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Henares, Spain; cUR GEODES, IRD, 32, Avenue Henri Varagnat, 93143 Bondy cedex, France

( Received 30 May 2006; final version received 26 September 2007 )

The aim of this work is to present a general class of nonlinear discrete time models with
two time scales whose dynamics is susceptible of being approached by means of a
reduced system. The reduction process is included in the so-called approximate
aggregation of variables methods which consist of describing the dynamics of a
complex system involving many coupled variables through the dynamics of a reduced
system formulated in terms of a few global variables. For the time unit of the discrete
system we use that of the slow dynamics and assume that fast dynamics acts a large
number of times during it. After introducing a general two-time scales nonlinear
discrete model we present its reduced accompanying model and the relationships
between them. The main result proves that certain asymptotic behaviours, hyperbolic
asymptotically stable (A.S.) periodic solutions, to the aggregated system entail that to
the original system.

Keywords: nonlinear discrete models; aggregation of variables; time scales;
population dynamics
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1. Introduction

Ecological models always entail a decision on the level of detail to be included in them.

This decision should be taken on the basis of optimizing the profit of the study. Any model

is a compromise between generality and simplicity on the one hand and biological realism

on the other. The more biological details are included in specifying a model, the more

complicated and specialized it becomes. Models describing ecological systems in detail

involve a very large number of coupled variables, which implies that the only methods to

study them are computer simulations. At the other extreme, very simple models, which are

mathematically tractable, do not justify how much have to do with the real systems they

are supposed to represent.

Nature offers many examples of systems where several processes act at different time

scales. It is then usual to consider those events occurring at the fastest scale as being

instantaneous with respect to the slower ones. This sort of decoupling implies a reduction

of the number of variables or parameters needed to describe the evolution of the system.

A subsequent issue is to determine conditions for these reductions to give good

approximations of the real results. An example of this general framework are the so-called
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aggregation methods which study the relationship between a large class of two time scales

complex systems and their corresponding aggregated or reduced systems. The aim of

aggregation methods is twofold: on the one hand they construct the reduced systems that

summarize the dynamics of the complex ones, thus simplifying their analytical study and

on the other hand, looking at the relationship in the opposite sense, the complex systems

serve as explanations of the simple form of the aggregated ones.

The study of these methods was initiated about fifteen years ago by Auger [1], in the

frame of ordinary differential equations. The main effort spent in deriving the so-called

aggregated systems and a general formal computational method, the so-called quick

derivation method, was described by Auger in a large class of systems possessing one or

several invariants. The method was refined and justified in terms of perturbation

techniques and in the application of an adequate version of the center manifold theorem

[8], see Auger and Roussarie [2].

In Bravo de la Parra et al. [3] and Sánchez et al. [14] the case of linear, density

independent, time discrete systems is studied; a very general linear model with two time

scales is aggregated and it is proved that the elements defining the asymptotic behaviour of

the general and the aggregated systems are equal up to a certain order. These results are

applied to models of structured populations with subpopulations in each stage class

associated to different spatial patches or individual activities, considering a fast time scale

for patch or activity dynamics and a slow time scale for the demographic process.

The results in Ref. [14] for the case where the time unit of the system is chosen to be that of

the slow dynamics are generalized in Sanz and Bravo de la Parra [16] assuming fast

dynamics not only expressed in terms of matrices composed of blocks of regular stochastic

matrices. Further, generalizations to non-autonomous and stochastic linear discrete

systems are found in Sanz and Bravo de la Parra [17,18] and Sanz et al. [15].

In Bravo de la Parra et al. [5] the aggregation of a class of nonlinear discrete system

with two different time scales is developed. The one associated to the fast dynamics is used

as time unit of the system, which is considered to be linear while the slow dynamics is

supposed generally nonlinear. The system is transformed to make appear the global

variables, and then a version of the center manifold theorem is applied to build up the

aggregated system in a similar way to that used in thecase of ordinary differential

equations.

In the construction of a discrete model with two time scales it is not always possible to

choose as time unit the fast time unit. That is so because it may happen that during a fast

time unit the action of the slow process is not describable. On the other hand, if the system

is expressed in the slow time unit it is always possible to describe the action of the fast

process during it by repeating a number of times its action during a fast unit. From this

point of view it is even more interesting to extend the methods of aggregation for linear

discrete systems expressed in the slow time unit [14,16] to nonlinear cases. A first attempt

to do it is found in Bravo de la Parra et al. [4], where the slow dynamics is linear and thus

represented by a general nonnegative matrix, while the fast dynamics is dependent on

global variables and is supposed to act a large number of times during one single time unit

of the slow dynamics.

The aim of this work is to extend aggregation methods in the direction of the last

mentioned work. We begin by proposing a very general discrete system including two

different processes acting at different time scales. The time unit of the system is the one

corresponding to the slow dynamics and the effect of the fast dynamics is represented

assuming that the slow time unit is divided into a large number of fast time units and so

that it acts a large number of times during one single slow time unit. Then, some

L. Sanz et al.608
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assumptions, generalizing those required in previous works, are proposed which allow the

construction of a reduced model associated to the original one. The following step consists

of proving some results relating the solutions to the original and the reduced system. These

results are not as general as those developed for systems of ordinary differential equations

because we have not been able to transform the original system so that a version of the

center manifold theorem applies. The summary of the main results is that it is possible to

study the existence, stability and basins of attraction of steady states and periodic solutions

to the original system performing this study for the reduced system.

The organization of the paper is as follows. In Section 2, we first present the reduction

results obtained in previous works, then we propose a general nonlinear discrete time

model of population dynamics with two time scales which, under some assumptions, can

be reduced. Still in Section 2 we apply the presented reduction techniques in two particular

examples. Section 3, which contains the main results of the paper, is devoted to the study

of the relationship between the solutions to both systems, original and aggregated. For

that, the reduction process is included in an abstract setting which contains as particular

cases the models developed in Section 2. The advantage of this abstract approach lies in

the fact that it simplifies the mathematical analysis and, moreover, it can be applied to the

reduction of a more general class of nonlinear time discrete systems.

To make the reading easier, some technical proofs which are not necessary for the

understanding of the text are deferred to a final Appendix.

2. Discrete population models with two time scales

In this section, we present a general population model with two time scales and summarize

the reduction results obtained in previous works.

Let us suppose a population generally divided into groups, and each of these groups

divided into several subgroups. We can think, for instance, of an age-structured population

occupying a multi-patch environment. In this case, the population can be considered

divided into groups which are the age classes, and each group divided into subgroups

which are the individuals inhabiting each of the different patches.

The state at time n of a population with q groups is represented by a vector

Xn U ðx1
n; . . . ; xq

nÞ
T [ RN

þ, where every vector x i
n U ðx i1

n ; . . . ; x iN i

n Þ [ RN i

þ , i ¼ 1; . . . ; q,

represents the state of the i group which is divided into N i subgroups, with

N ¼ N 1 þ · · · þ N q.

In the evolution of the population we will consider two processes directly related to its

structuring in groups and subgroups. We suppose that the characteristic time scales of both

processes are very different from each other and so we will refer to them as the fast and the

slow processes or, still, as the fast and the slow dynamics. If we start with the simplest case

by considering both processes to be linear, we can represent them by two different

matrices F and S. The characteristic time scale of the fast process gives the projection

interval associated to matrix F, that is, the state of the population, due to the fast process,

after one fast time unit is FXn. Analogously, the effect of the slow process after one slow

time unit is calculated multiplying by matrix S. In order to write a single discrete model

combining both processes, and therefore their different time scales, we have to choose its

time unit. Two possible and reasonable choices are the time units associated to each one of

the two processes. We use here as time unit of the model that corresponding to the slow

dynamics, i.e. the time elapsed between times n and n þ 1 is the projection interval

associated to matrix S. We then need to approximate the effect of the fast dynamics over a

time interval much longer than its own. In order to do so we will suppose that during each

Journal of Difference Equations and Applications 609
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projection interval corresponding to the slow process matrix F has operated a number k of

times, where k is a big enough integer that can be interpreted as the ratio between the

projection intervals corresponding to the slow and fast dynamics. Therefore, the fast

dynamics will be modelled by F k and the proposed model will consist of the following

system of N linear difference equations that we will call general system:

Xk;nþ1 ¼ SF k Xk;n: ð1Þ

In order to reduce the system we must make some assumptions. Following Sánchez et al.

[14] we suppose that for each group i ¼ 1; . . . ; q the fast dynamics is internal,

conservative of the total number of individuals and with an asymptotically stable (A.S.)

distribution among the subgroups. These assumptions are met in the particular case of

representing the fast dynamics for each group i by a projection matrix Fi which is a regular

stochastic matrix of dimensions N i £ N i. The matrix F that represents the fast dynamics

for the whole population is then F U diagðF1; . . . ;FqÞ. Every matrix Fi has an A.S.

probability distribution vi which verifies that Fivi ¼ vi and ui · vi ¼ 1, where

ui U ð1; . . .ðN iÞ; 1Þ.

The Perron – Frobenius theorem applies to matrix Fi and we denote
�Fi U limk!1 Fk

i ¼ ðvij . . . jviÞ ¼ viui, where Fk
i is the kth power of matrix Fi. Denoting

�F U diagð �F1; . . . ; �FqÞ, we also have:

�F ¼ lim
k!1

F k ¼ VU: ð2Þ

where V U diagðv1; . . . ; vqÞN£q and U U diagðu1; . . . ; uqÞq£N .

If we think that the ratio of slow to fast time scale tends to infinity, i.e. k !1, or, in

other words, that the fast process is instantaneous in relation to the slow process, we can

approximate system (1) by the following so-called auxiliary system:

Xnþ1 ¼ S �FXn; ð3Þ

which using (2) can be written as

Xnþ1 ¼ SVUXn:

Here we see that the evolution of the system depends on UXn [ Rq, which suggests that

dynamics of the system could be described in terms of a lesser number of variables. These

variables are usually called global variables, defined by

Yn U UXn:

The auxiliary system (3) can be easily transformed into a q-dimensional system

premultiplying by matrix U, giving rise to the so-called aggregated system:

Ynþ1 ¼ USVYn: ð4Þ

The solutions to the auxiliary system can be obtained from the solutions to the aggregated

system. It is straightforward that the solution {Xn}n[N of system (3) for the initial

condition X0 is related to the solution {Yn}n[N of system (4) for the initial condition

Y0 ¼ UX0 in the following way: Xn ¼ SVYn21 for every n $ 1. The auxiliary system is an

example of perfect aggregation in the sense of Iwasa et al. [10].

L. Sanz et al.610
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Once the task of building up a reduced system is carried out, the important issue is to

see if the dynamics of the general system (1) can also be studied by means of the

aggregated system (4). For the simple linear case that we have just presented, it is proved

in Sánchez et al. [14] that the asymptotic elements defining the long term behaviour of

system (1) can be approximated by those of the corresponding aggregated system when the

matrix associated to the latter is primitive. In Sanz and Bravo de la Parra [16] these results

are extended to more general linear cases. A generalization to a specific nonlinear case is

treated in Bravo et al. [4].

2.1 Reduction of a general non-linear model with two time scales

Let us generalize the previous framework to include general nonlinear fast and slow

processes.

First of all, let us present the so-called complete model which will be susceptible to

being reduced. This model evolves in discrete time and is driven by two processes with

different time scales: slow and fast. Such processes are defined respectively by two

mappings

S; F : VN !VN ; S; F [ C 1ðVNÞ

where VN , RN is a nonempty open set.

We choose as time step of the model that corresponding to the slow dynamics. In order

to approximate the effect of the fast process over a time interval much bigger than its own,

we assume that during this time step the fast process acts k times before the slow process

acts, where k is a positive integer that in applications will take a big value.

Therefore, denoting by Xk;n [ RN the vector of state variables at time n, the complete

system is defined by

Xk;nþ1 ¼ SðF kðXk;nÞÞ ð5Þ

where F k denotes the k-fold composition of F with itself.

In order to reduce the system (5), we have to impose some conditions on the fast

process, which are specified in the following hypotheses.

Hypothesis 2.1. For each initial condition X [ VN , the fast dynamics tends to an

equilibrium. That is, there exists a mapping

�F : VN !VN ; �F [ C 1ðVNÞ

such that

;X [ VN ; lim
k!1

F kðXÞ ¼ �FðXÞ:

Hypothesis 2.2. There exists a non-empty open set Vq , Rq with q , N and two mappings

G : VN !Vq; G [ C 1ðVNÞ; E : Vq !VN ; E [ C 1ðVqÞ

Journal of Difference Equations and Applications 611
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such that �F can be expressed as

�F ¼ E +G:

In what follows we suppose that Hypotheses 2.1 and 2.2 are met. Then, we proceed to

reduce system (5) in two steps. First, we define the so-called auxiliary system which

approximates (5) when k !1, i.e. when the fast process has reached an equilibrium.

Denoting its vector of variables at time n by Xn, this auxiliary system is

Xnþ1 ¼ Sð �FðXnÞÞ ¼ S +E +GðXnÞ: ð6Þ

Secondly, we define the global variables through

Yn U GðXnÞ [ Rq:

Applying G to both sides of (6) we have

Ynþ1 ¼ GðXnþ1Þ ¼ G + S +E +GðXnÞ ¼ G + S +EðYnÞ

which is an autonomous system in the global variables Yn.

Summing up, we have approximated system (5) by the reduced or aggregated system

defined by

Ynþ1 ¼ G + S +EðYnÞ: ð7Þ

Note that through the previous procedure we have constructed an approximation that

allows us to reduce a system with N variables to a new system with q variables. In most

practical applications, q will be much smaller that N.

Coming back to Hypothesis 2.2, it can be interpreted by saying that for each initial

condition X [ VN , the fast dynamics tends to an equilibrium which depends on X only

through G(X), i.e. only through the value of the global variables corresponding to X.

2.2 Two examples

Before presenting the main results of this work in next section we illustrate their

applicability by means of two examples. We first present a simple example where

Proposition 3.10 applies. We consider a population living in an heterogeneous habitat,

divided into m patches. The migration process is assumed linear, described by a regular

stochastic matrix F and fast in relation to demography. We denote v ¼ ðv1; . . . vmÞ the

stable probability distribution of matrix F, u U ð1; . . .ðmÞ ; 1Þ and �F ¼ limk!1 F k ¼ vTu.

Concerning demography we use on each patch the Beverton/Holt equation with different

parameters to depict spatial heterogeneity. The state at time n of the population is

represented by vector Xn U ðx1
n; . . . ; xm

n Þ
T [ Rm

þ. The model is

Xk;nþ1 ¼ SðF k Xk;nÞ

where fast dynamics is defined by FðXÞ ¼ FX and the slow dynamics by

SðXÞ ¼ ðb1x1=ð1 þ c1x1Þ; . . . ; bmxm=ð1 þ cmxmÞÞ. The only global variable in this case

is the total population y ¼ GðXÞ ¼
Pm

i¼1x i. We have �FðXÞ ¼ �FX, Eð yÞ ¼ yv and, thus, the

L. Sanz et al.612
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associated aggregated model is the following scalar difference equation

ynþ1 ¼ f ð ynÞ; where f ð yÞ ¼ GðSðEð yÞÞÞ ¼
Xm

i¼1

biv
i

1 þ civ i y
y

This equation has an equilibrium 0 and the other equilibria are solutions to the equation

1 ¼ gð yÞ; where gð yÞ ¼
Xm

i¼1

biv
i

1 þ civ i y

as g( y) is decreasing for y [ Rþ, gð0Þ ¼
Pm

i¼1biv
i and limy!1 gð yÞ ¼ 0 there exists a

positive equilibrium y* if and only if
Pm

i¼1biv
i . 1. In this case, y* is the unique positive

equilibrium. We proceed to study the asymptotic behaviour of solutions of the aggregated

system with positive initial condition. We first observe that f 0ð yÞ ¼
Pm

i¼1ðbiv
i=ð1 þ

civ
i yÞ2Þ . 0 and so f( y) is an increasing function; moreover, we have f 0ð0Þ ¼

Pm
i¼1biv

i

and f 0ð y* Þ ¼
Pm

i¼1ðbiv
i=ð1 þ civ

i y* Þ2Þ . 0. We distinguish two cases. In the first one

we assume f 0ð0Þ ¼
Pm

i¼1biv
i , 1, then the only equilibrium is 0 which is hyperbolic and

globally A.S. because f ð yÞ , y for y . 0. In the second case we suppose

f 0ð0Þ ¼
Pm

i¼1biv
i . 1, so the unique positive equilibrium y* is hyperbolic ð f 0ð y* Þ ,Pm

i¼1ðbiv
i=ð1 þ civ

i y* ÞÞ ¼ 1Þ and globally A.S. because f( y) . y when y [ (0, y*) and

f( y) , y when y [ ( y*, 1).

The results obtained for the aggregated model can be extended, applying Proposition

3.10, to the original model as follows: For k big enough, if
Pm

i¼1biv
i , 1 the population

gets extinct in the long term, whereas if
Pm

i¼1biv
i . 1 it tends to an equilibrium X*

k which

verifies limk!1 X*
k ¼ y*v.

In Proposition 3.10, the main results of this work are proved to apply to systems of

the form

Xk;nþ1 ¼ SðF kXk;nÞ ð8Þ

where F is a block-diagonal matrix with each block being a regular stochastic matrix as

was supposed in the reduction of system (1). The previous example is a particular case of

(8) with one single block in F and so, with a unique global variable.

Some examples of models described in terms of this kind of system are found in

Charles et al. [6,7] and Lett et al. [11,12]. They assume the fast process, migration, to be

linear so that we can take FðXÞ ¼ FX. On the other hand, the slow process is defined by

means of a density dependant matrix LðXÞ so that we can make SðXÞ ¼ LðXÞX.

As a second example of the application of the results in next section we develop to a

certain detail the model in Ref. [7]. There is presented a general model of the dynamics of

an age-structured (three age classes) Salmo trutta population inhabiting an arborescent

river network divided into 15 patches at four levels. The aim of the model is the study of

the influence of environmental managing (dams and channels) on the global population

dynamics. The model couples both a linear discrete model for migrations and a non-linear

density-dependent Leslie-type model for the demography, resulting in a system with

(15 £ 3) difference equations. The migration process is considered fast in relation to

demography. The stability of the equilibria of the general model is studied carrying out the

stability analysis of the corresponding equilibria of a reduced model with only three

equations.

Journal of Difference Equations and Applications 613
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To be precise, let xi;j
n be the number of individuals aged i ði ¼ 1; 2; 3Þ, on patch j

ð j ¼ 1; . . . ; 15Þ at time n, xi
n ¼ ðxi;1

n ; . . . ; xi;15
n Þ and Xn ¼ ðx1

n; x2
n; x3

nÞ [ R45. The migration

process is considered to be linear and described by matrix F, which is block-diagonal,

F ¼ diagðF1;F2;F3Þ, where Fi describes the movements between patches of the

individuals of age-class i. Each Fi is a regular stochastic matrix so that, following notations

in (2), it possesses a probability distribution vi which verifies �Fi U limk!1 Fk
i ¼

ðvij . . . jviÞ ¼ viui. It is also verified that �F ¼ limk!1 F k ¼ VU. The demography is also

described by a matrix but, in this case, a non constant matrix; it depends on the total

number of individuals in age class 1, y 1 ¼ u1·x1:

Lð y1Þ ¼

0 0 f

s1ð y1Þ 0 0

0 s2 s3

0
BB@

1
CCA

where s1( y 1), s2, s3 and f are diagonal 15 £ 15-blocks containing the demographical

parameters (survival and fertility rates). The model including both processes at different

time scales reads:

Xk;nþ1 ¼ Lðu1·ðF kXk;nÞ
1ÞF kXk;n: ð9Þ

To place it in the framework of system 8 we have to take FðXÞ ¼ FX and

SðXÞ ¼ Lðu1·x1ÞX. So, �FðXÞ ¼ �FX, Y ¼ GðXÞ ¼ UX [ R3 and E(Y) ¼ VY. The

associated aggregated system is

Ynþ1 ¼ G + S +EðYnÞ ¼ ULðu1·ðVYnÞ
1ÞVYn

that is,

Ynþ1 ¼

0 0 u1fv3

u2s1ð y1Þv1 0 0

0 u3s2v2 u3s3v3

0
BB@

1
CCA Yn ¼

0 0 �f

�s1ð y1Þ 0 0

0 �s2 �s3

0
BB@

1
CCAYn ð10Þ

where, due to the particular definition of s1( y 1) in Ref. [7], we have

�s1ð y1Þ ¼ a=ð1 þ by1Þ.

For system (10) it is easy to prove that, apart from the trivial equilibrium, if

v U a �f �s2 þ �s2 2 1 . 0 there is a positive equilibrium

Y* ¼ ð y1*; y2*; y3*Þ ¼
v

bð1 2 �s3Þ
;

v

b �f �s2

;
v

b �fð1 2 �s3Þ

� �

which is hyperbolic A.S. whereas (0,0,0) is hyperbolic unstable. When v , 0 then (0,0,0)

is hyperbolic A.S.

These results can be extended to system (9) via Theorem 3.5 and Proposition 3.10.

If v . 0 then system (9), for big enough k, has a positive hyperbolic A.S. equilibrium X*
k

well approximated by X* ¼ Lð y 1*ÞVY* and 0 ¼ ð0; . . .ð45Þ ; 0Þ is a hyperbolic unstable

equilibrium. The basin of attraction of X*
k can be easily estimated starting from the basin of

attraction of Y* in system (10). On the other hand, if v , 0 then there is no positive

equilibrium for system (9) and 0 is hyperbolic A.S.

L. Sanz et al.614
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3. A general formulation of the aggregation technique

In this section, we will introduce a general non-linear model and an aggregation of

variables procedure which contain as a particular case the setting developed in the

previous section. The advantage of this new approach lies in the fact that it simplifies the

mathematical calculations and, moreover, it could be applied to the reduction of more

general systems as systems in which the existence of different time scales is associated to a

real parameter in the model. With this aim, in our new formulation the parameter k which

differentiates the two time scales will be considered to be a big real number (not

necessarily integer).

We start by introducing the original or complete model defined by

Xk;nþ1 ¼ HkðXk;nÞ ð11Þ

where k [ I , Rþ, I being a non-empty set not bounded from above and for each k [ I,

Hk : VN !VN ; Hk [ C 1ðVNÞ:

In order to carry out the reduction of the model, we assume the following conditions:

Hypothesis 3.1. The family of mappings {Hk}k[I converges pointwise in VN when k ! 1

to a mapping H : VN !VN , H [ C1ðVNÞ.

Hypothesis 3.2. There exist a non-empty open subset Vq , Rq with q , N and two

mappings

G : VN !Vq; T : Vq !VN ; G [ C 1ðVNÞ; T [ C 1ðVqÞ

such that the mapping H of Hypothesis 3.1 can be expressed as

H ¼ T +G:

Let us observe that the setting of Section 2.1 corresponds to taking

Hk U S +F k; H U S + �F

and Hypotheses 2.1 and 2.2 correspond respectively to Hypotheses 3.1 and 3.2 with

T U S +E.

The approximate reduction of system (11) can be carried out as in Section 2.1. The

auxiliary system is

Xnþ1 ¼ HðXnÞ: ð12Þ

Defining the global variables by

Yn U GðXnÞ [ Rq

we obtain the reduced or aggregated system

Ynþ1 ¼ �HðYnÞ ð13Þ

where we have introduced the notation �H U G + T .
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3.1 Relationship between the original system (11) and the aggregated system (13)

In this section, we will relate the behaviour of systems (11) and (13), for big enough values

of parameter k.

Our results are of two kinds: First we will compare the solutions of both systems for a

fixed value of n. Secondly, we will give asymptotic results concerning the existence and

stability of fixed points and periodic solutions for both systems. Moreover, we will show

how the periodic orbits of the original system (11) can be approximated by those of the

aggregated system (13).

Throughout this section we assume Hypotheses 3.1 and 3.2 and when comparing

solutions we will always refer to the orbits corresponding to the initial condition X0 [ RN

for the original and the auxiliary systems and Y0 U GðX0Þ [ Rq for the aggregated

system.

The following proposition guarantees that the dynamics of the auxiliary system (12) is

completely determined by the dynamics of the reduced system (13), the converse holding

too. Moreover, given mild extra assumptions, for each n fixed we can approximate the

solution to the original model (11) by the solution to the aggregated model (13).

Proposition 3.3. Let X0 [ VN and let Y0 U GðX0Þ [ Vq. Then:

(i) The solution {Xn}n¼1;2; ... to the auxiliary system (12) corresponding to the initial

condition X0 and the solution {Yn}n¼1;2; ... to the reduced system (13) corresponding

to the initial condition Y0 are related by the following expressions

Yn ¼ GðXnÞ; Xn ¼ TðYn21Þ; n ¼ 1; 2; . . . ð14Þ

(ii) Let n be a fixed positive integer and let us assume that there exists a non-empty

bounded and open set V such that �V , VN ;V contains the points X0, Xiþ1 U TðYiÞ,

i ¼ 0; . . . ; n 2 1 and such that lim k!1 Hk ¼ H uniformly in V. Then the solution

Xk,n to the original system (11) corresponding to the initial condition X0 and the

solution Yn to the reduced system (13) corresponding to the initial condition Y0 are

related by the following expressions

Yn ¼ lim
k!1

GðXk;nÞ; lim
k!1

Xk;n ¼ TðYn21Þ:

Proof.

(i) The first expression holds by the definition of the global variables. Regarding the

second one, we have

Xn ¼ HðXn21Þ ¼ T +GðXn21Þ ¼ TðYn21Þ

as we wanted to show.

(ii) Bearing in mind (14), we only need to show that limk!1 Xk;n ¼ Xn, i.e. that

lim k!1 Hn
kðX0Þ ¼ H nðX0Þ.

This equality is an immediate consequence of a technical result which is stated as

Lemma A.1 in the Appendix. A

Now we will turn our attention to the study of some relationships between the fixed

points and periodic solutions to the original and reduced systems.

Let us recall that X* is a periodic point of period m or an m-periodic point for system

Xnþ1 ¼ AðXnÞ if X* ¼ AmðX* Þ and m is the lowest positive integer for which this equality

L. Sanz et al.616
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holds. In the case m ¼ 1;X* is called an equilibrium point or fixed point. An m-periodic

point X* is said to be hyperbolic if none of the eigenvalues of DA mðX* Þ, differential of A m

at X*, has modulus 1. If all the eigenvalues of DAmðX* Þ have modulus less than 1 then X*

is A.S. and the set of initial conditions which corresponding solutions tend to it is called

the basin of attraction. If any of the eigenvalues of DAmðX* Þ have modulus larger than 1

then X* is unstable (see Ref. [13] for the general theory).

First of all we relate the existence of fixed and periodic points and their stability for the

auxiliary system (12) and the aggregated system (13).

Proposition 3.4.

(a) If X* [ VN is a periodic point of period m $ 1 of the auxiliary system (12), then

Y* U GðX* Þ [ Vq is a periodic point of period m of the reduced system (13).

Conversely, if Y* [ Vq is a periodic point of period m $ 1 of the reduced system (13)

then X* U TðY* Þ [ VN is a periodic point of period m of the auxiliary system (12).

(b) Let Y* [ Vq be an m-periodic hyperbolic point of (13) and X* U SðY* Þ. Then X* is

(A.S.) (resp. unstable) for (12) if and only if Y* is A.S. (resp. unstable) for (13).

Conversely, if X* [ VN is an m-periodic hyperbolic point of (12) and Y* U GðX* Þ,

then Y* is A.S. (resp. unstable) for (13) if and only if X* is A.S. (resp. unstable)

for (12).

Proof. See appendix. A

The following result, which is the main result of this paper, relates the periodic points

for the original system (11) and the aggregated system (13). Roughly speaking, it

guarantees that under certain assumptions, the existence of an m-periodic point Y* for the

aggregated system implies, for big enough values of k, the existence of an m-periodic point

X*
k for the original system, which can be approximated in terms of Y* . Moreover, in the

hyperbolic case the stability of Y* is equivalent to the stability of X*
k and in the A.S. case,

the basin of attraction of X*
k can be approximated in terms of the basin of attraction of Y*.

Theorem 3.5. Let Y* [ Vq be an m-periodic point of the aggregated model (13) so that,

according to Proposition 3.4, X* U TðY* Þ is an m-periodic point for the auxiliary

system (12).

Let us assume the following hypothesis:

Hypothesis 3.6. There exists a non-empty bounded open set V such that �V , VN , which

contains the set

Hm21ðX* Þ U {X* ;HðX* Þ; . . . ;H m21ðX* Þ}

and such that

lim
k!1

Hk ¼ H; lim
k!1

DHk ¼ DH

uniformly in V.

In addition to Hypothesis 3.6, let us assume that 1 is not an eigenvalue of D �HmðY* Þ.

Then there exist r0 . 0, k0 [ I such that:
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(a) For each k $ k0, k [ I, Hk has an unique m-periodic point X*
k [ �BðX*; r0Þ.

(b) limk!1 X*
k ¼ X*.

(c) Let Y* be hyperbolic. Then there exists k*
0 such that for all k $ k*

0, k [ I, X*
k is

hyperbolic. Moreover, X*
k is A.S. (resp. unstable) if and only if Y* is A.S. (resp.

unstable).

(d) Let Y* be hyperbolic and A.S. Let X0 [ VN such that Y0 U GðX0Þ verifies

limn!1
�Hmn21ðY0Þ ¼ Y* . Let us assume the following hypothesis:

Hypothesis 3.7. There exists an open set Q , VN containing the set

HðX0Þ U {X0;Xnþ1 U TðYnÞ; n ¼ 0; 1; . . . }

such that limk!1 Hk ¼ H uniformly in Q.

Then there exists k
**

0 such that for each k $ k*
0, k [ I, limn!1 Hmn

k ðX0Þ ¼ X*
k .

As usual, �BðX; rÞ represents the set {Z [ RN ; kX 2 Zk # r}.

Proof. See Appendix. A

Corollary 3.8. Let us assume that Hk, H [ C 1ðVNÞ and that limk!1 Hk ¼ H,

limk!1 DHk ¼ DH uniformly on any compact set K , VN.

Let Y* [ Rq be a hyperbolic and A.S. equilibrium point of (13). Then there exists

k0 [ I such that for each k $ k0, k [ I, there exists an equilibrium point X*
k of (11) which

is hyperbolic and A.S. and that satisfies limk!1 X*
k ¼ X* where X* ¼ TðY* Þ.

Moreover, if X0 [ RN is such that limn!1
�HnðY0Þ ¼ Y* , where Y0 U GðX0Þ, then

;k $ k0; k [ I; lim
n!1

Hn
kðX0Þ ¼ X*

k :

The applicability of Theorem 3.5 depends on Hypotheses 3.6 and 3.7, which

require the uniform convergence of the mappings Hk and DHk to H and DH,

respectively, in a certain set. Coming back to the context of a system with two time scales

of Section 2.1, the following proposition establishes sufficient conditions on the fast

process F under which we can guarantee these hypotheses hold. The proof is standard and

is omitted.

Proposition 3.9. Under the conditions of Section 2.1, let V be any non-empty open

bounded set such that �V , VN and let us assume that:

(i) limk!1 F k ¼ �F uniformly in �V.

(ii) limk!1 DF k ¼ D �F uniformly in �V.

Then mappings Hk U S +F k and H U S + �F verify:

(a) limk!1 Hk ¼ H uniformly in V.

(b) limk!1 DHk ¼ DH uniformly in V.

We now state in the following proposition sufficient conditions for system 8,

Xk;nþ1 ¼ SðF kXk;nÞ, to meet the hypotheses of Theorem 3.5.

L. Sanz et al.618
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Proposition 3.10. Let us consider system (8) as particular case of system (5) with

FðXÞ ¼ FX where matrix F is a block-diagonal matrix with each block being a regular

stochastic matrix as in (1), �F ¼ limk!1 F k ¼ VU and with S a C1 map from VN to Rm.

Then Hypotheses 2.1 and 2.2 are met with GðXÞ ¼ UX and EðYÞ ¼ VY and the

corresponding aggregated system is Ynþ1 ¼ USðVYnÞ. Moreover, if Y* is an m-periodic

point of the aggregated system then Hypotheses 3.6 and 3.7 are met and Theorem 3.5

applies to system (8).

Proof. Let k·k be any consistent matrix norm and let V , RN be bounded. Then

sup
X[ �V

kF kðXÞ2 �FðXÞk ¼ sup
X[ �V

kF kX 2 �FXk # kF k 2 �Fksup
X[ �V

kXk !
k!1

0

Similarly supX[ �VkDF kðXÞ2 D �FðXÞk ¼ kF k 2 �Fk �!
k!1

0 and so the uniform convergence

of F k and DF k to �F and D �F in �V holds and Proposition 3.9 applies. A

4. Conclusion

In the present work we have introduced, Section 2, a very general discrete nonlinear model

where we have distinguished between two different time scales. The model is represented

by a discrete system at the slow time scale and, with the help of suitable assumptions, is

reduced to a simpler system, also at the slow time scale, which terms reflect the asymptotic

behaviour of the fast dynamics. This is an example of how a simpler model admits an

explanation given by a more complex model. The study of the simpler model, the

aggregated model, give us information of the initial model via the general results of

Section 3.

The results of Section 3 need some hypotheses not necessarily met for the general

systems presented in Section 2. To illustrate the importance of Theorem 3.5 we mention at

the end of Section 2 two applications which can be included in a general kind of two-time

scales discrete systems where the fast dynamics is linear. For this kind of systems

Proposition 3.10 assures that hypotheses of Theorem 3.5 hold, which justifies the use of

aggregation methods in the study of these systems. In both applications the influence of

spatial heterogeneity on the stability of ecological communities is studied. Several new

applications could also be developed in the same direction in the future. The aggregation

methods are particularly suited for the study of spatially distributed populations in a

network of patches connected by migrations because they allow a simpler system of

equations governing the dynamics of the total populations to be obtained.

From a more methodological point of view, there are two issues to develop: the first

one is to characterize larger classes of discrete systems where the aggregation results can

be easily applied, that is, generalizing Proposition 3.10 and the second one has to do with

the possibility of extending Theorem 3.5 to more general asymptotic behaviours.
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Appendix A Proofs

In what follows we will denote by k·k, depending on the context, a norm in Rp or its associated
matrix norm in Rp£p, with p ¼ N; q.

Proof of Proposition 3.4.

(a) For each m $ 1 the following holds:

H m ¼ ðT +GÞm ¼ T + �H m21 +G ðA1Þ

�H m ¼ ðG + TÞm ¼ G +H m21 + T ðA2Þ

Let X* be an m-periodic point of (12), so H mðX* Þ ¼ X* . Using (A1) we have

Y* ¼ GðX* Þ ¼ GðH mðX* ÞÞ ¼ G + T + �H m21 +GðX* Þ ¼ �H mðGðX* ÞÞ ¼ �H mðY* Þ: ðA3Þ

In order to show that m is the lowest integer for which (A3) holds, let us assume that there
exists s , m such that �H sðY* Þ ¼ Y* , i.e.

GðX* Þ ¼ G +H s21 + TðGðX* ÞÞ ¼ G +H sðX* Þ:
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Applying T to both sides of the equality above we have

T +GðX* Þ ¼ HðX* Þ ¼ T +G +H sðX* Þ ¼ H sþ1ðX* Þ

and then

X* ¼ H mðX* Þ ¼ H m2s21 +H sþ1ðX* Þ ¼ H m2s21 +HðX* Þ ¼ H m2sðX* Þ

which contradicts the assumption of X* being m-periodic.
Conversely, let us assume that �H mðY* Þ ¼ Y* . Then using (A2) we have for X* U TðY* Þ:

H mðX* Þ ¼ T + �H m21 +GðTðY* ÞÞ ¼ T + �H mðY* Þ ¼ TðY* Þ ¼ X* : ðA4Þ

In order to show that m is the lowest integer for which (A4) holds, let us assume that there exists
s , m such that H sðX* Þ ¼ X* . Then, it follows from (A2) that

�H sðY* Þ ¼ G +H s21 + TðY* Þ ¼ G +H s21 + TðGðX* ÞÞ ¼ G +H sðX* Þ ¼ GðX* Þ ¼ Y*

which contradicts the assumption of Y* being m-periodic.
(b) Let X* be such that H mðX* Þ ¼ X* and let Y* U GðX* Þ. Then we have

DH mðX* Þ ¼ DðH m21 + T +GÞðX* Þ ¼ DðH m21 + TÞðY* ÞDGðX* Þ

and also

D �H mðY* Þ ¼ DðG +H m21 + TÞðY* Þ ¼ DGðX* ÞDðH m21 + TÞðY* Þ

where we have used that

H m21 + TðY* Þ ¼ H m21 + TðGðX* ÞÞ ¼ H mðX* Þ ¼ X* :

Conversely, let Y* be such that �H mðY* Þ ¼ Y* and let X* U TðY* Þ. Similar calculations to the
ones before show that

D �H mðY* Þ ¼ Dð �H m21 +GÞðX* ÞDTðY* Þ

and

DH mðX* Þ ¼ DTðY* ÞDð �H m21 +GÞðX* Þ:

Summing up, we conclude that in both cases, DH m(X*) and D �H mðY* Þ can be written as the product
of two factors which are the same but in a different order. Therefore, both matrices must have the
same non-zero eigenvalues ([9]).

More specifically,

sðDH mðX* ÞÞ ¼ sðD �H mðY* ÞÞ< {0; . . .ðN2qÞ; 0}

and so in particular,

rðDH mðX* ÞÞ ¼ rðD �H mðY* ÞÞ

(as usual, s(A) denotes the set of eigenvalues of matrix A, including multiplicities).

Henceforth, rðDH mðX*ÞÞ , 1 (resp. .1) if and only if rðD �H mðY* ÞÞ , 1 (resp. .1) which
concludes the proof of (b). A

Now we establish two technical lemmas which will be useful in proving Theorem 3.5.
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Lemma A.1. Let X0 [ VN and n [ Zþ be fixed. Let V be a non-empty open set such that
�V , VN and which contains the set

HnðX0Þ U X0;HðX0Þ; . . . ;H nðX0Þf g:

Let us assume that limk!1 Hk ¼ H uniformly to in V. Then, there exists r* . 0 such that

for each s ¼ 1; . . . ; n we have limk!1 Hs
k ¼ H s uniformly in �BðX0; r* Þ. If in addition

limk!1 DHk ¼ DH uniformly in V, then for each s ¼ 1, . . . ,n we have limk!1 DHs
k ¼

DH s uniformly in �BðX0; r* Þ.

Proof. It is easy to realize that it suffices with proving the result for n ¼ 2.

Since X0, HðX0Þ [ V and V is an open set, there exists r . 0 such that �BðX0; rÞ , V and
�BðHðX0Þ; rÞ , V.

Moreover, since limk!1 Hk ¼ H uniformly in V and H is continuous in X0, straightforward
calculations show that there exist r* . 0 and k* [ I such that ;k $ k* , k [ I, we have

X [ �BðX0; r* Þ ) HðXÞ;HkðXÞ [ �BðHðX0Þ; rÞ:

Let us now show that limk!1 H2
k ¼ H 2 uniformly in �BðX0; r* Þ.

The uniform convergence limk!þ1 Hk ¼ H in V assures the existence of a real sequence
{ak}k[I , ak . 0, with limk!1 ak ¼ 0 and such that

sup
X[V

kHkðXÞ2 HðXÞk # ak:

Since,

kH2
kðXÞ2 H 2ðXÞk ¼ kHkðHkðXÞÞ2 HðHkðXÞÞk þ kHðHkðXÞÞ2 HðHðXÞÞk

we have, for k $ k*

sup
X[ �BðX0;r* Þ

kH2
kðXÞ2 H 2ðXÞk # sup

Z[ �BðHðX0Þ;rÞ

kHkðZÞ2 HðZÞk þ sup
Zk ;Z[ �BðHðX0Þ;rÞ

kZk2Zk#ak

kHðZkÞ2 HðZÞk:

When k ! 1, the first term on the right-hand side converges to zero due to the uniform
convergence of Hk to H in V and the second term converges to zero since H is uniformly continuous
in �V.

Now let us prove that limk!1 DH2
k ¼ DH 2 uniformly in �BðX0; r* Þ, under the additional

assumption that limk!1 DHk ¼ DH uniformly in V.

Since,

kDH2
kðXÞ2 DH 2ðXÞk ¼ kDHkðHkðXÞÞDHkðXÞ2 DHðHðXÞÞDHðXÞk

# kDHkðHkðXÞÞDHkðXÞ2 DHðHkðXÞÞDHkðXÞk

þ kDHðHkðXÞÞDHkðXÞ2 DHðHðXÞÞDHkðXÞk

þ kDHðHðXÞÞDHkðXÞ2 DHðHðXÞÞDHðXÞk

L. Sanz et al.622
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we have, for k . k*

ðIÞ U sup
X[ �BðX0;r* Þ

kDHkðHkðXÞÞDHkðXÞ2 DHðHkðXÞÞDHkðXÞk

# sup
X[ �BðX0;r* Þ

kDHkðHkðXÞÞ2 DHðHkðXÞÞk sup
X[ �BðX0;r* Þ

kDHkðXÞk

# sup
Z[ �BðHðX0Þ;rÞ

kDHkðZÞ2 DHðZÞk sup
X[ �BðX0;r* Þ

kDHkðXÞk !
k!1

0

where we have used the uniform convergence of DHk to DH in V and the fact that, since DHk !
k!1

DH

uniformly in V and DH is continuous in �V, then kDHkðXÞk is uniformly bounded with respect to k

in �V.

Similarly

ðIIÞ U sup
X[ �BðX0;r* Þ

kDHðHkðXÞÞDHkðXÞ2 DHðHðXÞÞDHkðXÞk

# sup
X[ �BðX0;r* Þ

kDHðHkðXÞÞ2 DHðHðXÞÞk sup
X[ �BðX0;r* Þ

kDHkðXÞk

# sup
Zk ;Z[ �BðHðX0Þ;rÞ

kZk2Zk#ak

kDHðZkÞ2 DHðZÞk sup
X[ �BðX0;r* Þ

kDHkðXÞk !
k!1

0:

Finally, we have

ðIIIÞ U sup
X[ �BðX0;r* Þ

kDHðHðXÞÞDHkðXÞ2 DHðHðXÞÞDHðXÞk

# sup
X[ �BðX0;r* Þ

kDHðHðXÞÞk sup
X[ �BðX0;r* Þ

kDHkðXÞ2 DHðXÞÞk

# sup
Z[ �BðHðX0Þ;rÞ

kDHðZÞk sup
X[ �BðX0;r* Þ

kDHkðXÞ2 DHðXÞÞk !
k!1

0:

Therefore the result is proved. A

Lemma A.2. Let Hypothesis 3.6 holds and assume that 1 is not an eigenvalue of DH mðX* Þ.

Then there exist r̂ . 0, k̂ [ I such that for all k $ k̂, k [ I, the mappings

WðXÞ U X 2 H mðXÞ; WkðXÞ U X 2 Hm
k ðXÞ ðA5Þ

are one-to-one in �BðX*; r̂Þ , V.

Proof. First of all, let us recall the fact that if a sequence of matrices Bk converges to a regular matrix
B, then matrices Bk are regular for k big enough and moreover limk!1 B21

k ¼ B21 ([19]).

Differentiating in (A5) we have DWðX* Þ ¼ I 2 DH mðX* Þ and since 1 is not an eigenvalue of
DH mðX* Þ, it follows that DWðX* Þ is a regular matrix.

Hypothesis 3.6 allows us to apply Lemma A.1 and so there exists r* . 0 such that
limk!1 DHm

k ¼ DH m uniformly in �BðX*; r* Þ, and consequently limk!1 DWk ¼ DW uniformly in
�BðX*; r* Þ. Therefore there exists k1 [ I such that for all k $ k1, k [ I, DWkðX*Þ is a regular matrix
and moreover

lim
k!1

½DWkðX* Þ�21 ¼ ½DWðX* Þ�21:
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In particular, this implies that there exists k2 [ I such that ;k $ k2, k [ I we have

kAkk # 2kAk ðA6Þ

where we have denoted Ak U ½DWkðX* Þ�21 and A U ½DWðX* Þ�21.

Since DW is continuous in X* , there exists h . 0 such that

X [ �BðX*;hÞ ) kDWðXÞ2 DWðX* Þk #
1

3kAk
: ðA7Þ

Also, since limk!1 DWk ¼ DW uniformly in �BðX*; r* Þ, there exists k3 [ I such that ;k $ k3,
k [ I,

sup
X[ �BðX*;r* Þ

kDWkðXÞ2 DWðXÞk #
1

24kAk
: ðA8Þ

We want to prove that for each Z [ RN , both the equations

WðXÞ ¼ Z; WkðXÞ ¼ Z

have, for k big enough, either no solution or a unique solution in a neighborhood of X*. These two
equations are equivalent, respectively, to

fkðXÞ ¼ X; fðXÞ ¼ X

where

fkðXÞ U X þ AkðZ 2 WkðXÞÞ; fðXÞ U X þ AðZ 2 WðXÞÞ:

Therefore, the result will be proved if we show that fk and f are strict contractions in some
neighborhood of X*.

Since

DfðXÞ ¼ I 2 ADWðXÞ ¼ AðDWðX* Þ2 DWðXÞÞ

we have from (A7) that

X [ �BðX*;hÞ ) kDfðXÞk #
1

3

which proves that f is a strict contraction in �BðX*;hÞ.

On the other hand,

DfkðXÞ ¼ I 2 AkDWkðXÞ ¼ AkðDWkðX* Þ2 DWkðXÞÞ

so that taking into account (A6), we obtain for k $ k2, k [ I,

kDfkðXÞk # 2kAkkDWkðX* Þ2 DWkðXÞk: ðA9Þ

If X [ �BðX*; r* Þ, we have

kDWkðXÞ2 DWkðX* Þk # 2 sup
X[ �BðX*;r* Þ

kDWkðXÞ2 DWðXÞk þ kDWðXÞ2 DWðX* Þk:

Let r̂ U minðh; r* Þ . 0. Taking into account (A7) and (A8) we have for k $ k3, k [ I,

sup
X[ �BðX*;r̂Þ

kDWkðX* Þ2 DWkðXÞk #
1

12kAk
þ

1

3kAk
¼

5

12kAk
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and finally from (A9), choosing k̂ U maxðk2; k3Þ, we have for k $ k̂, k [ I,

sup
X[ �BðX*;r̂Þ

kDfkðXÞk # 2kAk sup
X[ �BðX*;r̂Þ

kDWkðX* Þ2 DWkðXÞk # 2kAk
5

12kAk
¼

5

6
, 1

which proves that fk is a strict contraction in �BðX*; r̂Þ and concludes the proof. A

Proof of Theorem 3.5. Since the nonzero eigenvalues of matrices D �H mðY* Þ and DH mðX*Þ
coincide (Proposition 3.4), 1 is not an eigenvalue of DH mðX*Þ and therefore we can apply Lemmas
A.1 and A.2, so there exist r0 . 0, k0 [ I, such that for all k $ k0, k [ I the mappings W and Wk

defined in (A5) are one-to-one in �B U �BðX*; r0Þ and moreover, for s ¼ 1, . . . , m, limk!1 Hs
k ¼ H s

and limk!1 DHs
k ¼ DH s being both limits uniform in �B.

(a) We have to prove that for each k $ k0, k [ I, there exists a unique X*
k [ �B such that X*

k ¼
Hm

k ðX
*
kÞ or, equivalently, WkðX

*
kÞ ¼ 0.

The uniqueness is an immediate consequence of the fact that Wk is one to one in �B.
Regarding the existence, let us recall that if a function f is continuous and one-to-one in a

compact set C we have f ð›CÞ ¼ ›f ðCÞ and int f ðCÞ ¼ f ðint CÞ where › and int denote boundary
and interior respectively.

We will prove the existence of X*
k by contradiction. If X*

k does not exist, then there exists a
sequence {kn}n¼1;2; ... , I such that limn!1 kn ¼ þ1 and ;X [ �B, Wkn

ðXÞ – 0, i.e.
0 � Wkn

ð �BÞ. Let us notice that X* [ intðWð �BÞÞ, which implies that WðX* Þ ¼ 0 [ intðWð �BÞÞ
and also Z*

n U Wkn
ðX* Þ [ intðWkn

ð �BÞÞ.
Let Sn be the line segment that joins 0 and Z*

n. Obviously Sn > ›ðWkn
ð �BÞÞ – Y, which

allows us to chose Zn [ Sn > ›ðWkn
ð �BÞÞ. Since limn!1 Wkn

¼ W uniformly in �B, then

lim
n!1

Z*
n ¼ lim

n!1
Wkn

ðX* Þ ¼ WðX* Þ ¼ 0

which, in turn, implies that limn!1 Zn ¼ 0.
This contradicts the fact that Zn [ ›ðWkn

ð �BÞÞ. Indeed, since 0 [ intðWð �BÞÞ we have
d0 U distð0; ›ðWð �BÞÞÞ . 0. Let us consider the set

E U X [ RN ; distðX; ›ðWð �BÞÞÞ ,
d0

2

� �
:

There exists a positive integer n0 such that ;n $ n0, ›ðWkn
ð �BÞÞ , E and therefore kZnk . d0=2

so limn!1 Zn – 0.
In order to prove (a) it only remains to be shown that the period of X*

k is exactly m, what we
will do after proving (b).

(b) We know from (a) that for each k $ k0, k [ I, X*
k [ �B and so {X*

k}k[I must have at least an
accumulation point Z* [ �B. We will prove that Z* is the unique accumulation point of {X*

k}k[I

which implies that limk!1 X*
k ¼ Z*.

Let {X*
kn

} be a subsequence of {X*
k}k[I that converges to Z*. Bearing in mind the

continuity of H m and the fact that Hm
kn

converges to H m uniformly in �B, straightforward
calculations show that lim

kn!1
Hm

kn
ðX*

kn
Þ ¼ H mðZ* Þ. Then,

H mðZ* Þ ¼ lim
kn!1

Hm
kn
ðX*

kn
Þ ¼ lim

kn!1
X*

kn
¼ Z* :

But since W is one-to-one in �B, H m can only have one fixed point in �B and therefore Z* is the
unique accumulation point of {X*

k}k[I . Moreover, since X* [ �B is a fixed point of H m it must
be Z* ¼ X* and (b) is proved.

Now, let us go back to (a) and prove that the period of each X*
k is m. Indeed if this is not the

case, there exists s , m and a subsequence {X*
kn

} of {X*
k}k[I such that Hs

kn
ðX*

kn
Þ ¼ X*

kn
.
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Following a similar argument to the previous one, we can show that

lim
kn!1

Hs
kn
ðX*

kn
Þ ¼ H sðX* Þ

and therefore

X* ¼ lim
kn!1

X*
kn
¼ lim

kn!1
Hs

kn
X*

kn

� �
¼ H sðX* Þ

which contradicts the assumption of X* being a m-periodic point.
(c) The result is an immediate consequence of the following fact: For each 1 $ 0, there exist

k*
0ð1Þ [ I such that

;k $ k*
0ð1Þ; k [ I; r DHm

k X*
k

� �� �
2 rðD �H mðY* ÞÞ

		 		 # 1:

This is turn follows from the facts that the nonzero eigenvalues of matrices D �H mðY* Þ and
DH mðX* Þ coincide, the eigenvalues of a matrix depend continuously of its entries and that
limk!1 DHm

k ðX
*
kÞ ¼ DH mðX* Þ. This last equality is straightforward from the uniform

convergence of DHm
k to DH m in �B, the continuity of DH m and limk!1 X*

k ¼ X*.
(d) Since Y* is hyperbolic and A.S., there exists g1 [ ð0; 1Þ such that rðD �H mðY* ÞÞ # g1 , 1 and

therefore, there exists a consistent matrix norm such that kDH mðX* Þk # g1. By continuity,
there exists r1, 0 , r1 , r* such that

sup
X[ �BðX*;r1Þ

kDH mðXÞk # g1:

Moreover, since limk!1 X*
k ¼ X* there exist r2 . 0 and k1 [ I such that for all k . k1, k [ I,

we have �BðX*
k ; r2Þ , �BðX*; r1Þ together with X* [ �BðX*

k ; r2Þ.

Let us now show that for k big enough, Hm
k is a strict contraction in �BðX*

k ; r2Þ. Since,
limk!1 DHm

k ðXÞ ¼ DH m uniformly in �BðX*; r* Þ, for each 1 . 0 there exists kð1Þ [ I such that

;k $ kð1Þ; k [ I; sup
X[ �BðX*;r* Þ

kDHm
k ðXÞ2 DH mðXÞk # 1:

That is, if we fix g2 such that 0 , g1 , g2 , 1, choosing 1 ¼ g2 2 g2 it follows that for all
k $ k2 U maxðk1; kð1ÞÞ,

sup
X[ �BðX*;r1Þ

kDHm
k ðXÞk # sup

X[ �BðX*;r* Þ

kDHm
k ðXÞ2 DH mðXÞk

þ sup
X[ �BðX*;r1Þ

kDH mðXÞk # 1þ g1 ¼ g2 , 1:

Therefore for k $ k2, Hm
k is a strict contraction in �BðX*

k ; r2Þ but since X*
k is the unique fixed

point in �BðX*
k ; r2Þ, the orbit of Hm

k starting in any initial condition in �BðX*
k ; r2Þ must converge

to X*
k .

In order to prove (d) we only have to show that there exists a positive integer n0 such that for k
big enough, Hmn0

k ðX0Þ [ �BðX*
k ; r2Þ which implies that limn!1 Hmn

k ðX0Þ ¼ X*
k .

Let us begin by noting that limn!1
�H mn21ðY0Þ ¼ Y* or, using, (A1), limn!1 H mnðX0Þ ¼ X* ,

which assures the existence a positive integer n0 such that

kH mn0 ðX0Þ2 X*k #
r2

3
:

Also, limk!1 X*
k ¼ X* ensures that there exists k3 [ I such that

;k $ k3; k [ I; kX*
k 2 X*k #

r2

3
:
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Finally, Hypothesis 3.7 allows us to apply Lemma A.1 in the point X0, so there exists r̂0 . 0 such
that limk!1 Hmn0

k ¼ H mn0 uniformly in �BðX0; r̂Þ and therefore there exists k4 [ I such that

;k $ k4; k [ I; sup
X[ �BðX0;r̂Þ

kHmn0

k ðX0Þ2 H mn0 ðX0Þk #
r2

3
:

Choosing k
**

0 U maxðk2; k3; k4Þ we have for all k $ k
**

0 , k [ I,

kHmn0

k ðX0Þ2 X*
kk # kHmn0

k ðX0Þ2 H mn0 ðX0Þk þ kHmn0

k ðX0Þ2 X*k þ kX* 2 Xkk # r2

and hence Hmn0

k ðX0Þ [ �BðX*
k ; r2Þ. A
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