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and epidemics.
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1. Introduction

In this work we are interested in the role of state-dependent delayed differential
equations in the modeling of structured population dynamics. The aim of this paper
is to put in evidence the onset of state-dependent delays in an important class of
models: threshold models. These are structured population dynamics models in
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which the transition of individuals between different stages is due to some quantity
reaching a prescribed level. An interesting presentation of this kind of equations
can be found in Ref. 32.

Although the appearance of differential equations with state-dependent delays
goes back to the 19th century, the study of them has recently been re-activated
due to their frequent occurrence in a wide variety of situations. These equations
can be found in the literature associated with a wealth of applications in different
fields, such as electrodynamics,12 economics,6 control34 and population dynamics.
In this context, the state-dependent delay is usually motivated by phenomenological
considerations; for example, in Refs. 1 and 4 such a delay is justified as a response of
the maturation processes to density-dependence. See also Ref. 5 for a short survey
of applications.

Introducing a state-dependent delay in modeling real phenomena results fre-
quently from an attempt to account for the influence of some facts on the behavior
of a population. Nevertheless, it is difficult to evaluate the actual impact of a state-
dependent delay on the response of the model, in particular in what concerns the
instability due to oscillations. In fact, these equations pose problems even with
regard to the resolution and uniqueness of solutions, as one of the great difficulties
in studying them is the impossibility of describing a unified class sufficiently wide
to be able to include a large amount of those equations which appear in the models.
Some early surveys which deserve mention are Refs. 14 and 23.

When the biology involves thresholds, mathematical difficulties appear in the
modeling, which can frequently be solved by placing the problem in the context of
functional equations. Our main aim in this paper is to show that some compart-
mental models can be reduced in a natural way to a particular type of functional
equations called threshold type. This situation occurs when the time of residence
of the individuals in each compartment is not constant but is fixed by the demand
that individuals store a threshold amount of some substance. Usually the rate of
accumulation of this substance depends on some state variables, giving rise to state-
dependent delayed differential equations. This idea has the advantage of permitting
the model to be analyzed through the application of a mathematical theory which
is currently highly developed. Suitable references are Refs. 13, 19, 31 and 32. The
recent work in the theoretical development of state-dependent delayed differential
equations is highly developed in Ref. 15 with special emphasis on both the modeling
and the emerging theory from the point of view of dynamical systems, as well as
an excellent and updated reference list.

From a mathematical point of view, it is well known that structured models of
population dynamics which are formulated in terms of hyperbolic partial differential
equations can be reduced, integrating along the characteristic lines, to a so-called
renewal equation for the function of births. This process, applied to the reduction
of a structured model of a population divided into several stages leads frequently
to a delayed equation with a time-dependent delay. This variable delay corresponds
to the time spent by the individuals of one stage in passing to the next one. If this



May 26, 2007 9:43 WSPC/103-M3AS 00214

State-Dependent Delays Associated to Threshold Phenomena 879

transition depends on the density of the population, then the delay will be state-
dependent. In many cases, as we will show in the examples below, this condition
of transition is formulated like an equation which implicitly defines the delay and
which has a meaning in the model: the individuals change their stage after a certain
quantity reaches a predetermined threshold value.

In some situations, the magnitude which determines the change of stage depends
on the state of a non-structured population x(t), and therefore the threshold con-
dition is formulated as ∫ t

t−τ(t)

k(x(σ)) dσ = W ∗

where k : R+ → R+ is a known function. There are also other situations where
the population is structured by some character in all the stages. In this case, the
threshold condition should be expressed in terms of a functional F :∫ t

t−τ(t)

F (l(·, σ)) dσ = W ∗.

The organization of the paper is as follows: In Sec. 2 we describe the process of
appearence of state-dependent delays in size structured models. We illustrate the
underlying ideas presenting models for the dynamics of insect populations and cell
proliferation. Section 3 is dedicated to age-structured models, describing a process of
modeling which can be useful in very general situations. Finally, in Sec. 4 we mention
some models in epidemiology, a field which for its importance and development
deserves an independent view.

2. Size Structured Models

In Ref. 21 the process of modeling the dynamics of populations structured by some
physiological variable is described, along with a great amount of examples and
applications. With the aim of simplifying, and since it is the context in which the
following models are presented, we stick to the one-dimensional case. Let us consider
a population in which individuals are determined by a structure variable x (DNA
content, maturity, etc.), which we refer to as size and can vary in some interval
[xb, xd]. The population is described by a density function n(x, t), such that∫ x2

x1

n(x, t) dx = Number of individuals which at instant t have

their size x in the interval [x1, x2].

As is fully explained in Ref. 21, the model for the dynamics of this population
is obtained through making a balance of mass in [xb, xd], giving rise to a transport
P.D.E.:

∂n

∂t
(x, t) +

∂

∂x
[g(x, t)n(x, t)] = Sources − Sinks (2.1)
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together with a boundary condition which takes into account the entrance of indi-
viduals across the boundary xb:

g(xb, t)n(xb, t) = Local arrival rate. (2.2)

The function g(x, t) is the individual growth rate, so that the individual state
is determined by the O.D.E.:

x′(t) = g(x, t); x(0) = x0.

It is well known that solving (2.1) along the characteristic lines transforms the
problem into a renewal equation obtained from (2.2) (see Refs. 36 and 17). This
equation involves a variable delay τ(x, t) which is the time spent by an individual
to reach the state x at time t and, therefore, is determined by the equation

xb +
∫ t

t−τ(x,t)

g(x(σ), σ) dσ = x,

where x(σ) is the characteristic line through (x, t).
Let us assume that the population is organized in different stages, say juvenile

(J) and adult (A) to simplify, and the transition of an individual from (J) to (A)
is made when its size reaches a predetermined threshold value W ∗ > xb. Then the
entrance to the adult stage will depend on n(W ∗, t). In turn, calculating this value
for t large enough along the corresponding characteristic line, we get an expression
in terms of the density n(xb, t̃), for some t̃ < t. As a consequence, a variable delay
τ(t) = t − t̃ defined by

xb +
∫ t

t−τ(t)

g(x(σ), σ) dσ = W ∗

will appear in the model. This threshold condition, in those cases where the growth
rate g depends on the population, produces in the model a state-dependent delay.

In the models below we illustrate this idea in different situations. We present a
classical model by Nisbet and Gurney that develops completely a formalism to deal
with insect populations in which the duration of their different instars is variable
and is determined by obtaining a predetermined weight. We also applies these ideas
to the modeling of cell populations.

2.1. Insect population dynamics with varying instar duration

It is an accepted fact that in many insect populations, the passage from one stage
to another is not linked to the chronological age, but is produced when the indi-
vidual reaches a certain weight. Reference 24 is a description of a formalism that
allows the modeling of these populations incorporating the variability of the differ-
ent instars and also providing a mechanism that regulates the growth rate of the
adults according to the available food.
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An age and mass dependent population dynamics is described by a density
function ρ(a, m, t), so that∫ a2

a1

∫ m2

m1

ρ(a, m, t) dadm = Number of individuals which have ages a ∈ [a1, a2]

and masses m ∈ [m1, m2] at time t.

The dynamics of such a population is described by a balance law:

∂ρ

∂t
+

∂ρ

∂a
+

∂

∂m
[gρ] = −δρ,

where g(a, m, t) and δ(a, m, t) are respectively the rate of growth of an individual
and the instantaneous per capita death rate.

The model must be completed with a renewal equation:

ρ(0, m, t) =
∫ +∞

0

∫ +∞

0

β(a, σ, m, t)ρ(a, σ, t) dadσ (2.3)

in which β(a, σ, m, t) is the per capita rate of fecundity.
In the particular situation where β, g and δ are independent of the age, this

model can be simplified by integrating over all ages, leading to a model in the new
unknown density function

n(m, t) :=
∫ +∞

0

ρ(a, m, t) da.

Assuming that all the individuals have the same mass mb at birth (so that
ρ(0, m, t) = 0 for m �= mb), the balance law is

∂n

∂t
+

∂

∂m
[gn] = −δn, m > mb. (2.4)

The renewal equation (2.3) must be substituted by a boundary condition in m = mb.
The rate of production of eggs is

E(t) =
∫ +∞

mb

β(σ, t)n(σ, t) dσ

and assuming that the survivorship and the duration of the egg stage are constants
PE > 0 and τE > 0 respectively, the rate of recruitment in the first stage of larvae
is, for t > τE :

R(t) = PE

∫ +∞

mb

β(σ, t − τE)n(σ, t − τE) dσ. (2.5)

This means that R(t)dt is the total recruitment in a time interval [t, t + dt] and
that these individuals have their masses in the interval [mb, mb + dm], with dm =
g(mb, t)dt. Since the total number of individuals with masses in [mb, mb + dm] is
n(mb, t)dm, we have

R(t)dt = n(mb, t)dm = n(mb, t)g(mb, t)dt
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from which we obtain the boundary condition for the model, for t > τE :

g(mb, t)n(mb, t) = PE

∫ +∞

mb

β(σ, t − τE)n(σ, t − τE) dσ. (2.6)

Let us consider models for insect populations structured into two stages: larva
(L) and adult (A). In what follows we assume that within each stage all individuals
have the same growth rate: gL(t) (in L stage) and gA(t) (in A stage), the same
per capita death rate: δL(t) (L stage) and δA(t) (A stage) and the same fecundity:
βL(t) (L stage) and βA(t) (A stage). We further assume that larvae pass to the
adult stage when their weight reaches a threshold value W ∗ > mb.

Hence we can assume that stages (A) and (L) can be determined in terms of fixed
mass levels and that individuals within each stage can be considered as functionally
identical. In consequence we can simplify the model (2.4)–(2.6) deriving a lumped
parameter representation (see Ref. 24) for the total populations of larvae and adults,
defined by:

L(t) :=
∫ W∗

mb

n(σ, t) dσ, A(t) :=
∫ +∞

W∗
n(σ, t) dσ.

As we will see, this new model allows the description of the population dynamics in
terms of delay differential equations which can be better dealt with mathematically.

The dynamics is described by{
L′(t) = R(t) − ML(t) − δL(t)L(t),
A′(t) = αML(t) − δA(t)A(t).

In this system, R(t) is the rate of production of viable eggs at time t, which for
t > τE is defined by (2.5); ML(t) is the rate of maturation from L stage and the
constant 0 ≤ α ≤ 1 is the probability of success of maturation.

First of all, let us observe that R(t) can be expressed in terms of the state
variables L(t), A(t):

R(t) = PEβL(t − τE)
∫ W∗

mb

n(σ, t − τE) dσ + PEβA(t − τE)
∫ +∞

W∗
n(σ, t − τE) dσ,

that is

R(t) = PEβL(t − τE)L(t − τE) + PEβA(t − τE)A(t − τE). (2.7)

The main point consists of obtaining the maturation ML(t) in terms of L(t), A(t).
Since ML(t) can be viewed as the local arrival rate of Eq. (2.2), we have

ML(t) = gL(t)n(W ∗, t)

and then the problem is reduced to calculating n(W ∗, t). To this end, we solve the
problem (2.4)–(2.6) along the characteristic lines. The characteristic line through
m = mb, t = 0, is

m = mb +
∫ t

0

gL(σ) dσ.
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Therefore, assuming the existence and uniqueness of t∗ > 0, solution to the equation

mb +
∫ t∗

0

gL(σ) dσ = W ∗

straightforward calculations which are not reproduced here lead to the solution, for
t > t∗:

n(W ∗, t) =
R(t − τ(t))
gL(t − τ(t))

e−
R t

t−τ(t) δL(σ) dσ,

where τ(t) (which exists and is unique for t > t∗) is the solution to the threshold
condition:

mb +
∫ t

t−τ(t)

gL(σ) dσ = W ∗. (2.8)

Notice that the delay τ(t) is the duration of the larval stage for larvae becoming
adults at time t.

Summing up, we have obtained the model


L′(t) = R(t)−R(t − τ(t))
gL(t)

gL(t − τ(t))
e−

R
t
t−τ(t) δL(σ) dσ − δL(t)L(t),

A′(t) = αR(t − τ(t))
gL(t)

gL(t − τ(t))
e
−R t

t−τ(t) δL(σ) dσ − δA(t)A(t),

where R(t) is given by (2.7) and τ(t) is the solution to (2.8).
In conclusion, the model consists of a system of delayed differential equations

with a time-dependent delay defined by the threshold condition (2.8).
The state-dependent delay appears when the growth rate gL depends on the

state variable. A simple way can be to introduce a larval competition as

gL(t) =
K1

K2 + L(t)
.

A more complex dependence can be found in Refs. 24, 18 and 3. Let us suppose
that larvae live in an environment supplied with food F (t) at a rate GL(t), which is
consumed at a rate per larva AL(t), so that the dynamics of the food is described
by the O.D.E.:

F ′(t) = GL(t) − L(t)AL(t) = GL(t) − L(t)
A∗F (t)

KF + F (t)
,

where we have accepted a hyperbolic dependence of food consumption rate on food
supply (Ref. 24), that is

AL(t) =
A∗F (t)

KF + F (t)
.

Assuming a direct proportionality between larval growth and food assimilitation
rates, we have

gL(t) = aAL(t) =
aA∗F (t)

KF + F (t)
.
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Since F (t) depends on L(t), gL is density-dependent and therefore τ(t) is a state-
dependent delay.

A recent modification of this model focused on the effect of competition between
different stages and its effect on population dynamics can be found in Ref. 28. In
this model it is assumed that both larvae and adults consume food from the same
source F (t). Larvae consume food at a rate aF (t), (a > 0) and use that food to
increase their weight with a conversion factor εg > 0, such that

gL(t) := εgaF (t).

For their part, adults consume food with a rate qaF (t), (q > 0) and use that food
for reproduction with a conversion factor εb > 0, such that

βA(t) := εbqaF (t).

The mortality of both stages is assumed to be inversely proportional to the ingested
food, meaning

δL(t) :=
µ

aF (t)
, δA(t) :=

µ

qaF (t)
.

The total rate of reproduction is

R(t) =
∫ +∞

W∗
βA(t)n(σ, t) dσ = εbqaF (t)A(t) (2.9)

and hence the model is modified as follows:


L′(t) = εbqaF (t)A(t) − F (t)
F (t − τ(t))

R(t − τ(t))e−(µ/a)
R

t
t−τ(t)(dσ/F (σ))

− µ

aF (t)
L(t)

A′(t) = α
F (t)

F (t − τ(t))
R(t − τ(t))e−(µ/a)

R t
t−τ(t)(dσ/F (σ))

− µ

qaF (t)
A(t),

where R(t) is defined by (2.9), together with the O.D.E. which describes the dynam-
ics of the food:

F ′(t) = D − aF (t)L(t) − qaF (t)L(t)

in which D > 0 is a constant that represents the rate of replenishment of the
resource.

The delay τ(t) is the solution to the equation

mb +
∫ t

t−τ(t)

εgaF (σ) dσ = W ∗

and hence it is state-dependent since F (t) depends on both populations L(t)
and A(t).
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2.2. A G-M model in cell kinetics

Let us consider a population of cells proliferating by division, with the cell cycle
divided into two phases: G-phase (resting phase) and M-phase (mitosis). We assume
that cells in the G-phase are identical and we denote their number at time t by P (t).
The population of cells in the M-phase is structured by the maturity x (0 ≤ x ≤ 1),
n(x, t) being its density so that∫ x2

x1

n(x, t) dx = Number of cells in the phase M with

maturity x ∈ [x1, x2] at time t.

Maturity is a rather abstract unspecified character associated with a variable
x ∈ [0, 1] which marks the progression of an individual cell through the cell cycle
(Refs. 9, 22 and 29). A cell entering the M-phase has maturity x = 0 and all cells
divide when they reach maturity x = 1.

We assume that the maturity of an individual in the M-phase increases deter-
ministically according to the O.D.E:

x′(t) = V (P (t))

in which the growth rate V depends on t through P (t). See Ref. 21 for the details.
The model reads as:


P ′(t) = −(µ + γ)P (t) + 2V (P (t))n(1, t),
∂n

∂t
(x, t) + V (P (t))

∂n

∂x
(x, t) = −δn(x, t),

where µ, γ, δ are positive constants.
These equations are supplemented by boundary and initial conditions. For indi-

viduals in the M-phase we have

V (P (t))n(0, t) = γP (t), n(x, 0) = n0(x). (2.10)

For the G-phase we have P (0) = P0.
Solving the equation for n(x, t) along the characteristic lines we obtain for t

large enough:

n(x, t) = n(0, t − τ(x, t))e−δτ(x,t),

where the delay τ(x, t) is the solution to the equation∫ t

t−τ(x,t)

V (P (σ)) dσ = x.

We will use this expression to calculate n(1, t) which, bearing in mind (2.10), can
be expressed in terms of the state variable P (t). Therefore the model is reduced to
the following delayed differential equation for P (t):

P ′(t) = −(µ + γ)P (t) + 2γ
V (P (t))P (t − τ(t))

V (P (t − τ(t)))
e−δτ(t),
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where τ(t) is defined by the threshold condition∫ t

t−τ(t)

V (P (σ)) dσ = 1. (2.11)

Differentiating in (2.11) we obtain for the delay an O.D.E. whose coefficients depend
on P (t), which makes quite clear that this is a state-dependent delay:

τ ′(t) = 1 − V (P (t))
V (P (t − τ(t)))

.

Notice that τ(t) is the duration of the M-phase and this duration depends on
the total number of cells in G-phase at time t.

2.3. Age-structured models for erythropoiesis

Biological reasons fully discussed in Refs. 7 and 20 justify the election of an age-
structured model for erythropoiesis. In this model two types of cells are considered:
precursor (P) and mature (M). The population of precursor cells mature at a vari-
able rate depending on the concentration of Epo. The latter varies according to the
oxygen-carrying capacity of the blood. In turn, this depends on (M) cells, which
are age-structured.

Let p(µ, t) be the density of (P) cells which are cells that proliferate and mature
after differentiation from the stem cells. The variable µ ∈ [0, µF ] represents the
level of maturity (e.g. content in haemoglobin for the erythrocites), where µF > 0
is the maximum level for a cell reaching maturity. The rate of maturation V of (P)
cells depends on the level of hormones E(t), in such a way that high concentrations
of Epo accelerate the process. Therefore for the (P) cells, V increases with E.

Let m(a, t) be the density of (M) cells, non-proliferating mature cells. The vari-
able a ∈ [0, aF ] represents the age (with a constant maximum age aF > 0) and it is
assumed that the growth rate is a constant W > 0. The total population of mature
cells

M(t) :=
∫ aF

0

m(a, t) da

determines the level of the E hormone, in such a way that the concentration of E

reduces with high values of (M).
With the aim of writing the balance law for each of the populations, it is assumed

that β(µ, E) is the net birth rate for (P), that the rate of mortality of (P) cells is very
low so that we do not include such a term in the model, although an incorporation
of (P) cells to (M) compartment is produced according to some disappearance rate
function H(µ). We also assume that the death rate of mature cells is γ(a), depending
only on age. Therefore the model is


∂p

∂t
(µ, t) + V (E)

∂p

∂µ
(µ, t) = β(µ, E)p(µ, t) − H(µ)V (E)p(µ, t),

∂m

∂t
(a, t) + W

∂m

∂a
(a, t) = −γ(a)m(a, t)
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together with the boundary conditions

V (E)p(0, t) = S0(E), Wm(0, t) =
∫ µF

0

α(µ)p(µ, t) dµ, (2.12)

where S0(E) is the number of cells recruited into (P) population and α(µ) reflects
the fact that when (P) cells achieve a certain level of maturity, they are released
into the bloodstream as (M) cells.

The hormone level E is governed by the O.D.E.:

E′(t) = f(M(t)) − kE(t), (2.13)

where k > 0 is the decay constant for the hormone and f(M) is a monotone
decreasing function of M .

Solving both P.D.E. along the characteristic lines we obtain (see Ref. 7 for the
details):

(a) Let tF = aF /W . Then, for t > tF , we have:

m(a, t) = m(0, t − a/W )e−
R

a
0

γ(σ)
W dσ

=
1
W

(∫ µF

0

α(µ)p(µ, t − a/W ) dµ

)
e−

R
a
0

γ(σ)
W dσ. (2.14)

(b) Let t∗F be the solution to the equation
∫ t∗F

0

V (E(σ)) dσ = µF . Then, for

t > t∗F we have

p(µ, t) = B(t − τ(µ, t))e
R t

t−τ(µ,t) F(µ∗(σ),E(σ)) dσ, (2.15)

where

• τ(µ, t) is the solution to the threshold condition∫ t

t−τ(µ,t)

V (E(σ)) dσ = µ (2.16)

• F(µ, E) := β(µ, E) − V (E)H(µ)
• µ∗(σ) :=

∫ σ

t−τ(µ,t)
V (E(w)) dw .

In (a) we have taken into account the second boundary condition of (2.12) and in
(b) we have introduced the notation B(t) := p(0, t).

In turn, the first boundary condition of (2.12) transforms (2.15) into

p(µ, t) =
S0(E(t − τ(µ, t)))
V (E(t − τ(µ, t)))

e
R t

t−τ(µ,t) F(µ∗(σ),E(σ)) dσ.

Finally, for t large enough (t > max(tF , t∗F )), let us consider the O.D.E. (2.13)
for the dynamics of E(t). Bearing in mind (2.14) we obtain

M(t) =
1
W

∫ ∫
[0,aF ]×[0,µF ]

α(µ)p(µ, t − a/W )e−
R a
0

γ(σ)
W dσ dadµ.

Substituting into this expression the corresponding formula for p(µ, t − a/W )
obtained from (2.15) and then substituting M(t) in Eq. (2.13), we have reduced
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the problem to a delayed differential equation for E(t), in which the delay τ(µ, t)
is defined by the threshold condition (2.16) which involves E(t), so that it is a
state-dependent delay.

The underlying ideas in this model are similar to the ones before, but show
a greater complexity because the threshold value µ is variable. In this model the
transition of (P) cells to (M) does not happen when the (P) cells reach a predeter-
mined level of maturity, but when they reach a certain variable level µ according
to a given distribution α(µ).

An extension of this model to include the active destruction of the oldest mature
cells and possible control by apoptosis is developed in Ref. 20. This results in a
moving boundary condition in which aF (t) varies with t:

(W − a′
F (t))m(aF (t), t) = Q, (2.17)

where Q > 0 is a fixed removal rate.
The complexity of the formulations obtained in Refs. 7 and 20 make simplifica-

tions necessary to cover their mathematical analysis. Following the point of view
accepted in Ref. 20, we assume that V (E) = W = 1, which implies that τ(µ, t) = µ.
Assume that (P) cells grow exponentially in accordance with

β(µ, E) :=
{

β if 0 < µ < µ̃,

0 if µ ≥ µ̃,

where β > 0, µ̃ > 0 are given constants. Moreover, we will assume that the passage
of (P) cells to (M) cells occurs only on the boundary, which means that we change
the second condition of (2.12) for the condition

m(0, t) = p(µ̃, t).

Resulting in:{
m(a, t) = p(µ̃, t − a)e−

R
a
0 γ(σ) dσ = S0(E(t − a − µ̃))e−

R
a
0 γ(σ) dσ,

p(µ, t) = S0(E(t − µ̃))eβµ̃.

In Ref. 20, the total population of mature cells is given by

M(t) =
∫ aF (t)

0

m(a, t) da,

where aF (t) is defined through the moving boundary condition (2.17). Some simple
calculations (see Ref. 20) allow the model to be reduced to the following system
of delayed differential equations for the variables M(t), E(t), aF (t), in which a
constant delay and a state-dependent delay appear:



E′(t) = f(M(t)) − kE(t),

M ′(t) = −γM(t) + eβµ̃S0(E(t − µ̃)) − Q,

a′
F (t) = 1 − Qe−βµ̃eγaF (t)

S0(E(t − µ̃ − aF (t)))
.

More recent references for hematopoiesis models can be found in Refs. 10, 11
and 8.
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3. Age-Structured Models with Moving Boundary Condition

As we have seen in the previous section, the delay is the time employed by each
individual to reach the threshold value of a certain variable, which means in age-
structured models that the age of passing from one stage to the next is time-
dependent. Therefore, unlike what occurs in size-structured models in which the
exit to the following stage is produced for a constant value of the structure variable
and the variability is due to the growth rate, in age-dependent models the time
employed for each individual to reach the threshold value is the age of exit, which
gives place to a moving boundary. The situation is similar to what described in
Ref. 20.

To illustrate these ideas, let us consider a population divided into two stages,
the juveniles and the adults, each one being structured by the age in the stage.
Denote by l(a, t) (resp. L(a, t)) the density of juveniles (resp. adults) of age a at
time t. We have the following equations:


∂l

∂t
(a, t) +

∂l

∂a
(a, t) = −µl(a)l(a, t),

∂L

∂t
(a, t) +

∂L

∂a
(a, t) = −µL(a)L(a, t),

(3.1)

where µl(a) (resp. µL(a)) is the age-dependent mortality rate of juveniles (resp.
adults). We point out the fact that the variable a represents the age of juveniles in
the function l(a, t) while it is the age of the adults in the function L(a, t).

The above two equations have to be supplemented by boundary conditions and
initial values. For the juvenile we have

l(0, t) = B(t), l(a, 0) = 0,

where B(t) represents the time density of newborns and the initial condition
expresses the fact that no juvenile is supposed to exist at the time t = 0 (or,
no one is able to survive beyond a certain period of time).

The moving boundary is caused by the expression of B(t) in each model. Let us
begin with a simple example (see Ref. 3).

We define J(t) to be the biomass of juveniles at time t, i.e.

J(t) :=
∫ aM

0

l(a, t) da

aM (0 < aM < +∞) being the maximum age of juveniles (i.e. individuals which
have not reached the threshold value past time aM , will die or never reach the next
stage) and let us assume that

B(t) = kJ(t), k > 0.

The passage from the juvenile to the adult stage is described in terms of the
weight function of the juvenile, namely we assume that

∂w

∂a
(a, t) +

∂w

∂t
(a, t) =

K

J(t) + C
,
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where w(a, t) is the quantity of food eaten until time t by an individual entering the
juvenile stage a time units ago. K > 0 is the quantity of food entering the species
habitat per unit of volume and per unit of time, which for simplicity is considered
to be a constant. The constant C > 0 represents the food (converted into a number
of individuals) taken per unit of volume by consumers other than juvenile stage.
Limitation of food due to density is modeled in the simplest possible way, assuming
that the quantity of food available is shared in equal parts by all the individuals
occupying the same space at time t.

Assuming that w(0, t) = w(a, 0) = 0 (which corresponds to the absence of
juveniles at time t = 0), we arrive at

w(a, t) =
∫ t

t−a

K

J(σ) + C
dσ.

We now introduce the threshold condition: juveniles turn adult when the food index
reaches a prescribed value W ∗ > 0, that is at each time t, a∗(t) is the unique solution
to the equation ∫ t

t−a∗(t)

K

J(σ) + C
dσ = W ∗ (3.2)

and so

J(t) =
∫ a∗(t)

0

l(a, t) da. (3.3)

Solving the equation in l from system (3.1) along the characteristic lines starting
from a = 0, we obtain

l(a, t) = B(t − a)e−
R a
0 µl(s) ds = kJ(t − a)e−

R a
0 µl(s) ds

which, bearing in mind (3.3) and accepting for simplicity that µl = 0, provides the
following equation for J(t):

J(t) = k

∫ t

t−a∗(t)

J(σ) dσ. (3.4)

Differentiating in (3.2) and (3.4) we reduce the problem to the following system of
state-delayed differential equations


J ′(t) = k

[
J(t) − J(t − a∗(t))

J(t − a∗(t)) + C

J(t) + C

]
,

(a∗)′(t) =
J(t − a∗(t)) − J(t)

J(t) + C
.

Let us describe a more general situation. For the juvenile we consider the renewal
equation

l(0, t) = B(t) =
∫ +∞

0

β(a)L(a, t) da,

where β(a) is the age-dependent rate of fecundity for the adults.
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For the adult we have

L(a, 0) = L0(a)

and we now introduce a threshold condition: the juveniles turn adult when some
variable reaches a prescribed value. Therefore, we can express the fact that L(0, t)
depends on l(a∗(t), t), where a∗(t) is defined by a threshold condition:∫ t

t−a∗(t)

F (l(·, σ)) dσ = W ∗, (3.5)

where W ∗ > 0 is a prescribed constant. That is, we accept that the evolution of
juveniles to the threshold is described by a continuous and positive functional

F : L1([0, aM ]) −→ R.

Regarding the existence of a∗(t), let us observe that for each t > 0 fixed, the function

g : [0, t] −→ R, g(a) :=
∫ t

t−a

F (l(·, σ)) dσ

is continuous, strictly increasing, with g(0) = 0. Therefore, for each t > 0 fixed,
there exists a unique solution a∗(t) to (3.5) if and only if g(t) > W ∗. We look for a
solution such that 0 < a∗(t) ≤ aM , hence a necessary and sufficient condition is∫ min(t,aM )

0

F (l(·, σ)) dσ > W ∗. (3.6)

In particular, let us assume that there exists a constant F ∗ > 0 such that

∀ϕ ∈ L1([0, aM ]), ϕ ≥ 0, 0 ≤ F (ϕ) ≤ F ∗.

Then, a necessary condition for the existence of solution to (3.6) is, for t ≥ aM :

F ∗aM ≤ W ∗.

Solving Eq. (3.1) along the characteristic lines, we obtain

l(a, t) =
{

l(0, t − a)e−
R a
0 µl(u) du if t > a,

0 if t < a

with

l(0, t − a) =
∫ +∞

0

β(σ)L(σ, t − a) dσ,

L(a, t) =




L(0, t − a)e−
R a
0 µL(u) du if t > a,

L0(a − t)e−
R a

a−t
µL(u) du if t < a.

(3.7)

Our aim is to show that the above problem can be transformed into a state-
dependent delay functional equation for B(t), in which the state-dependence is
due to the threshold condition (3.5).
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We have

B(t) =
∫ +∞

0

β(σ)L(σ, t) dσ

=
∫ t

0

β(σ)L(σ, t) dσ +
∫ +∞

t

β(σ)L(σ, t) dσ

and, bearing in mind (3.7), we can write

B(t) =
∫ t

0

Π(σ)L(0, t − σ) dσ + G(L0, t), (3.8)

where we have introduced the notations:

Π(σ) := β(σ)e−
R

σ
0 µL(u) du dσ,

G(L0, t) :=
∫ +∞

t

β(σ)L0(σ − t)e−
R

σ
σ−t

µL(u) du dσ.

Let us observe that G(L0, t) is a known function, depending on the initial age
distribution for the adults.

Proposition 3.1. For the cohorts entering the adult stage we have

L(0, t) = [1 − (a∗)′(t)] l(a∗(t), t). (3.9)

Proof. The formula is obtained by applying a book-keeping principle to those
juveniles which are susceptible to enter the adult stage. At time t their number is
given by

N(t) =
∫ a∗(t)

0

l(σ, t) dσ.

By differentiating this formula we obtain

N ′(t) = l(a∗(t), t)(a∗)′(t) +
∫ a∗(t)

0

∂l

∂t
(σ, t) dσ

= l(a∗(t), t)(a∗)′(t)−
∫ a∗(t)

0

[
∂l

∂σ
(σ, t) + µl(σ)l(σ, t)

]
dσ

= l(0, t)− l(a∗(t), t) [1 − (a∗)′(t)]−
∫ a∗(t)

0

µl(σ)l(σ, t) dσ.

The quantity l(0, t) is the flow in, and l(a∗(t), t)[1−(a∗)′(t)] is the flow out, yielding
formula (3.9).

Substituting (3.9) into (3.8), we have:

B(t) =
∫ t

0

Π(σ)[1 − (a∗)′(t − σ)]l(a∗(t − σ), t − σ) dσ + G(L0, t).
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The solution to (3.5), if it exists, satisfies a∗(t) < t and then ∀σ ∈ [0, t] we have
a∗(t − σ) < t − σ, which yields to

l(a∗(t − σ), t − σ) = l(0, t− σ − a∗(t − σ))e−
R a∗(t−σ)
0 µl(u) du

= B(t − σ − a∗(t − σ))e−
R a∗(t−σ)
0 µl(u) du.

Summing up, we have obtained for B(t) the following equation

B(t) =
∫ t

0

∏
(σ)[1 − (a∗)′(t − σ)]B(t − σ − a∗(t − σ))e−

R a∗(t−σ)
0 µl(u) du dσ

+ G(L0, t). (3.10)

Furthermore, we deduce from

l(a, t) = H(t − a)B(t − a)e−
R

a
0 µl(u) du,

where H(·) is the Heaviside function (i.e. H(u) = 1 if u > 0, H(u) = 0 if u < 0),
that a∗(t) can be obtained as the solution to the following equation, depending on
B(t): ∫ t

t−a∗(t)

F (B(σ − ·)e−
R ·
0 µl(u) duH(σ − ·)) dσ = W ∗. (3.11)

We have reached our purpose: B(t) is the solution to (3.10) which is a functional
delayed equation with the delay a∗(t) being a solution to Eq. (3.11), which depends
on B(t). In other words, we have obtained a state-dependent delay functional equa-
tion for B(t), starting from a model without delay: obviously the delay arises from
the threshold condition. An example of this type of models can be found in Ref. 2.

In our previous situation the functional F is:

F (l(·, σ)) :=
K

J(σ) + C
=

K∫ aM

0 l(a, σ) da + C
,

that is:

for all ϕ ∈ L1([0, aM ]), F (ϕ) :=
K∫ aM

0
ϕ(a) da + C

.

Remark. In some models the passage from one stage to the next is determined
by a threshold condition which yields to a delayed equation for B(t) with a time-
dependent delay, but not a state-dependent delay. For example (see Refs. 26 and 27),
in some fish population models the life cycle is divided into three phases: pelagic
(larvae), juvenile and adult. The juvenile phase starts when the larvae reach a
critical (threshold) size. It is accepted in some cases that the growth in size of
larvae is determined by the temperature, so that

w(a, t) =
∫ t

t−a

f(T (σ)) dσ,

where T (t) is the temperature at time t and f is a positive smooth function.
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In this case, the delay a∗(t) is the solution to the threshold condition

w(a, t) = W ∗

and therefore it is not a state-dependent delay.

4. Threshold State-Dependent Delays in Epidemiology

State-dependent delay functional differential equations arise in a natural way in
epidemiology, when the passage of susceptible individuals to the infected compart-
ment is due to the accumulation of a certain amount of infection. Let us present
a typical example of such situation in the following model, whose details can be
found in Ref. 30. See also Refs. 15, 16 and 35 for related models.

Let us consider an infectious disease propagating in an isolated population which
is divided into four disjoint groups:

• S := Susceptible individuals which have not been exposed to the infection,
• E := Individuals who have been exposed to the disease but are not yet infective,
• I := Infectives,
• R := Individuals who have recovered and are temporarily immune.

Schematically, the progression of an individual in the process can be represented
in the following diagram:

S → E → I → R → S.

Let us denote by S(t), E(t), I(t), R(t) the respective total populations of the four
groups, at time t. The infection is assumed to spread according to the following
rules:

(i) The rate of exposure by infectives at time t is given by r(t)S(t)I(t) where the
contact rate r(t) is a given positive function.

(ii) An individual who is first exposed at time τ(t) becomes infective at time t if∫ t

τ(t)

[ρ1(s) + ρ2(s)I(s)] ds = W ∗, (4.1)

where ρ1(t), ρ2(t) are two given positive functions and W ∗ > 0 is a predeter-
mined constant.

(iii) An individual which is infected at time t recovers at time t + σ, where σ > 0
is a given constant.

(iv) An individual, upon recovering, is immune for a time interval of length w ≥ 0,
after which he becomes susceptible again.

(v) The population size remains to be a constant N > 0, i.e.

S(t) + E(t) + I(t) + R(t) = N.

Condition (ii) is the threshold condition of the present model. It means that the
individual can control minor exposure to the infection, i.e. there is a level of
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tolerance in such a way that the immune system can fight exposure below that
level. When the exposure is high, the individual is infected. The amount of infection
received depends on the duration of the exposure and on the amount of infection
surrounding the individual, which in turn is assumed to be proportional to the
number of infected individuals in the population (term ρ2(s)I(s)). The term ρ1(s)
is the exposure accumulation rate that does not depend on the number of infectives
(e.g. constant entrance of virus from the exterior).

Let us assume that the initial populations of susceptibles S0 and infectives I0

are given, such that S0 + I0 = N .
In order to build the model we also know the path history of infectives I0(t),

t ∈ [−σ, 0], which we will assume is a continuous nondecreasing function such that
I0(0) = I0. According to the previous rules it is possible to extend this function to
R+ so that it describes the number of these individuals initially infected that stay
in class I for t ≥ 0:

I0(t) := I0 − I0(t − σ), t ∈ [0, σ]; I0(t) = 0, t > σ.

A necessary condition for the infection to spread is that some initially susceptible
individuals in the population become infected before time σ, which forces us to
assume the existence of a time t0 ∈ (0, σ) such that∫ t0

0

[ρ1(s) + ρ2(s)I0(s)] ds = W ∗.

From the previous assumptions the following system of integral equations for the
spreading of the disease is obtained:



S(t) = I1(t) + S0−
∫ t

τ(t−σ−w)

r(s)I(s)S(s) ds,

I(t) = I0(t) +
∫ τ(t)

τ(t−σ)

r(s)I(s)S(s) ds,

E(t) =
∫ t

τ(t)

r(s)I(s)S(s) ds,

R(t) = I2(t) +
∫ τ(t−σ)

τ(t−σ−w)

r(s)I(s)S(s) ds,

completed with the threshold condition (4.1).
The functions

I1(t) =
{

0 if t ≤ w

I0 − I0(t − w) if t ≥ w

I2(t) =
{

I0 − I0(t) if t ≤ w

I0(t − w) − I0(t) if t ≥ w

represent those individuals initially infected who have passed to the classes S and
R respectively.
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Notice that the first two equations of the above system together with the
condition (4.1) can be viewed as a state-dependent delayed differential system
for S(t), I(t).

4.1. Infectious diseases in orchards controlled by a “Roguing and

Replanting” strategy

Some structured models in epidemiology fit in our study and can be reduced to a
state-dependent delayed differential equation. In this section we present a model for
an infectious disease in orchards, controlled by a so-called “Roguing and Replant-
ing” strategy. This model was first proposed and numerically analyzed in Ref. 33
and mathematically developed in Ref. 25. Since it is an age-structured model, it
gives place to a moving boundary condition.

To study the dynamics of an epidemic in an orchard, let us assume that infections
are localized in leaves or branches called sites. A tree is composed of sites and will be
classified according to the number of infected sites on it. The number of infections
on a tree increases as a function of the force of infection, due to all the trees being
in the orchard. A rogued tree is replaced with an uninfected one, and the criterion
for roguing is a fixed threshold number for the infections.

Denote by L(a, t) the number of infected sites on trees of age a at time t, by
R(a, t) the number of post-infections sites on trees of age a at time t and by M(a, t)
the density of trees of age a at time t, so that

∫ a2

a1
M(a, t) da is the total number of

trees with ages a ∈ [a1, a2].
The model reads for t > 0, a > 0, as:



∂L

∂t
(a, t) +

∂L

∂a
(a, t) = βI(t)[α − L(a, t)],

∂R

∂t
(a, t) +

∂R

∂a
(a, t) = µ[L(a, t) − R(a, t)],

∂M

∂t
(a, t) +

∂M

∂a
(a, t) = −wM(a, t),

(4.2)

where α, β, µ, w are positive constants and I(t) is the total number of infections in
the orchard at time t, so that

I(t) =
∫ amax(t)

0

[L(a, t) − R(a, t)]M(a, t) da (4.3)

in which amax(t) is the maximum age in the orchard, defined by a threshold infection
number Lmax > 0 that satisfies

L(amax(t), t) = Lmax. (4.4)

Since a rogued tree is immediately replaced by an uninfected one, we assume
that the total number of trees in the orchard is a constant N > 0 and therefore∫ amax(t)

0

M(a, t) da = N. (4.5)
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The model is completed with boundary and initial conditions respectively:

L(0, t) = R(0, t) = 0 (4.6)

and

L(a, 0) = L0(a), R(a, 0) = R0(a), M(a, 0) = M0(a).

First of all, let us solve Eq. (4.2) along the characteristic lines, taking into account
the boundary conditions (4.6). Standard but somewhat lengthy calculations which
are not reproduced here lead to:

L(a, t) =

{
L0(a − t)e−β

R t
0 I(σ) dσ + α

[
1 − e−β

R t
0 I(σ) dσ

]
if a > t,

α
[
1 − e−β

R t
t−a

I(σ) dσ]
if a < t,

R(a, t) =




e−µt
[
R0(a − t) + µL0(a − t)

∫ t

0 eµσ−β
R

σ
0 I(s) ds dσ

+ µα
∫ t

0
eµσ

(
1 − e−β

R σ
0 I(s) ds

)
dσ

]
if a > t,

µαe−µa
∫ a

0
eµσ

(
1 − e−β

R t−a+σ
t−a

I(s) ds) dσ if a < t,

M(a, t) =

{
M0(a − t)e−wt if a > t,

M(0, t − a)e−wa if a < t.

The case amax(t) > t says that the maximum age in the orchard at time t is the
age of a cohort existing before the initial time t = 0 that is, the roguing process has
not reached all initial trees yet. In what follows we will assume that there exists
t∗ > 0 such that amax(t∗) = t∗ and ∀ t ≥ t∗, amax(t) ≤ t. Therefore, we assume
that the roguing process will reach all the initial cohorts, which is the case when
the maximum age of the orchard cannot exceed a finite value a∗

max > 0 (see Ref. 25
for details). In this case, for t ≥ t∗ conditions (4.5) and (4.3) allow us to reduce
the original model to the following system of delayed equations in the unknown
functions I(t), B(t) := M(0, t):


∫ t

t−amax(t) B(σ)ewσ dσ = Newt,

I(t)ewt =
∫ t

t−amax(t)
F(t, u, I)B(u)ewu du,

where we have used the notation

F(t, u, I) := −αe−β
R t

u
I(σ) dσ + αe−µ(t−u)

[
1 + µ

∫ t−u

0

eµσe−β
R u+σ

u
I(s) ds dσ

]
.

In turn, the delay amax(t) satisfies the threshold condition (4.4), i.e.

α
[
1 − e−β

R
t
t−amax(t) I(σ) dσ]

= Lmax

and therefore, it is dependent on the state variable I(t) through the threshold
condition ∫ t

t−amax(t)

I(σ) dσ = I∗, I∗ := − 1
β

log
(

1 − Lmax

α

)
as we have wanted to prove.
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5. Conclusion

In this paper we present a unified approach for size and age-structured population
dynamics whose individuals are classified in different stages and the passage from
one stage to the next is due to some variable reaching a predetermined value. In
these models a balance law formulated as a hyperbolic P.D.E. allows us to reduce
the study to the different cohorts, creating a variable delay which is the time spent
for individuals in each stage.

As we have put in evidence in Sec. 2, making some simplifying assumptions, size-
structured models can be reduced to compartmental models that consider the popu-
lation divided into various stages corresponding to size values at different intervals.
The passage of individuals from one stage to the following occurs when the structure
variable size reaches a threshold value. Therefore, the permanence in each stage is
variable and is determined by the growth law which is specified in the model. This
means that the variable delay in the formulation is determined by a threshold con-
dition (e.g. (2.11)) in which the growth rate appears. This delay is state-dependent
when the growth rate depends on the state variables of the model. Our goal in this
section has been to make clear that, though biological processes are very different in
each of the examples presented, nevertheless the underlying ideas in the reduction
of models initially written in terms of PDEs to systems of functional delayed differ-
ential equations, are common. It can be checked in the references given, that this
reduction permits a mathematical analysis that provides quite enough information
about their behavior: possible oscillations, stationary solutions, etc.

The situation described for age-structured models is slightly different, the main
body of this work is in Sec. 3. A process of reduction to delayed differential equations
is described, valid for a fairly general situation of an age-structured population. The
variability in these models is due to the exit age of each compartment being defined
by a threshold condition (3.5) so that the passage to the following compartment
occurs through a moving boundary condition (3.9). A next step in our work consists
of a detailed mathematical study of the state-dependent delayed model for a fish
population constructed in Ref. 2, which will be published elsewhere.

Note Added

This paper is in loving memory of our friend Ovide Arino, whose suggestions about
the subject are the origin of this work.
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