN) and that limk→∞ Fk = F̄ , limk→∞ DFk = DF̄ uniformly on any
compact set K ⊂ ΩN , where D denotes the differential of the transformation.

Let Y ∗ ∈ R
q be a hyperbolic fixed point of (41) which is asymptotically stable (resp. unstable). Then there exists

k0 ∈ N such that for each k � k0, k ∈ N, there exists a hyperbolic fixed point n∗
k of (38) which is asymptotically stable

(resp. unstable) and that satisfies limk→∞ n∗
k = S ◦ E(Y ∗).

Moreover, let n0 ∈ ΩN . If the solution Y(t) to (41) corresponding to the initial condition Y0 = G(n0) is such
that limt→∞ Y(t) = Y ∗ then for each k � k0, k ∈ N, the solution nk(t) to (38) corresponding to n0 verifies
limt→∞ nk(t) = n∗

k .

Particular models where this last result applies are presented in Bravo de la Parra et al. [52] and the review paper
Auger and Bravo de la Parra [53].

As in the linear case we can build the general system using as time unit the one of fast dynamics. In Bravo de la
Parra et al. [40] and Bravo de la Parra and Sánchez [41] a system with linear fast dynamics and general nonlinear slow
dynamics is reduced by means of a center manifold theorem.

4.4.1. Example: Multiregional model with fast migrations and slow demography
We are considering a simple model of a nonstructured population, that is, a population constituted by just one

group which is subdivided into 2 subgroups representing the local populations at the 2 patches making up its habitat.
The population vector at time t is represented by n(t) = (n1(t), n2(t)). We suppose that local demographic dynamics
is slow with respect to migrations between patches and depending only on local population. Thus, the slow dynamics
can be described by

S
(
n(t)

) := (
s1

(
n1(t)

)
, s2

(
n2(t)

))
with si , i = 1,2, being two nonnegative C1 functions defined on R+. The fast dynamics associated to the migrations
is represented by a regular stochastic matrix F(y), whose entries depend on total population y(t) := n1(t) + n2(t),

F(y) :=
(

1 − a(y) b(y)

a(y) 1 − b(y)

)
,

where a, b : R+ → (0,1) are C1 functions. We define then

F
(
n(t)

) =F
(
y(t)

)
n(t)

and the complete model reads

(43)n(t + 1) = S
(
Fk

(
y(t)

)
n(t)

)
.

Since F(y) is a regular stochastic matrix we have

F̄(y) := lim
k→∞Fk(y) = (

v(y)|v(y)
)
,

where

v(y) :=
(

v1(y)

v2(y)

)
=

( b(y)
a(y)+b(y)

a(y)
a(y)+b(y)

)
.

A straightforward application of results established in the previous section leads to the aggregated system:

(44)y(t + 1) = s1
(
v1

(
y(t)

)
y(t)

) + s2
(
v2

(
y(t)

)
y(t)

)
.

We could now carry out a certain qualitative analysis of system (43) by performing it in system (44) with the help of
Theorem 5.

We will just stress the power of aggregation methods by making some remarks in the particular case of local
Malthusian dynamics, that is,

S
(
n(t)

) := (
d1n1(t), d2n2(t)

)
.

Moreover we assume that 0 < d1 < 1 < d2, which means that patch 1 behaves as a sink and patch 2 as a source.
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The fact that local dynamics are of Malthusian type allows extinction and blow-up to be expected at a global
level. To show that density dependent migrations can stabilize the system we present in the following two examples
migrations which yield aggregated systems that are well-known models. If we choose

a(y) := α − d1(1 + βy)

d2 − d1
and b(y) := d2(1 + βy) − α

d2 − d1

then we recover as aggregated system the Beverton–Holt equation

y(t + 1) = αy(t)

1 + βy(t)
,

where α and β are positive constants, and if we choose

a(y) := er(1−y/K) − d1

d2 − d1
and b(y) := d2 − er(1−y/K)

d2 − d1

the aggregated system is the Ricker equation

y(t + 1) = er
(
1−y(t)/K

)
y(t)

with r and K also positive constants.
This provides an explanation of two classical mono-species discrete models in terms of a sink-source environment

with fast density dependent migrations coupled to simple local Malthusian dynamics.

5. Perspectives and conclusions

Regarding applications to population dynamics, aggregation methods have also been used in the following cases:

– Modelling the effect of migrations processes on the population dynamics in continuous time [54–63].
– Modelling the effect of individual behavior on the population dynamics [64–68].
– Modelling the effect of migrations processes on host-parasitoid systems [69–73].
– Modelling a trout fish population in an arborescent river network composed of patches connected by fast migra-

tions [74–79].
– Modelling fisheries dynamics [80,81].
– Modelling a sole larvae population with a continuous age with fast migration between different spatial patches

[35].
– Modelling food chain structures (Kooi et al. [82]).

In this review, we have presented aggregation methods in several contexts, ODE’s, Discrete models, PDE’s and
DDE’s. However, there is still work to be done to show that a complete detailed mathematical model can be replaced
by a reduced aggregated model. For example, there is no doubt that more work should be devoted to the case of
stochastic models.

In our opinion, a major problem relates to the understanding of mechanisms which are responsible for the emer-
gence of individual behavior at the population and community level. In many cases, biologists prefer to use an
Individual Based Model (IBM) to take into account many features of each individual to model how they interact.
The IBM is then simulated with a computer and it is used to look for global emerging properties at the level of the
population and of the community. However, it can be difficult to obtain robust and general results from a complete
and detailed IBM.

In this review we have shown that, in some cases, interactions between individuals can also be taken into account
by classical models with differential or difference equations. When two time scales are involved in the model, aggre-
gation methods allow to proceed to a significant reduction of the dimension of the model and sometimes to a complete
analysis of the aggregated model. This reduced model is useful to understand how the individual behavior can influ-
ence the dynamics of the total population and its community. Therefore, aggregation methods can be considered as
a new and promising tool for the study of emergence of global properties in complex systems with many potential
applications in ecological dynamics.
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