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Abstract

In this work we extend previous results regarding the use of approximate aggregation techniques to sim-
plify the study of discrete time models for populations that live in an environment that changes randomly
with time. Approximate aggregation techniques allow one to transform a complex system involving many
coupled variables and in which there are processes with different time scales, by a simpler reduced model
with a fewer number of �global� variables, in such a way that the dynamics of the former can be approxi-
mated by that of the latter.

We present the reduction of a stochastic multiregional model in which the population, structured by age
and spatial location, lives in a random environment and in which migration is fast with respect to demog-
raphy. However, the technique works in much more general settings as, for example, those of stage-struc-
tured populations living in a multipatch environment. By manipulating the original system and
appropriately defining the global variables we obtain a simpler system.

The paper concentrates on establishing relationships between the original and the reduced systems for a
given separation of time scales between the two processes. In particular, we relate the original state vari-
ables and the global variables and, in the case the pattern of temporal variation is Markovian, we relate
the presence of strong stochastic ergodicity for the original and reduced systems. Moreover, we relate dif-
ferent measures of asymptotic population growth for these systems.
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1. Introduction

Nature offers many examples of systems with an inherent complexity whose study leads to
mathematical models with a large number of state variables whose analytical study is, in most
cases, not feasible. In order to be able to extract important information about the behavior of
some of these complex models, one can resort to �approximate aggregation methods�. These are
mathematical techniques, which are usually applied in systems governed by processes with differ-
ent time scales, in which appropriate approximations are introduced in order to transform the sys-
tem under consideration into a reduced system with a lesser number of variables, called �global
variables�. In this way, the behavior of the original system can be approximated, but not known
with exactitude, in terms of the knowledge of the behavior of the reduced system.

Approximate aggregation techniques have been widely studied in the context of time continu-
ous systems with different time scales for both linear and density dependent models (see [1] for a
list of references). The discrete time case, in which we will focus our attention in the sequel, has
been thoroughly explored in linear, non-linear and non-autonomous deterministic contexts (see
among others [2,14]).

Nowadays, a great part of the research in ecological modelling is devoted to models which
incorporate stochasticity as a way of taking into account different factors which either have an
intrinsic random nature or are too complex to be taken into account in a deterministic way.
The literature contemplates two sources of stochasticity: demographic [3] and environmental.
The reduction of models which incorporate demographic stochasticity has been addressed in Sanz
et al. [17].

In this work we contemplate linear discrete models which incorporate �environmental stochas-
ticity�, i.e., the randomness introduced when we consider random fluctuations in the environment
and, consequently, in the vital rates which affect the population (see [3] and [21, Chapter 3] for an
introduction, [20] for a full discussion and [9] for an application to actual fish populations). These
models are analogous to the deterministic ones but in this case the matrix of vital rates in each
projection interval is selected within a given set of matrices according to a certain (possibly time
varying) probability distribution. The most relevant parameter in this kind of models is the so-
called stochastic growth rate (s.g.r.); given certain hypotheses on the pattern of temporal variation
and the vital rates in each environment, the s.g.r. is the stochastic analogue of the logarithm of the
dominant eigenvalue for deterministic systems, which characterizes the asymptotic behavior of the
total population.

In Sanz and Bravo [15], the authors deal with the reduction of discrete time systems for pop-
ulations subjected to environmental stochasticity. A very general model with two time scales is
presented and a technique for carrying out the reduction of the system is given. Regarding the
relationships between the original and the reduced system, it is shown that the variables of the
original system can be approximated in terms of those of the reduced system, and the approxima-
tion is exact when the separation of time scales tends to infinity. However, there are no results
relating the s.g.r. of the two systems. Moreover, the relationships between the original and the
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aggregated systems in Ref. [15] are valid only in the limit when the separation of time scales tends
to infinity.

The purpose of this paper is to extend the results of Ref. [15] in two directions. In the first place
we deal with the general case in which there are no hypotheses imposed on the sequence of ran-
dom variables that define the temporal variation. We give a way of approximating the variables of
the original system in terms of those of the reduced system and give bounds of the error we make
in terms of the value of parameter k that characterizes the separation of time scales between the
two processes. In the second place, we relate several features of the two systems under the hypoth-
esis that, as it is frequently assumed in stochastic modelling [3], the temporal variation for the ori-
ginal system is Markovian. Specifically, we begin relating the presence of strong stochastic
ergodicity, a property by which the probability distribution for the population structure converges
to a stationary probability distribution independent of initial conditions, for the original and re-
duced systems. Moreover, we relate two different measures of asymptotic population growth,
among them the s.g.r., for these systems, both for finite k and in the limit when k tends to infinity.
In all cases we give bounds for the error we make when we estimate the parameters of the original
system in terms of their analogues in the aggregated system.

The results obtained, although valid in a very general context, have a special relevance in the
particular case of stochastic multiregional models [8]. Indeed, in these models it is usually the case
that migration among the spatial sites is fast with respect to reproduction or aging, and by using
our aggregation technique we obtain a stochastic Leslie type age structured model whose study is
much simpler. Now, the analytical study of general stochastic matrix models is very complex, but
in the particular case of age structured models some aspects of that study simplify considerably
[20] which makes our technique especially appropriate for this situation.

The structure of the paper is as follows; Section 2 briefly introduces the basic form of the matrix
models that consider environmental stochasticity. Section 3, where ecologists interested mainly in
applications may focus their attention, is devoted to presenting a stochastic multiregional model
in which population is structured by age and patch and migration among the different patches is
fast with respect to demography. By defining the global variables as the total population in each
age class, we obtain a reduced stochastic Leslie model. The model, together with the aggregation
procedure, is a particular case of a technique which was first presented by the authors in Ref. [15]
and which is valid, for example, for any stage-structured population living in a multipatch
environment.

Section 4, that constitutes the main contribution of this work, presents the above-mentioned
relationships between the original system and the reduced system. This relationships allow one
to approximate different features regarding the dynamics of the original stochastic system in terms
of their analogues for the reduced stochastic system. Finally, Section 5 is a discussion on the appli-
cation of the results obtained in this work and pointing out future lines of research.
2. Matrix models with environmental stochasticity

This section presents the basic form of the matrix models that consider environmental stochas-
ticity. We restrict our attention to the case in which the number of environments is finite. We
assume then that the population lives in an ambient in which there are s environmental states.
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The vital rates corresponding to each one of these environments are given by the non-negative
matrices Ar 2 RN�N , r = 1, . . . , s in such a way that, for each r, Ar represents the vital rates of
the population in environment r. The environmental variation is characterized by a sequence
of random variables sn, n = 0,1,2, . . . defined in a certain probability space ðX;F; pÞ and with
state space {1, . . . , s}. For each realization x 2 X of the process, the population is subjected to
environmental conditions sn+1(x) during times n and n + 1. In this way, the model reads
Znþ1 ¼ Asnþ1
Zn; ð1Þ
where for each n = 0,1, . . ., Zn is a vector random variable in RN which represents the population
vector at time n. Throughout we will assume that Z0 is a fixed non-zero vector Z0 P 0. We will
also consider the structure of the population vector
Hn :¼ Zn

kZnk
; ð2Þ
where k*k denotes (unless specifically stated) the 1-norm in RN, i.e. kzk = jz1j + jz2j + � � � + jzNj.
3. Reduction of a stochastic multiregional model with fast migration

In this section we will deal with the reduction of a certain kind of stochastic multiregional mod-
els. The procedure is a particular case of that introduced by the authors in Ref. [15] to reduce gen-
eral models which incorporate environmental stochasticity and in which there are two time scales.
In this reference, a model and a reduction technique is presented both for the case in which
demography is fast with respect to migration and the case in which the contrary happens. We
now present the model and the aggregation procedure for the latter case, which is the more rel-
evant for different reasons. In the first place, in most practical situations, migration is fast with
respect to demography. In the second place, the aggregation procedure leads to a reduced system
which is much simpler than the aggregated system obtained in the case in which demography is
faster than migration, therefore simplifying the obtention of relationships between the original
and the aggregated system that will be explored in the next section. And, finally, in Section 5
we will show why the general aggregation technique is specially useful in the context of this kind
of models.

However, we have to stress that both the aggregation procedure and the results to relate the
behavior of the original model and the reduced model are valid in a more general setting that
we specify at the end of the section.

Multiregional models consider the dynamics of an age structured population distributed among
different spatial patches among which they can migrate. These models have been used with pro-
fusion by Rogers [13] among others for the study of human populations. A list of ecological appli-
cations can be found in Refs. [3,12]. The usual approach has been deterministic, but the stochastic
setting has also been used [8].

The above references do not explicitly consider the existence of different time scales in the mul-
tiregional system. The fact that in many situations migration and demography take place with dif-
ferent time scales (usually migration is fast with respect to demography although the contrary may
also happen, see [11]) has been exploited in several works in order to reduce the complexity of the
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multiregional model in different contexts regarding the kind of model. Some examples in a linear
deterministic setting are the works of the authors [14] (autonomous case) and [16] (non-autono-
mous case), while the non-linear case has been dealt with by Bravo et al. [2]. Regarding multire-
gional models with demographic stochasticity, we can point out the work of Sanz et al. [17]. The
use of multiregional models to study specific instances of fish populations can be found in [4,5].

We think of a population living in an habitat in which there are s environmental conditions that
influence the vital rates. The population is structured in q age classes (corresponding to groups)
and spread out in different spatial patches (subgroups) among which they may migrate. We as-
sume that individuals in each age class i may migrate among r spatial patches. Therefore, the total
number of subgroups is N := qr and the composition of the population is then given by vector
Xn ¼ ðx11

n ; . . . ; x1r
n ; . . . ; xq1

n ; . . . ; xqr
n Þ

T 2 RN where xij
n is the number of individuals in age class i living

in patch j at time n and T denotes transposition.
Demography and migration are responsible for the transference of individuals among the dif-

ferent stages, and we suppose that migration is a fast process in comparison with demography.
Moreover, we choose as time step Dn = [n,n + 1) for the model, the duration of each age class.

For each i and each environment r = 1, . . . , s, migration for individuals of age i is modeled by a
matrix PiðrÞ 2 Rr�r that, since migration is a conservative process for the total number of individ-
uals, is stochastic. Besides we suppose that Pi(r) is primitive for each i and each r. This is the case,
for example, if the fast process in each environment verifies: (a) transition from any patch to any
other, in a sufficient number of steps, is allowed and (b) individuals of at least one patch are
allowed to stay in that patch.

The demographic process in each environment r is defined by the following generalized Leslie
matrix:
Mr ¼

F1ðrÞ F2ðrÞ � � � Fq�1ðrÞ FqðrÞ
S1ðrÞ 0 � � � 0 0

0 S2ðrÞ � � � 0 0

..

. ..
. . .

. ..
. ..

.

0 0 � � � Sq�1ðrÞ 0

2
666666664

3
777777775
;

where
FiðrÞ :¼ diagðF 1
i ðrÞ; . . . ; F r

i ðrÞÞ; i ¼ 1; . . . ; q;

SiðrÞ :¼ diagðS1
i ðrÞ; . . . ; Sr

i ðrÞÞ; i ¼ 1; . . . ; q� 1
ð3Þ
and the coefficients F j
iðrÞ and Sj

iðrÞ denote, respectively, the fertility and survival rates for indi-
viduals of age i in patch j in environment r.

In order to approximate the effect of migration over the time step of the model, which is much
longer than its corresponding projection interval, we assume that if the population is subjected to
environment r during Dn matrix Pr operates a number k of times, where k (that we assume to be an
integer) can be interpreted as the ratio between the projection intervals corresponding to demog-
raphy and migration. Thus, the set of vital rates for our system in the different environments is
A :¼ fM1Pk
1;M2Pk

2; . . . ;MsP
k
sg.
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The pattern of environmental variation is defined by a sequence of random variables sn,
n = 1,2, . . . which take values in the set of environmental states {1, . . . , s}. Therefore, the proposed
model, to which we will refer as �microsystem� or �original system�, consists in the following system
of N random difference equations:
Xnþ1 ¼Msnþ1
Pk

snþ1
Xn. ð4Þ
Now, following Ref. [15], we make use of approximate aggregation to reduce the original sys-
tem (4), consisting of N variables (microvariables) associated to the different subgroups, by an
aggregated system of q variables (global variables), each of them associated to one group.

Let vi(r) be the right Perron eigenvector of Pi(r), i.e., the eigenvector uniquely defined by the
conditions Pi(r)vi(r) = vi(r), vi(r) > 0, 1Tvi(r) = 1 where 1 ¼ ð1; . . .ðrÞ ; 1ÞT. vi(r) can be interpreted as
that which would characterize the equilibrium structure of migration for individuals in age class i
if the population were constantly subjected to environment r.

In this way, the matrix that characterizes the conditions for migration in environment r for
group i is
PiðrÞ ¼ lim
k!1

Pk
i ðrÞ ¼ viðrÞ1T > 0; r ¼ 1; . . . ; s; i ¼ 1; . . . ; q ð5Þ
and, for the total population we have matrix
Pr :¼ diagðP1ðrÞ;P2ðrÞ; . . . ;PqðrÞÞ. ð6Þ

Now we define matrices
Vr :¼ diagðv1ðrÞ; v2ðrÞ; . . . ; vqðrÞÞ; r ¼ 1; . . . ; s;

U :¼ diagð1T; 1T; . . . ; 1TÞ.
ð7Þ
Some of the properties of these matrices are gathered in the following lemma, whose proof is
straightforward:

Lemma 1. For all r = 1, . . . , s, matrices Pr;Pr;Vr and U verify:

(a) PrPr ¼ PrPr ¼ Pr,
(b) PrVr = Vr,
(c) UPr ¼ U; UVr ¼ Iq; Pr ¼ VrU.

Now we introduce the �auxiliary system� as the stochastic model defined by
X0nþ1 ¼Msnþ1
Psnþ1

X0n. ð8Þ
Note that this system can be interpreted as the result of letting migration reach equilibrium in
the original system.

For each age class i we define a global variable yi
n corresponding to the total population of the

auxiliary system with age i, i.e.,
yi
n ¼ x0i1n þ x0i2n þ � � � þ x0irn ; i ¼ 1; . . . ; q ð9Þ
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and then we define the vector Yn of global variables
Yn ¼ ðy1
n; . . . ; yq

nÞ
T :¼ UX0n 2 Rq ð10Þ
If we multiply both sides of (8) by U and make use of Lemma 1 we have
UX0nþ1 ¼ UMsnþ1
Psnþ1

X0n ¼ UMsnþ1
Vsnþ1

UX0n; ð11Þ
which can be written in terms of the global variables exclusively, i.e., we have an aggregated sys-
tem defined by
Ynþ1 ¼Msnþ1
Yn; ð12Þ
where, for each n, Msn is given by
Msn :¼ UMsnVsn .
The aggregated system (12) can be interpreted as a stochastic model in which the pattern of
environmental variation coincides with that of the original system and in which the matrix of vital
rates in each environment r is
Mr :¼ UMrVr 2 Rq�q; r ¼ 1; . . . ; s ð13Þ

in such a way that the set of matrices for the different environmental conditions is
Aag :¼ fM1;M2; . . . ;Msg. ð14Þ

Note that, for each r = 1, . . . , s, Mr is a classical Leslie matrix given by
Mr ¼

f1ðrÞ f2ðrÞ � � � fq�1ðrÞ fqðrÞ
s1ðrÞ 0 � � � 0 0

0 s2ðrÞ � � � 0 0

..

. ..
. . .

. ..
. ..

.

0 0 � � � sq�1ðrÞ 0

2
66666664

3
77777775
; ð15Þ
where the vital rates have the form
fiðrÞ ¼ 1TFiðrÞviðrÞ ¼
Xr

j¼1

vj
iðrÞF j

iðrÞ; i ¼ 1; . . . ; q; r ¼ 1; . . . ; s;

siðrÞ ¼ 1TSiðrÞviðrÞ ¼
Xr

j¼1

vj
iðrÞSj

iðrÞ; i ¼ 1; . . . ; q� 1; r ¼ 1; . . . ; s
i.e., each fertility rate fi(r) in the aggregated system is a weighted linear combination of the fertility
rates in the general system corresponding to individuals of age class i in environment r, being the
weights the coefficients of the equilibrium spatial distribution for migration in environment r.
Something analogous holds for the survival rates.

The original multiregional model has been transformed into a reduced system in which the spa-
tial distribution has been averaged in a certain way and the population appears structured only by
age.
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As we mentioned above, both the reduction procedure we presented and the relationships be-
tween the original and the reduced systems, are valid for a more general kind of models subjected
to the effects of environmental stochasticity. Specifically, the results are valid for the general kind
of models governed with different time scales presented in Ref. [15], whenever hypothesis (D) in
Section 4.1 holds. In particular, this includes the following setting:

(a) The population is divided into q groups (age classes in model (4)) attending to any charac-
teristic of the life cycle, and each group i = 1,2, . . . ,q is itself split into Ni subgroups (spatial
patches in model (4)). Then, xij

n is the number of individuals in group i and subgroup j at

time n and the population vector is Xn ¼ ðx11
n ; . . . ; x1N1

n ; . . . ; xq1
n ; . . . ; x

qNq
n ÞT 2 RN where

N :¼ N1 + � � � + Nq.
(b) The projection interval of the model is that corresponding to the slow dynamics, on which we

impose no special assumptions. Therefore, for any environmental condition r = 1, . . . , s the
slow process will be modeled by a non-negative projection matrix Mr 2 RN�N , which can be
considered as divided into blocks Mij(r), 1 6 i, j 6 q of dimensions Ni · Nj that characterize
the rates of transference of individuals from the subgroups of group j to the subgroups of
group i in environment r.

(c) Regarding the fast process:
(c.1) The fast dynamics is an internal process for each group, i.e., there is no transference of

individuals from one group to a different one.
(c.2) For each i and r, matrix PiðrÞ 2 RNi�Ni is a column stochastic primitive matrix. In

particular, the fast process is conservative of the total number of individuals in each
group.
This setting allows one to model a population structured by any characteristic of its life cycle
(stage-structured models, see [3] for comments and references) and living in a multipatch environ-
ment with migration among the different patches. A particular case of this is the case of spatially
heterogeneous size-structured models.

We have to stress that Lemma 1, and therefore the aggregation procedure described, remains
valid under the assumptions above.
4. Relationships between the original system and the aggregated system

In Sanz and Bravo [15], the authors relate some features regarding the behavior of systems (4)
and (12). Specifically, in the first place the paper relates the variables Xn and Yn of the two systems
for finite values of n when the parameter k tends to infinity. In the second place, and under the
hypothesis that sn is a Markov chain, Ref. [15] deals with the relationship between the statistical
moments of any order of the population vector of the two systems when k tends to infinity.

This section extends those results in two different situations. In the first place we deal with the
general case in which there are no hypothesis imposed on the sequence sn and relate the variables
of the original and the aggregated system for finite values of the parameter k. Secondly, we deal
with the particular case in which sn is an homogeneous Markov chain, relating different asymp-
totic properties of the two systems as ergodicity and measures of population growth.
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All the results presented are valid for the general setting described at the end of the previous
section.

4.1. General temporal variation

The purpose of this section is to provide a bound for the error we make when we estimate the
total population of the original system in terms of that of the aggregated system, for any values of
n and k. To start with, let us partially state some features of a proposition (6.2) in [15] which al-
lows one to relate the population vector of systems (4) and (12) in the limit when k!1. In the
first place the relationship between the variables corresponding to the aggregated system and to
the auxiliary system is given by
X0n ¼MsnVsnYn�1; Yn ¼ UX0n; ð16Þ

meanwhile the variables Xn of the original system can be approximated by those of the aggregated
system Yn and reciprocally, in the following way:
Xn ¼MsnVsnYn�1 þ oðdkÞ; k !1;
Yn ¼ UXn þ oðdkÞ; k !1;

ð17Þ
where d < 1 is a parameter which has to do with the �subdominant� eigenvalues of matrices Pr (see
[15] for details).

The previous relationships show that we can obtain the population vector of the auxiliary system
exactly in terms of that of the aggregated system and reciprocally. In addition, for each realization
of the process, the variables Xn(x) of the original system can be approximated in terms of those
corresponding to the aggregated system through MsnðxÞVsnðxÞYn�1ðxÞ, and for fixed n and big en-
ough k, the discrepancy decays geometrically with k. We will refer to that discrepancy as the �error�
we make when carrying out the study of the original system in terms of that of the reduced system.

We are now interested in obtaining a bound for the error as a function of k and n. Specifically,
we are interested in the total population size kXnk and, since the systems under consideration are
multiplicative, we will work in a logarithmic scale. Therefore, for each x 2 X and each initial con-
dition X0 P 0 we will consider the error
En;kðxÞ :¼ log jjXnðxÞjj � log jjX0nðxÞjj
�� �� ¼ log jjXnðxÞjj � log jjMsnðxÞVsnðxÞYn�1ðxÞjj

�� ��.

For notational convenience, let us define matrices
Cr ¼ ½cr
ab� :¼MrPr P 0; Dr;k ¼ ½dr;k

ab � :¼Mr Pk
r � Pr

� �
; r ¼ 1; . . . ; s
and now let matrix Wr;k :¼ ½wr;k
ab �; r ¼ 1; . . . ; s be given by
wr;k
ab :¼

dr;k
ab

cr
ab

if cr
ab 6¼ 0;

0 if cr
ab ¼ 0

8><
>: ð18Þ
and let numbers nM(k), nm(k) be defined as follows:
nMðkÞ :¼ max
r2f1;...;sg

ðmax Wr;kÞ; nmðkÞ :¼ � min
r2f1;...;sg

ðmin Wr;kÞ; ð19Þ
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where, given a matrix A, max A and min A denote, respectively, the maximum and minimum of
the entries of A.

Lemma 10 (Appendix A) shows some properties of nM(k) and nm(k), among them the fact that
they are positive and tend to zero when k!1.

The next proposition provides a bound Cn,k for the error En,k(x):

Proposition 2. For all k such that nm(k) < 1 we have that for all n
8w 2 X 8X0 P 0; En;kðxÞ 6 Cn;k :¼ nBk; ð20Þ
where
Bk :¼ max logð1þ nMðkÞÞ; log
1

1� nmðkÞ

� �� �
ð21Þ
Proof. See Appendix A. h

Note that the bound Cn,k grows linearly with time and tends to zero when k!1. In order to
obtain Cn,k we must compute matrices Wr,k and therefore it is necessary to calculate the powers Pk

r

for all r. The following result gives a coarser bound Ca
n;k that can be obtained more easily, there-

fore allowing one to have a quick idea of the order of magnitude of the error:

Proposition 3. Let m(k) be defined by
mðkÞ :¼ max
r2f1;...;sg

max Mr

minþðMrPrÞ
kPr � Prkk

� �
;

where min+ denotes the minimum of the positive entries of the corresponding matrix and k*k denotes
the 1-matrix norm.

Then if m(k) < 1 we have
8x 2 X 8X0 P 0; En;kðxÞ 6 Ca
n;k :¼ n max logð1þ mðkÞÞ; log

1

1� mðkÞ

� �� �
. ð22Þ
Proof. See Appendix A. h

Let us now contemplate a particular case of the general situation and for which we will obtain
bounds that will be both sharper and easier to calculate.

Definition 4. We will say that hypothesis (H) holds when matrices Mij(r) are square and diagonal
for all i, j 2 {1, . . . ,q} and all r.

Note that condition (H) holds in the multiregional model of Section 3.
Now, given condition (H), we can obtain matrices Wr,k and bounds Cn,k and Ca

n;k in a simpler
way. Indeed we have:

Lemma 5. Let us assume hypothesis (H):
(a) Let r 2 {1, . . . , s} and k be fixed. Matrix Wr,k can be obtained as
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wr;k
ab ¼

Pk
r � Pr

� �
ab

ðPrÞab

if cr
ab 6¼ 0;

0 if cr
ab ¼ 0.

8>><
>>: ð23Þ
In particular, matrix Wr,k depends only on Pr and on the pattern of non-zero elements of Mr, i.e.,
Wr,k is independent of the value of the non-zero elements of Mr.

(b) Let mH(k) be defined by
mHðkÞ :¼ max
r2f1;...;sg

Pr � Pr

		 		k

minþPr

( )
; ð24Þ
which verifies mH(k) 6 m(k). Therefore, if mH(k) < 1 bound Ca
n;k can be improved by replacing m(k) by

mH(k) in (22).

Proof. See Appendix A. h

Note that, given hypothesis (H), Cn,k is independent of the value of the non-zero entries of the
matrices defining the slow dynamics.
4.2. Markovian environment

So far, the pattern of environmental variation defined by sn did not have to meet any special
requirements. Subsequently we will explore the relationships between the original system and
the aggregated system in the case that the pattern of temporal variation for the former is an homo-
geneous Markov chain. Indeed, a great part of the models of the kind (1) found in the literature
represent environmental change through Markov chains (see among others the works of [7,3,20]),
for Markov chains can represent sequential dependence between environments and yet are simple
enough to be analyzed with great detail. Besides, the systems under Markovian temporal variation
usually have some desirable properties regarding their asymptotic behavior. Indeed, an appropri-
ate Markovian temporal variation combined with certain conditions on the set of environmental
matrices guarantee in one hand the presence of strong stochastic ergodicity, i.e., the probability
distribution of the population structure converges to a stationary probability distribution inde-
pendent of initial conditions [7] and, on the other hand, that almost all realization of the process
ultimately grows or decays exponentially with the same growth rate. This approach contemplates,
as a particular case, the possibility of the sn being independent and having the same probability
distribution (i.i.d. case), which is an usual choice for the characterization of an uncorrelated tem-
poral variation.

This section will relate some features regarding the asymptotic behavior of the total pop-
ulation for the two systems under the above-mentioned hypothesis that sn is a Markov
chain.

In the first place let us recall some features regarding the asymptotic behavior of general matrix
models with environmental stochasticity of the kind (1). In order to do so, we introduce the
following concept:



L. Sanz, R. Bravo de la Parra / Mathematical Biosciences 206 (2007) 134–154 145
Definition 6. A finite set S ¼ fA1; . . . ;Asg of square non-negative matrices is said to be ergodic if
there exists a positive integer r such that any product of r matrices (with repetitions allowed)
drawn from S is a positive matrix.

In particular, any finite set of matrices which share a common primitive incidence matrix is an
ergodic set. More generally, if the condition Ar P B, r = 1, . . . , s with B a primitive matrix holds,
then S is an ergodic set.

The following theorem, which is a compilation of results extracted from Refs. [6,18,20], deals
with some important features regarding the asymptotic behavior of systems of the kind (1) and
motivates the kind of results which will be obtained in this section.

Theorem 7. Let us consider system (1):

(a) Let sn be an homogenous Markov chain with initial and transition probabilities given by vector q
and matrix Q respectively, where qi = p(s1 = i) and qij = p(sn+1 = i jsn = j), i, j = 1, . . . , s. Then,
the logarithm of the mean population size for system (1) grows asymptotically with a rate logl
where l is the spectral radius of the non-negative matrix D = diag(A1, . . . ,As)(Q � IN) (�
denotes the Kronecker matrix product) .

(b) Moreover, assume that (b.1) the chain is irreducible and aperiodic, i.e., the matrix Q of transi-
tion probabilities is primitive, and (b.2) that the set {A1, . . . ,As} of vital rates is an ergodic set.
Then we have:

(1) System (1) is stochastically strongly ergodic in the sense that there exists a stationary proba-
bility distribution F for the joint distribution of current age structure Hn and environment sn

which is independent of the initial probabilities of the chain and of the environment and the pop-
ulation structure at any given time (see [6] for details).

(2) We can define the stochastic growth rate (s.g.r.) of system (1) through
a :¼ lim
n!1

log kZnk
n

ða.s.Þ; ð25Þ
where the limit is in the sense of almost sure convergence. Moreover, a is independent of the
initial probabilities of the chain and of the initial (non-zero) population vector Z0 P 0. Param-
eter a can also be computed through
a ¼ lim
n!1

EF ½log kAsnþ1
Hnk�; ð26Þ
where the average is taken with respect to the stationary distribution F.
(3) Parameters a and l verify a 6 logl.
From the above we have that, asymptotically, for almost every realization of the process the
total population size grows exponentially with a rate ea meanwhile the mean population size
grows exponentially with a rate l.

It is important to note that, both from a theoretical and from an applied point of view, the s.g.r.
is the most important parameter to study the dynamics of matrix models with environmental
stochasticity.

Our aim is, assuming that sn is an homogeneous Markov chain, to find conditions under which
we can guarantee that the ergodicity of the reduced system (12) implies that of the original system
(4). Therefore, in the sequel we will assume:
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H1. Let the process sn which characterizes the environmental change for the microsystem be an
homogeneous Markov chain with transition and initial probabilities defined by matrix
Q :¼ ½qij� 2 Rs�s and the probability normed vector q: = (q1, . . . , qs)T, respectively.
We have then
qij ¼ pðsnþ1 ¼ ijsn ¼ jÞ; i; j ¼ 1; . . . ; s; n ¼ 1; 2; . . .

qi ¼ pðs1 ¼ iÞ; i ¼ 1; . . . ; s.
ð27Þ
Let us introduce some concepts and notation which will be useful in the subsequent develop-
ments. A non-negative matrix A is said to be column allowable (row allowable) if it has at least
a non-zero element in each one of its columns (rows). A is said to be allowable if it is both column
and row allowable.

Proposition 8.

(a) If the set A ¼ M1Pk
1; . . . ;MsP

k
s


 �
is ergodic for big enough k then Aag ¼ M1; . . . ;Ms


 �
is

ergodic.
(b) If the set Aag is ergodic, and the matrices M1, . . . ,Ms are row-allowable, then the set A is also

ergodic for big enough k . Therefore, if the aggregated system meets the sufficient conditions of
Theorem 7 for the existence of stochastic strong ergodicity and a s.g.r., and matrices
M1, . . . ,Ms are row-allowable, then the original system will also meet those sufficient conditions
for big enough k.
Proof. See Appendix A. h

Let us now turn our attention to the relationships between the asymptotic behavior of the total
population size for the original system and the aggregated system.

Theorem 9. Let hypothesis H1 hold:

(a) Let lk and l denote the asymptotic growth rate of the logarithm of the mean population size for
the original and the aggregated system respectively, i.e., lk and l are the spectral radii of matri-
ces Dk :¼ diagðM1Pk

1; . . . ;MsP
k
s ÞðQ� INÞ and D :¼ diagðM1; . . . ;MsÞðQ� IqÞ respectively.

Then
lnð1� nmðkÞÞ 6 log lk � log l 6 lnð1þ nMðkÞÞ

and so in particular limk!1 loglk = logl.

(b) Let the chain sn be irreducible and aperiodic and let the sets A and Aag be ergodic for big
enough k so that both the original and the aggregated system verify conditions (b.1) and
(b.2) of Theorem 7. Let ak and a denote the respective s.g.r. of the original and aggregated sys-
tems. Then
lnð1� nmðkÞÞ 6 ak � a 6 lnð1þ nMðkÞÞ ð28Þ

and so in particular limk!1ak = a.
Proof. See Appendix A. h
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4.3. An example of the application of the results

Now let us illustrate with an specific example the application of the previous results in a par-
ticular situation to deduce properties from the multiregional stochastic model (4) in terms of the
reduced Leslie stochastic model (12). For a general kind of environmental variation sn, the vari-
ables of the multiregional model can be approximated in terms of those of the reduced model
using (17), and the error we make can be bounded by Proposition 2 and Lemma 5. Now let us
assume that the temporal variation is characterized by a homogeneous Markov chain with tran-
sition matrix Q, in such that for any environmental condition r there is a positive probability of
staying in that environment and, moreover, there is a positive probability of going from environ-
ment r to any other environment in a sufficiently high number of time steps. This condition en-
sures that matrix Q is primitive.

Moreover, and regarding the vital rates let us assume: (i) The fertilities and survival coeffi-
cients (3) can vary with the environment, but if they are non-zero in one environment they are
non-zero in all other environments (i.e., the incidence matrices of the Mr are independent of
r). (ii) Sj

iðrÞ > 0 for all i and j and for all j = 1, . . . , r there exists i such that F j
iðrÞ > 0, i.e., all sur-

vival coefficients are non-zero and in every patch there is at least an age class which is
reproductive.

It is immediate to check that the above conditions ensure that the environmental matrices Mr in
the reduced system are all primitive and they all share the same incidence matrix. Therefore they
constitute an ergodic set and so the hypothesis of Theorem 7 are met, so the reduced stochastic
Leslie model is (stochastically) strongly ergodic and has a s.g.r. a. Since hypothesis (ii) ensures that
all Mr are row-allowable we have from Proposition 8 and Theorem 9 that the original multire-
gional model is strongly ergodic, that its s.g.r. ak can be approximated in terms of a and that
expression (28) gives a measure of the error we make. Analogous ideas apply to the parameter
l corresponding to the growth rate of the average population.
5. Discussion

This work provides new results that relate the dynamics of complex models with different time
scales and subjected to the effects of environmental stochasticity, and their corresponding reduced
models. In principle these models can be of a very general nature, including among them any spa-
tially heterogeneous stage-structured matrix model. However, for reasons that will make clear in
the next paragraphs, emphasis has been given to stochastic multiregional models in which migra-
tion is fast with respect to demography.

The results obtained include, in the first place, the derivation of explicit bounds for the er-
ror we make when we approximate the variables of the complex system in term of those of
the reduced system. Moreover, in the case the environment evolves according to a Markov
chain, we give sufficient conditions that guarantee that the original complex system is stochas-
tically strongly ergodic and has a stochastic growth rate (s.g.r.) just by studying the reduced
system.

Taking into account the importance of the s.g.r. of a stochastic system to characterize its
dynamics [3,21], the following comments address the advantages of our results to obtain the
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s.g.r. of complex systems with different time scales both for the general kind of models considered
and for the case of stochastic multiregional models with fast migration.

Except in very specific cases, it is very difficult to obtain analytically the s.g.r. of a system of the
kind (1). Indeed, the s.g.r. can be in principle calculated through expression (26), but in general it
is not possible to obtain analytically the stationary distribution F and so one must resort to com-
puter simulations using the expression (25) [18]. Our results allow the modeler to reduce the
dimension of the system and simplify the numerical simulation to approximate the s.g.r. of the
system.

Moreover, in the case of stochastic multiregional models with fast migration, which for
example have been used to model fish populations [4,5], our results are more relevant. In-
deed, the aggregation technique presented allows one to reduce a complex multiregional
model, difficult to analyze, to construct a stochastic Leslie model for which a number of
special techniques are available. Indeed, following Tuljapurkar [20], we have that in the
case of a stochastic Leslie model the general expression (26) to calculate the s.g.r. simplifies
to
a ¼ ET log s1ðsnÞ � EG log
y2

n

y1
n

; ð29Þ
where the expectations are taken with respect to the distributions T and G that denote, respec-
tively, the stationary equilibrium distribution for the environmental chain sn and for the age struc-
ture Hn derived from the stationary distribution F. Now, T can always be calculated from matrix
Q and G can be explicitly calculated in some particular cases when there are only two age classes
(see [20, Chapter 8] and [19]). Now, for example, if we consider a population with two age classes
and distributed among different spatial patches, our aggregation procedure allows one to reduce
the original complex model to obtain a reduced Leslie model with two age classes which can be
treated with the techniques of Refs. [19,20] to obtain its s.g.r. a explicitly. Since our results guar-
antee that the s.g.r. of the complex model can be approximated by a, we can obtain analytical
conclusions for the complex model, for example studying how changes in the migration rates af-
fect the fate of the population, an area to which the authors will direct their attention in future
research.

Even in the case of Leslie models with a general number of age classes, for which the stationary
distribution F cannot be computed explicitly, (29) allows one to obtain a quick estimate of a by
using some census information and some statistics on the sequence of environments [20]. There-
fore, in the case of stochastic multiregional models with a general number of age classes, our aggre-
gation technique allows one to obtain a reduced stochastic Leslie model, and then use (29) to
estimate it.

Leaving aside the calculation of the s.g.r., the fact that for stochastic Leslie models it is possible
to obtain, in a relatively easy way, bounds for the vector of age structure of the population (see
[20, Chapter 9]), constitutes another advantage of our reduction method.

Therefore, our aggregation procedure, although valid in a very general context, has a special
relevance in the particular case of stochastic multiregional models with fast migration, for it al-
lows one to reduce a complex system for which analytical study is intractable in practical terms
to a much simpler stochastic Leslie model for which there are a number of efficient tools at our
disposal.
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Appendix A

Lemma 10. Let r 2 {1, . . . , s}.

(a) If Dr,k 5 0 then Wr,k does not have a �definite sign�, i.e., neither Wr,k nor �Wr,k are non-neg-
ative matrices. Therefore, excluding the trivial case Pk

r ¼ Pr for all r, both nM(k) and nm(k) are
positive numbers.

(b) nM(k) = o(dk) and nm(k) = o(dk) where d < 1 corresponds to the parameter a defined by Eq.
(6.1) in [15]. Therefore nM(k) and nm(k) can be made arbitrarily close to zero by taking k
big enough.

(c) nm(k) 6 1 for all k, and for k P k0 :¼ maxi¼1; ... ;qfN 2
i � 2N i þ 2g, we have nm(k) < 1.

Proof.

(a) According to the definition of Wr,k, and taking into account that matrix Cr is non-negative,
it suffices to prove that neither Dr,k nor �Dr,k are non-negative matrices. Let vr :¼

vT
1 ðrÞj � � � jvT

q ðrÞ
� 
T

which by construction is a positive vector. Using Lemma 1 it is immedi-

ate to check that Pk
rvr ¼ vr and Prvr ¼ vr and so MrPk

rvr ¼MrPrvr ¼Mrvr. Now
Dr;kvr ¼ ðMrPk

r �MrPrÞvr ¼ 0. Since Dr,k 5 0 and vr > 0 if follows that it necessarily must
be Dr,k l 0 and Dr,k i 0 as we wanted to prove.

(b) Direct consequence of the fact that for all r 2 f1; . . . ; sg; Pk
r ¼ Pr þ oðdkÞ (Proposition 6.1 in

Ref. [15]).
(c) wr;k

ab P �1 and therefore nm(k) 6 1 follows immediately from the fact of MrPk
r and MrPr

being non-negative matrices. If k P k0 then we have [10, p. 520] that Pk
i ðrÞ > 0 for all i

and r. Since matrices PiðrÞ are positive we have that ðPk
rÞab > 0 in every position (a,b) for

which ðPrÞab > 0. Therefore ðMrPk
rÞab > 0 in every position (a,b) for which cr

ab > 0; which

implies
dr;k

ab

cr
ab
¼ ðMrPk

rÞab

cr
ab
� 1 > �1 and so nm(k) < 1 follows. h

Proof of Proposition 2. (a) We define, for all r and k, Tr;k ¼ ½tr;kab � :¼MrPk
r and then we have

directly from (18) that if cr
ab 6¼ 0 then tr;kab ¼ cr

ab 1þ wr;k
ab

� 

ð�Þ. Let us show that cr

ab ¼ 0)
tr;kab ¼ 0 and so the expression (*) will be valid for all values of a and b. Indeed, matrix Cr ¼
MrPr (resp. Tr;k ¼MrPk

r) is composed of q2 blocks MijðrÞPjðrÞ (resp. Mij(r)Pk(r)); i, j = 1, . . . ,

q. Since matrices PjðrÞ are positive for all j, that implies that if the element (r,l) of MijðrÞPjðrÞ
is zero then the rth row of Mij(r) must be zero and therefore the element (r, l) of Mij(r)Pk(r) is

also zero. Thus cr
ab ¼ 0) tr;kab ¼ 0 as desired.
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Let us define, for each n and k, the following random matrix products
Pn;k ¼ ½Pn;k
ab � :¼MsnP

k
sn
� � �Ms2

Pk
s2

Ms1
Pk

s1
;

P0n ¼ ½P0nab� :¼MsnPsn � � �Ms2
Ps2

Ms1
Ps1
;

Pn :¼Msn � � �Ms1
Ms1

ð30Þ
so we have Xn = Pn,kX0, X0n ¼ P0nX0 and Yn ¼ PnY0 where Y0 = UX0.
Let us fix a,b 2 {1,2, . . . ,N}. Then, for all n and k we have
Pn;k
ab ¼

X
Ia;b

tsn;k
ahn�1
� � � ts2;k

h2h1
ts1;k
h1b

¼
X
Ia;b

csn
ahn�1
� � � cs2

h2h1
cs1

h1b
1þ wsn;k

ahn�1

� 

� � � 1þ ws2;k

h2h1

� 

1þ ws1;k

h1b

� 

;

P0nab ¼
X
Ia;b

csn
ahn�1
� � � cs2

h2h1
cs1

h1b
;

where Ia,b is the following set of indexes Ia,b: = {(hn�1, . . . ,h2,h1): hi = 1, . . . ,N, i = 1, . . . ,n � 1}.
Therefore
Pn;k
ab 6

X
Ia;b

csn
ahn�1
� � � cs2

h2h1
cs1

h1b
ð1þ nMðkÞÞn ¼ ð1þ nMðkÞÞnP0nab;

Pn;k
ab P

X
Ia;b

csn
ahn�1
� � � cs2

h2h1
cs1

h1b
ð1� nmðkÞÞn ¼ ð1� nmðkÞÞnP0nab.
Using these bounds we can write
log kXnk ¼ log kPn;kX0k ¼ log
X

a

X
b

Pn;k
ab X b

0

�����
����� ¼ log

X
a

X
b

Pn;k
ab X b

0

6 log ð1þ nMðkÞÞn
X

a

X
b

P0nabX b
0

" #
¼ n logð1þ nMðkÞÞ þ log kP0nX0k

¼ n logð1þ nMðkÞÞ þ log kX0nk; ð31Þ
where in the third and fourth equalities we have used that X0, Pn,k and P0n have non-negative com-
ponents. Analogously
log kXnkP log ð1� nmðkÞÞn
X

a

X
b

P0nabX b
0

" #
¼ n logð1� nmðkÞÞ þ log kX0nk. ð32Þ
Now, from (31) and (32) we have
8x 2 X 8X0 P 0; En;kðxÞ ¼ log kXnðxÞk � log kX0nðxÞk
�� ��

6 n max logð1þ nMðkÞÞ; log
1

1� nmðkÞ

� �� �
as we wanted to show. h
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Proof of Proposition 3. In the first place let us show that if A and B are square matrices of the
same size then maxjABj 6 maxjAjkBk (I). Indeed,
jðABÞijj ¼
X

l

AilBlj

�����
����� 6

X
l

jAiljjBljj 6 max jAj
X

l

jBljj
and so maxijjðABÞijj 6 max jAjmaxj
P

ljBljj ¼ max jAjkBk as we wanted to show.

Let r 2 {1, . . . , s} and k be fixed. By definition (18) we have that if a and b are such that cr
ab ¼ 0

then wr;k
ab

��� ��� ¼ 0. In the case cr
ab 6¼ 0 we can write
wr;k
ab

��� ���¼ dr;k
ab

cr
ab

�����
�����6max Mr Pk

r�Pr

� ��� ��
minþ MrPr

� � 6
maxMr

minþðMrPrÞ
Pk

r�Pr

		 		6 maxMr

minþðMrPrÞ
Pr�Pr

		 		k
6 mðkÞ;
where in the second inequality we have used (I) and, in the third one the fact that
Pk
r � Pr ¼ Pr � Pr

� �k ð33Þ
(which easily follows from Lemma 1) and the submultiplicativity of the 1-matrix norm. From the
last expression we have maxr2{1,. . .,s}maxjWr,kj 6 m(k) and, since
max
r2f1;...;sg

max jWr;kj ¼ max
r2f1;...;sg

maxfmax Wr;k;�min Wr;kg

¼ max max
r2f1;...;sg

max Wr;k;� min
r2f1;...;sg

min Wr;k

� �
¼ maxfnMðkÞ; nmðkÞg;
then max{nM(k),nm(k)} 6 m(k). Therefore, 1 + nM(k) 6 1 + m(k) and (1 � nm(k))�1
6 (1 � m(k))�1

and so the bound (22) now follows directly from (20) and (21). h

Proof of Lemma 5. (a) The result easily follows taking into account the block structure of the
matrices under consideration. Indeed, for each j = 1, . . . ,q let us denote Sjðr; kÞ ¼ ½Srl

j ðr; kÞ� :¼
Pk

j ðrÞ � PjðrÞ. Due to the block structure of matrices Mr, Pk
r and Pr, matrix Dr;k ¼

MrðPk
r � PrÞ ¼ ½dr;k

ab � 2 RN�N (resp. Cr ¼MrPr ¼ ½cr
ab� 2 RN�N ) can be though of as being com-

posed of q2 blocks Dijðr; kÞ ¼ ½drl
ijðr; kÞ� :¼MijðrÞ Pk

j ðrÞ � PjðrÞ
� 


¼MijðrÞSjðr; kÞ (resp.

CijðrÞ ¼ ½crl
ijðrÞ� ¼MijðrÞPjðrÞ); i, j = 1, . . . ,q. Analogously, matrix Wr;k ¼ ½wr;k

ab � can be thought

of as composed of q2 blocks Wijðr; kÞ ¼ ½wrl
ij ðr; kÞ�, i, j = 1, . . . ,q. Let i, j 2 {1, . . . ,q} and

r,l 2 {1, . . . ,ri} be fixed. Since MijðrÞ ¼ ½Mrl
ijðrÞ� 2 RNi�Ni is diagonal, then crl

ijðrÞ ¼ Mrr
ij ðrÞP

rl
j ðrÞ

and drl
ijðr; kÞ ¼ Mrr

ij ðrÞSrl
j ðr; kÞ. Note that the fact that the PjðrÞ are positive matrices implies

crl
ij ðrÞ ¼ 0 if and only if Mrr

ij ðrÞ ¼ 0. Then, by definition(18) we have that crl
ijðrÞ ¼ 0 implies

wrl
ijðr; kÞ ¼ 0. Moreover, if crl

ij ðrÞ 6¼ 0 then Mrr
ij ðrÞ 6¼ 0 and wrl

ij ðr; kÞ ¼
Mrr

ij ðrÞS
rl
j ðr;kÞ

Mrr
ij ðrÞP

rl
j ðrÞ
¼ Srl

j ðr;kÞ

P
rl
j ðrÞ

. Then

(23) is proved.



152 L. Sanz, R. Bravo de la Parra / Mathematical Biosciences 206 (2007) 134–154
(b) Using (23) we have that if a and b are such that cr
ab 6¼ 0, it follows:
wr;k
ab

��� ��� ¼ ðPk
r � PrÞab

ðPrÞab

�����
����� 6 max jPk

r � Prj
minþPr

6
kPk

r � Prk
minþPr

6
kPr � Prkk

minþPr

;

where in the second inequality we have used maxA 6 kAk and, in the third one, (33) and the sub-
multiplicativity of the 1-matrix norm. Now maxr2{1,. . .,s}maxjWr,kj 6 mH(k) and, reasoning like in
the proof of Proposition 3 we have max{nM(k),nm(k)} 6 mH(k) from where (22) with m(k) replaced
by mH(k) follows immediately.

Last, let us prove mH(k) 6 m(k) for all k. Let r 2 {1, . . . , s} be fixed. Reasoning similarly to the
proof of Lemma 5 on the block structure of matrix Cr we have
crl
ijðrÞ ¼ Mrr

ij ðrÞP
rl
j ðrÞ 6 max MijðrÞP

rl
j ðrÞ
for all i, j 2 {1, . . . ,q} and r, l 2 {1, . . . ,Ni}. From here we have
minþCijðrÞ 6 max MijðrÞmin PjðrÞ 6 max Mr min PjðrÞ.
Now, since min+ Cr = mini, j min+ Cij(r) and minþPr ¼ minj min PjðrÞ, it follows minþCr 6

max MrminþPr, i.e.,
max Mr

minþðMrPrÞ
kPr � Prkk P

kPr � Prkk

minþPr
and the result follows. h

Proof of Proposition 8. In the first place, let us recall that the product of row (column) allowable
matrices is row (column) allowable. Moreover, if A is row (column) allowable and B is a positive
matrix then AB > 0 (resp. BA > 0) as long as the product is defined. We will write A � B to denote
that A and B have the same incidence matrix.

Since Pi(r) is primitive for all r and i, we have that for big enough k (specifically, for
k P k0 :¼ maxi¼1,..,qfN2

i � 2Ni þ 2g) it follows Pk
i ðrÞ > 0. Now, since matrices PiðnÞ are positive,

we have that for all k P k0, PiðrÞ � Pk
i ðnÞ and consequently Pk

r � Pr ð�Þ for all r = 1, . . . , s.
(a) Let t be such that any product of t matrices drawn from A is positive and let

r1, . . . ,rt 2 {1, . . . , s}. Then, if k P k0
Mr1
Mr2

. . . Mrt ¼ UMr1
Vr1

UMr2
Vr2

. . . Mrt Vrt ¼ UMr1
Pr1

Mr2
Pr2

. . . Mrt Prt Vrt

� UMr1
Pk

r1
Mr2

Pk
r2

. . . Mrt P
k
rt

Vrt ; ð34Þ
where we have used (*) and Lemma 1. Since Mr1
Pk

r1
Mr2

Pk
r2

. . . Mrt P
k
rt
> 0 by hypothesis and U

and Vr are allowable matrices by construction, it follows that the product (34) is positive as we
wanted to show.

(b) Let t such that any product of t matrices drawn from Aag is positive and let r1, . . . ,rt,
rt+1 2 {1, . . . , s}. Then, if k P k0 using 1 we have
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Mr1
Pk

r1
Mr2

Pk
r2

. . . Mrtþ1
Pk

rtþ1
�Mr1

Pr1
Mr2

Pr2
. . . Mrtþ1

Prtþ1

¼Mr1
Vr1

UMr2
Vr2

. . . UMrtþ1
Vrtþ1

U

¼Mr1
Vr1

Mr2
. . . Mrt Mrtþ1

U; ð35Þ
where, again, we have used Lemma 1. Product Mr2
. . . Mrt Mrtþ1

is positive by hypothesis. Since
matrices Mr and Vr are row allowable so is the product Mr1

Vr1
and since U is allowable then

product (35) is positive. h

Proof of Proposition 25. (a) In the first place, the spectral radius of matrices D and
D
0
:¼ diagðM1P1; . . . ;MsPsÞðQ� INÞ coincide (Proposition 6.4 in Ref. [15]) and so qðD0Þ ¼ l.

Now, from the proof of Proposition 2 we have ðMrPk
rÞab ¼ MrPr

� �
ab

1þ wr;k
ab

� 

for all values

of a and b. Then it follows 0 6 ðMrPk
rÞab 6 ðMrPrÞabð1þ nMðkÞÞ from where we have
0 6 Dk 6 ð1þ nMðkÞÞdiagðM1P1; . . . ;MsPsÞðQ� INÞ ¼ ð1þ nMðkÞÞD
0
.

Since jAj 6 B) q(A) 6 q(B) [10, p. 491] we have lk 6 (1 + nM(k))l and so loglk 6 ln(1 + nM(k))
+ logl (*). On the other hand ðMrPk

rÞab P ðMrPrÞabð1� nmðkÞÞP 0 from where it follows:
Dk P ð1� nmðkÞÞdiagðM1P1; . . . ;MsPsÞðQ� INÞ ¼ ð1� nmðkÞÞD
0
P 0
and reasoning analogously we have lk P (1 � rm(k))l. Now the result now follows by taking log-
arithms in both sides of the last expression and using (*).

(b) From (35) we have that if the set A is ergodic for big enough k, then so is the set
fM1P1; . . . ;MsPsg and therefore the auxiliary system (8) has a s.g.r. that we will denote a 0. By
definition of global variables we have kYnk ¼ kX0nk and so a = a 0. Now let us relate the original
and the auxiliary system. From (31) and (32) we have log kXnk 6 n logð1þ nMðkÞÞ þ log kX00k and

log kXnkP log ð1� nmðkÞÞn
P

a

P
bP
0n
abX b

0

h i
¼ n logð1� nmðkÞÞ þ log kX0nk. The result is now

immediate from these expressions taking into account that, by definition, ak = limn!1log
kXnk/n (a.s.) and a0 ¼ limn!1 log kX0nk=n ða.s.Þ. h
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