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Miguel A. Zavalaa,�, Óscar Angulob, Rafael Bravo de la Parrac, Juan C. López-Marcosb
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Abstract

Light competition and interspecific differences in shade tolerance are considered key determinants of forest stand structure and

dynamics. Specifically two main stand diameter distribution types as a function of shade tolerance have been proposed based on

empirical observations. All-aged stands of shade tolerant species tend to have steeply descending, monotonic diameter distributions

(inverse J-shaped curves). Shade intolerant species in contrast typically exhibit normal (unimodal) tree diameter distributions due to high

mortality rates of smaller suppressed trees. In this study we explore the generality of this hypothesis which implies a causal relationship

between light competition or shade tolerance and stand structure. For this purpose we formulate a partial differential equation system of

stand dynamics as a function of individual tree growth, recruitment and mortality which allows us to explore possible individual-based

mechanisms—e.g. light competition—underlying observed patterns of stand structure—e.g. unimodal or inverse J-shaped equilibrium

diameter curves. We find that contrary to expectations interspecific differences in growth patterns can result alone in any of the two

diameter distributions types observed in the field. In particular, slow growing species can present unimodal equilibrium curves even in the

absence of light competition. Moreover, light competition and shade intolerance evaluated both at the tree growth and mortality stages

did not have a significant impact on stand structure that tended to converge systematically towards an inverse J-shaped curves for most

tree growth scenarios. Realistic transient stand dynamics for even aged stands of shade intolerant species (unimodal curves) were only

obtained when recruitment was completely suppressed, providing further evidence on the critical role played by juvenile stages of tree

development (e.g. the sapling stage) on final forest structure and composition. The results also point out the relevance of partial

differential equations systems as a tool for exploring the individual-level mechanisms underpinning forest structure, particularly in

relation to more complex forest simulation models that are more difficult to analyze and to interpret from a biological point of view.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Understanding the collective behaviour of plant com-
munities and populations in terms of individual perfor-
mance is a central goal of theoretical ecology (Harper,
1977; Crawley, 1986). In the case of forest ecosystems
examination of the mechanisms governing stand structure
and dynamics has also been central for the development of
silviculture and forest management (Smith, 1962; Oliver
e front matter r 2006 Elsevier Ltd. All rights reserved.
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and Larson, 1990). A stand is defined as a spatially
homogeneous unit of arbitrary size within a forest (Oliver
and Larson, 1990). Its structure is characterized by the
frequency distribution of tree diameters which results from
several factors such as disturbance history, species physiol-
ogy, competition as well as site ecological conditions
(Bailey and Dell, 1973; Kohyama, 1991a, b). One of the
most widely accepted mechanism for divergence in stand
structure is based on species differential responses to light
suppression or shade tolerance (e.g. Lorimer and Krug,
1983). Specifically three main diameter distribution types as
a function of shade tolerance have been proposed: all-aged
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stands of shade tolerant species with only light past
disturbance tend to have steeply descending, mono-
tonic diameter distributions that can be approximated
by negative exponential and negative power functions
(Assman, 1970; Liocurt, 1898; Lorimer, 1980; Abrams and
Downs, 1990). Shade intolerant species typically exhibit
normal tree diameter distributions due to high mortality
rates of smaller suppressed trees (Glitzenstein et al., 1986;
Knox et al., 1989). Third, a combination of the other two
types of curves can be found depending on stand history
and species shade tolerance, including curves with a steeply
descending monotone in the understory diameter classes
and a broad peak in the overstory classes, to multi-modal
tree diameter distributions (Parker, 1984; Lorimer and
Krug, 1983). Also according to silvicultural theory the
dynamics of stand structure in even aged stands follows a
characteristic sequence from initial colonization pattern
(inverse J-shaped curve or sharp unimodal distribution
centred in smaller size classes) to a flattening unimodal (or
bi-modal) distribution with positive skewness and a
gradually increasing mean (Lanier, 1986).

The generality of these patterns and the underlying
mechanisms, however, are a matter of debate (Lorimer and
Krug, 1983; Lischke, 2001; Binkley et al., 2002) and a
general mechanistic explanation of emergence of stand
structure and dynamics patterns remains elusive. Over the
last decades significant progress has been made on the
formulation of analytical models for size-structured popu-
lations (Hara, 1984a, b; Kohyama, 1991a, b; Calsina and
Saldaña, 1997), numerical techniques for their analyses
(Metz and Diekmann, 1986; De Roos, 1997, Angulo and
López-Marcos, 1999, 2000, 2002, 2004), and characteriza-
tion of whole plant responses to shade (Canham, 1989;
Kobe et al., 1995). These advances facilitate the develop-
ment of realistic analytical models of stand structure and
dynamics as a function of individual-based process.

In this study, we use a partial differential equation
system in which growth, recruitment and mortality rates
are based on measurable parameters in the field and we
investigate the mechanisms that govern stand structure and
dynamics in moderately disturbed stands. Individual-based
forest simulators (Shugart, 1984; Tilman, 1988; Pacala
et al., 1996) are usually more realistic from a biological
point of view than analytical models, but complexity may
make the analysis difficult. We therefore follow a
minimalist approach (i.e. sensu Casagrandi and Rinaldi,
1999) to identify the simplest mechanisms that account for
observed patterns. We use recent developments in numer-
ical analysis to explore the connection between models of
increasing complexity and predicted patterns. We first
investigate whether differences in species growth patterns
can alone explain changes in stand structure even in the
absence of tree to tree competition. Secondly, we examine
whether shifts from unimodal to inverse J-shaped distribu-
tion curves and vice versa can be explained by individual
responses to asymmetric (light) competition. We evaluate
this separately when competition is expressed at the growth
and the mortality stages. Finally, we investigate under
which conditions (e.g. parameter values for recruitment,
growth and mortality) realistic patterns of stand dynamics
for even aged stands of shade intolerant species can be
obtained. This is to our knowledge the first study in which
the relationship between stand structure and shade
tolerance is theoretically evaluated with an analytical
model of stand dynamics.

2. Model description

Zavala and Bravo de la Parra (2005) propose a general
analytical framework to describe stand dynamics by means
of a general multi-species model of a size-structured tree
population which takes into account the effects of
competition for light and water. Here we treat the
particular case of a mono-species model of size-structured
tree population and we focus on one-sided competition (i.e.
light), a primary ecological factor underlying forest
succession in temperate and tropical forests (Shugart,
1984; Valladares, 2003).
Both independent variables size x and time t are

considered continuous. The size variable x represents,
following Kohyama (1991b, 1992), the d.b.h. (diameter at
breast height). Let uðx; tÞ be the population density with
respect to d.b.h. of trees in the stand per m2, what means
thatZ x2

x1

uðs; tÞds

represents the number of trees in the stand patch per m2

with d.b.h. x 2 ½x1;x2� at time t.
The cumulative basal area of trees greater in size than x

expresses the shading effect under one-sided competition
and it is defined by

Bðx; tÞ ¼

Z xM

x

p
4
s2uðs; tÞds (1)

and xM is the maximum d.b.h. reached by a given tree
species. If we denote x0 the minimum d.b.h. for a tree to be
considered a recruit, then Bðx0; tÞ represents the total basal
area of the trees in the stand per m2.
Changes in size distribution depend on the rates of size

growth, mortality and recruitment. We are now presenting
all these rates in full generality.

Growth rate:

Gðx;Bðx; tÞÞ,

where Gðx; zÞ is, in general, a unimodal function tending to
0 when x tends to xM for constant z. For constant x, Gðx; zÞ
is a monotonous decreasing function of z

Mortality rate:
In general

Mðx;Bðx; tÞÞ,

where Mðx; zÞ is a function which is increasing for
constant x.
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Recruitment rate:
A general recruitment rate can be expressed in the

following form:

RðtÞ ¼ Bðx0; tÞrðBðx0; tÞÞ, (2)

which is proportional to total basal area and where rðzÞ is a
decreasing function reflecting density-dependent effects.
The outcome of these two opposed forces—increasing seed
production and decreasing seedling survival with increasing
basal area—on recruitment is rather system-specific and
largely depends on system-specific mechanisms (e.g. seed
predation in tropical humid forests, Hubbell, 1980; or water
stress in Mediterranean forests, Lookingbill and Zavala,
2000). Moreover, net recruitment rate depends in a spatial
context on dispersal rates from nearby stands, so it changes
with regional species abundance and dispersal mode (Pacala
et al., 1996). Thus, for the purpose of this study we assume
that recruitment is a free constant parameter. We also
consider the specific case of null recruitment as most
documented patterns in stand dynamics refer to relatively
shorter time periods in relation to time periods required for
models to reach a mathematical equilibrium (e.g. one
rotation cycle in managed forests). Recruitment limitation
is a rather common phenomenon both in managed and
natural plant communities (e.g., Espelta et al., 1995; Hurtt
and Pacala, 1995; Turnbull et al., 2000). Thus, in the sequel
recruitment rate will be considered either a positive constant
for cases with continuous recruitment, or zero.

The general continuum model based upon the classical
model for a state-structured population (Metz and
Diekmann, 1986; Cushing, 1998) reads as follows:

Balance law

utðx; tÞ þ ðGðx;Bðx; tÞÞuðx; tÞÞx
¼ �Mðx;Bðx; tÞÞuðx; tÞ ðx0oxoxM ; t40Þ. ð3Þ

Recruitment law

Gðx0;Bðx0; tÞÞuðx0; tÞ ¼ Bðx0; tÞrðBðx0; tÞÞ ðt40Þ. (4)

Initial d.b.h. distribution

uðx; 0Þ ¼ u0ðxÞ ðx0pxpxM Þ. (5)

These kind of models has been used by many authors in
plant ecology (Nagano, 1978; Hara, 1984a, b, 1985, 1992;
Takada and Iwasa, 1986; Kohyama, 1991a, b, 1992; Hara
and Yokozawa, 1994; Kraev, 2001; Dercole et al., 2005) as
well as in various other fields of biology (Von Foerster,
1959), demography (Keyfitz, 1968) and epidemiology
(Kermack and McKendrick, 1933) to cite just the pioneers.
Likewise, the Sharpe–Lotka–McKendrick equation is a
particular version of the more general Fokker–Plank
equation (also known as diffusion or Kolmogorov forward
equation) to incorporate the spatial and stochastic fluctua-
tions of the size density distribution, see Hara (1984a, b,
1985, 1992). The original Sharpe–Lotka–McKendrick
equation is linear. Nonlinear age- and size-structured
population models arise when any of the population rates
(growth, birth, death) depend on the population density or
on a functional of it as in Eqs. (3) and (4). The first study of
a nonlinear age-structured model is developed by Gurtin
and MacCamy (1974); a comprehensive treatment of their
approach, based on Volterra integral equations, is given by
Iannelli (1994). Other fruitful approach for the study of
linear and nonlinear structured models is based on the
theory of semigroups of linear and nonlinear operators in
Banach spaces, see Webb (1985) as the fundamental
reference for age-structured populations; the case of size-
structured population is treated in Metz and Diekmann
(1986) and Cushing (1998), and the combination of age-
and size-structured models is studied in Shinko and Streifer
(1967) and Tucker and Zimmerman (1988).
Often models such as those discussed above cannot be

solved analytically and require numerical integration to
obtain an approximation of the solution. In addition, the
precise form of many of the life history functions of a
population are often hard to determine, and the use of a
numerical scheme may assist their approximation by
comparisons with field data. A number of numerical
schemes exist, primarily for age rather than size structured
models. Two main numerical procedures have been con-
sidered. The first one is based on standard difference
schemes used to approximate partial differential equations
(upwind, box, Lax-Wendroff, Warming-Beam, method of
lines, etc.) with adjustments to cope with non-local terms.
The second one, and most popular, approach is based upon
integration along characteristic curves and seeks to solve the
resulting coupled system of ordinary differential equations.
Two categories of this kind of methods have been
considered: Runge–Kutta/multi-step methods and the meth-
od for discretization of a representation of the solution along
characteristics, see Abia et al. (2004, 2005) for a comparison
of different numerical methods with regards to accuracy,
efficiency, generality and mathematical methodology.
Modern numerical methods have been successfully

applied to structured models to replicate available field
and/or laboratory data, for a variety of different systems.
Most of them has been considered in the case of age-
structured populations. A size-structured population mod-
el for Gambussia affinis with seasonal dependence was
introduced and numerically studied by Sulsky (1994). With
the use of a more efficient numerical method, Angulo et al.
(2005) showed new properties of the model for long times,
such as the tendency to periodicity. Finally, in Bees et al.
(2006), a nonlinear structured population model for the
slug Deroceras reticulatum has been numerically explore
with conclusions about the diagnostic to distinguish
between predated and non-predated environments.
All these works indicate that structured population
models and numerical simulations are valid tools for
investigating systems such as the one under consideration
here.
In Appendix A it is presented the numerical method

employed in this paper. It is a new scheme that for the first
time discretizes this type of hierarchical size-structured
model. It employs a representation of the solution along
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the characteristics and also uses a selection of grid nodes in
order to improve its efficiency.

3. Model analysis, simulations and results

3.1. Tree growth without light competition and stand

structure

We assume that the recruitment rate, R, and the mortality
rate, m, are constant. On the other hand, all trees in the stand
increase their d.b.h. x over time in the same way, as governed
by a growth function gðxÞ satisfying the following hypoth-
eses: g : ½x0; xM � ! ½0;1Þ is continuous, positive on
ðx0; xMÞ, gðx0Þ40, gðxM Þ ¼ 0 and

R xM

x0
ds=gðsÞ ¼ 1.

Under these assumptions system (3)–(5) reads as follows:

utðx; tÞ þ ðgðxÞuðx; tÞÞx ¼ �muðx; tÞ

ðx0oxoxM ; t40Þ, ð6Þ

gðx0Þuðx0; tÞ ¼ R ðt40Þ, (7)

uðx; 0Þ ¼ u0ðxÞ ðx0pxpxM Þ. (8)

System (6)–(8) can be solved analytically by the character-
istics method which is described at the beginning of
Appendix A. The solution is expressed in terms of the
function defining the characteristic line of Eq. (6) through
the point ðx0; 0Þ which isZ x

x0

ds
gðsÞ
¼ t (9)

denoted t ¼ jðxÞ. The function jðxÞ represents the time
required for a tree to increase d.b.h. from x0 to x. The
hypotheses assumed on gðxÞ imply that trees grow from
any d.b.h. xXx0 approaching the maximum d.b.h. xM but
never attaining it, as time goes to 1. They also imply that
the inverse of jðxÞ exists, j�1ðtÞ defined on ½0;1Þ.

The solution of system (6)–(8) is

uðx; tÞ ¼

u0ðj�1ðjðxÞ � tÞÞe�mt gðj�1ðjðxÞ � tÞÞ

gðxÞ
if jðxÞ4t;

R
expð�mjðxÞÞ

gðxÞ
if jðxÞot;

8>>><
>>>:

(10)

which tends uniformly on any interval ½x0;x�, with xoxM ,
to the steady state solution

u�ðxÞ ¼ R
expð�mjðxÞÞ

gðxÞ
(11)

representing the long term d.b.h. distribution of trees in the
stand. The different types of equilibrium curves observed in
the field could be explained through this model just by the
type of growing associated with the corresponding species
and environment, that is, without any mechanism related
to competition for light. This is the case because as we see
u�ðxÞ depends on gðxÞ, the individual growth rate, and for a
given d.b.h. distribution of trees we could find a gðxÞ

yielding it as steady state solution. A straightforward
computation gives for a d.b.h. distribution fðxÞ the
following growth rate:

gðxÞ ¼
1

fðxÞ
R� m

Z x

x0

fðsÞds

� �
. (12)

The most used growth rate for trees is the classical
Richards growth equation (Richards, 1959):

gðxÞ ¼ ax 1�
x

xM

� �b
 !

. (13)

When b ¼ 1 the Richards equation matches the logistic
equation; parameter b allows the shape of the upper part of
the curve (sigmoid curve), to be independent of the shape
of the lower part. When b41 the maximum slope of the
curve is attained for x4xM=2 and when bo1 for xoxM=2.
The time required for a tree to increase d.b.h. from x0 to x

assuming Richards growth law is

jðxÞ ¼
1

ab
ln

xbðxb
M � xb

0Þ

xb
0ðx

b
M � xbÞ

� �
(14)

and the stable d.b.h. distribution is

u�ðxÞ ¼
Rxb

M

axðxb
M � xbÞ

xbðxb
M � xb

0Þ

xb
0ðx

b
M � xbÞ

� ��m=ab

. (15)

This distribution presents an inverse J-shaped form for
large enough mortality rate; to be precise, if m4ab, see
(Fig. 1(a)). Otherwise, that is mpab there is an effect of
accumulation of trees with d.b.h. close to the maximum
size which yields an U-shaped form (Fig. 1(b)).
A different type of equilibrium curve which is frequently

observed in the field is the unimodal one. We propose the
following family of growing rates, that includes Richards’
ones ðc ¼ 0Þ, which give unimodal equilibrium distribu-
tions for certain parameters values (Fig. 1(c)).

gðxÞ ¼ ax 1�
x

xM

� �b
 !

expð�cxÞ. (16)

3.2. Light competition and stand structure

We introduce the light competition in the model by
separately incorporating shade intolerance effects on
growth, mortality and recruitment.

3.2.1. Light-dependent tree growth and stand structure

We assume now that the recruitment rate, R, and the
mortality rate, m, are constant. The growth rate is
dependent on light competition in the following way:

Gðx;Bðx; tÞÞ ¼ gðxÞHðBðx; tÞÞ, (17)

where HðzÞ is a decreasing function with values in ð0; 1�.
Then system (3)–(5) reads as follows:

utðx; tÞ þ ðGðx;Bðx; tÞÞuðx; tÞÞx
¼ �muðx; tÞ ðx0oxoxM ; t40Þ, ð18Þ

Gðx0;Bðx0; tÞÞuðx0; tÞ ¼ R ðt40Þ, (19)

uðx; 0Þ ¼ u0ðxÞ ðx0pxpxM Þ. (20)
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Fig. 1. Stable distribution curve for parameter values: (a) a ¼ 7, b ¼ 16,

m ¼ 3; (b) a ¼ 2, b ¼ 1, m ¼ 3; (c) a ¼ 2, b ¼ 1, c ¼ 1, m ¼ 0:1.
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This kind of system is a particular case, under some
technical assumptions, of the system studied in Kraev (2001),
where it is proved the existence and unicity of its solution.
The steady state solution, u�ðxÞ, of system (18)–(19) must
verify the following equation:

ðGðx;B�ðxÞÞu�ðxÞÞx ¼ �mu�ðxÞ ðx0oxoxMÞ, (21)

where B�ðxÞ ¼
R xM

x
ðp=4Þs2u�ðsÞds. Even though it is not

possible to solve explicitly Eq. (21) we can obtain in some
cases the shape of u�ðxÞ through its derivative which
satisfies the following equation:

d

dx
u�ðxÞ ¼ �

d

dx
ðGðx;B�ðxÞÞÞ þ m

� �
u�ðxÞ

Gðx;B�ðxÞÞ

¼ � g0ðxÞHðB�ðxÞÞ þ gðxÞH 0ðB�ðxÞÞ
�

� �
p
4

x2u�ðxÞ
� �

þ m
� u�ðxÞ

Gðx;B�ðxÞÞ
. ð22Þ

If we do not consider light competition but we keep the
same individual growth rate gðxÞ the derivative of the stable
distribution simplifies to

�ðg0ðxÞ þ mÞu�ðxÞ=gðxÞ.

The sign of this expression depends on the term g0ðxÞ þ m;
for the x for which it is positive (negative) the stable
distribution is decreasing (increasing). Having in mind that

gðxÞH 0ðB�ðxÞÞ �
p
4

x2u�ðxÞ
� �

40 and HðB�ðxÞÞp1

it is straightforward to see that g0ðxÞ þ m40 implies that

g0ðxÞHðB�ðxÞÞ þ gðxÞH 0ðB�ðxÞÞ �
p
4

x2u�ðxÞ
� �

þ m40,

that is, if the stable distribution without light competition
is decreasing on an interval of values of x the same happens
with the steady state solution u�ðxÞ in the case of light
competition on growing. In particular, if gðxÞ without light
competition yields an inverse J-shaped stable distribution
curve we obtain a decreasing curve when adding light
competition in the way described in (17).
3.2.2. Light-dependent tree mortality and stand structure

We suppose now that light competition is preferentially
acting on mortality rather than growth. We assume that
the recruitment rate is a constant R and the growing rate is
a function gðxÞ independent of Bðx; tÞ. The mortality rate is
dependent on light competition in the following way:

Mðx;Bðx; tÞÞ ¼ mþ KðBðx; tÞÞ, (23)

where KðzÞ is a nonnegative increasing function. System
(3)–(5) reads in this case as follows:

utðx; tÞ þ ðgðxÞuðx; tÞÞx
¼ �Mðx;Bðx; tÞÞuðx; tÞ ðx0oxoxM ; t40Þ, ð24Þ

gðx0Þuðx0; tÞ ¼ R ðt40Þ, (25)

uðx; 0Þ ¼ u0ðxÞ ðx0pxpxMÞ (26)

and it is still in the frame of Kraev (2001). The steady state
solution, u�ðxÞ, of system (24)–(25) must verify the
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Fig. 2. Population d.b.h. distribution at 17 different times ðt ¼

0; 6:25; 12:50; . . . ; 87:50; 93:75; 100Þ for parameter values a ¼ 2, b ¼ 0:05,
m ¼ 0:1, R ¼ 0 and: (a) HðzÞ ¼ 1 (no light competition); (b)

HðzÞ ¼ 10�3e�z; (c) HðzÞ ¼ 10�2e�z.
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following equation:

ðgðxÞu�ðxÞÞx ¼ �Mðx;B�ðxÞÞu�ðxÞ ðx0oxoxM Þ (27)

and its derivative satisfies

d

dx
u�ðxÞ ¼ � ðg0ðxÞ þMðx;B�ðxÞÞÞ

u�ðxÞ

gðxÞ

¼ � ðg0ðxÞ þ mþ KðB�ðxÞÞÞ
u�ðxÞ

gðxÞ
. ð28Þ

This expression allow us to do an analysis of the form of
the stable distribution analogous to the one did in the
previous case where light competition affected growing. It
is straightforward to see that g0ðxÞ þ m40 implies that
ðd=dxÞu�ðxÞ40 and so we still have that on the intervals
where, without light competition, the stable distribution is
decreasing u�ðxÞ is also decreasing. In particular, inverse
J-shaped stable distributions still keep decreasing by
adding light competition in the way described in (23).

3.2.3. Recruitment suppression and stand structure and

dynamics

We represent recruitment suppression (e.g. by means of
shade intolerance at the sapling stage) by taking a zero
recruitment rate, R ¼ 0. If we also assume a growth rate,
gðxÞ, independent of light competition and a constant
mortality rate m, we are considering a particular case of
system (6)–(8) in which solution is

uðx; tÞ ¼
u0ðj�1ðjðxÞ � tÞÞe�mt gðj�1ðjðxÞ � tÞÞ

gðxÞ
if jðxÞ4t;

0 if jðxÞot:

8><
>:

(29)

Taking gðxÞ ¼ 2xð1� ðx=51Þ0:05Þ, x0 ¼ 1, xM ¼ 51, m ¼ 0:1
and the initial condition u0ðxÞ described in Appendix B for
the case of R ¼ 0, we see in Fig. 2(a) the evolution of uðx; tÞ
by showing it at 17 uniformly distributed times t ¼ 0; 6:25;
12:50; . . . ; 87:50; 93:75; 100.

In Figs. 2(b) and (c) the same kind of representation is
done for two cases with the same characteristic as the
previous example but including light competition on
growing with different strength.

Fig. 2(b) corresponds to the growth rate

Gðx;Bðx; tÞÞ ¼ 2xð1� ðx=51Þ0:05Þ10�3 expð�Bðx; tÞÞ

and Fig. 2(c) to

Gðx;Bðx; tÞÞ ¼ 2xð1� ðx=51Þ0:05Þ10�2 expð�Bðx; tÞÞ.

4. Discussion

Patterns of stand structure and dynamics result from a
combination of several factors such as disturbance history,
species physiology, competition as well as site ecological
conditions (Oliver and Larson, 1990; Lorimer and Krug,
1983; Abrams and Downs, 1990). Given the dynamic
nature of population interaction and the number of factors
involved, identification of the mechanisms underlying
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stand structure cannot be easily grasped through experi-
mental studies and it is best achieved through dynamic
models that connect tree individual performance to stand
level properties (Kohyama, 1991a; Hara and Yokozawa,
1994).

Contrary with classical silvicultural theory (Lanier,
1986) and observational models (Lorimer and Krug,
1983) our results do not show evidence of a causal
relationship between shade tolerance and stand structure
which converged towards an inverse J-shaped curve under
a wide range of light-dependent growth and mortality
conditions. In contrast realistic patterns in stand dynamics
for shade intolerant species were only obtained when
recruitment was completely suppressed (Fig. 2(b)). This
suggests that juvenile stages may have a disproportionate
effect on final stand structure and composition relative to
competition at later stages (Kobe et al., 1995; Pacala et al.,
1996).

Predicted patterns on transient stand dynamics in
populations regulated by one-sided competition and null
recruitment did match the classical silvicultural model of
stand dynamics (e.g. Lanier, 1986, Fig. 2(b)). This
agreement is based on the travelling of the diameter
distribution, positive skewness and a gradually flattening
shape previously reported. Positive skewness in diameter
distributions when no competitive interactions take place
have been reported by Hara (1984b), while positive
skewness has been described in tree populations structured
by light competition (Lieffers, 1986; Agren and Zackrisson,
1990). Our results also agree with observed dynamics of
ramet populations within a stool which is also regarded as
a system structured by one-sided competition (Ford and
Newbould, 1970). Specifically observed changes in stand
structure patterns of Quercus ilex managed by selection
thinning over a 30 year period (Retana et al., 1992) show
similar trends than our model predictions including
negative skewness and gradual progression towards an
unimodal distribution.

Interestingly the two main type of equilibrium curves
observed in the field can result from differences in the
growth-size dependence function (rate of growth decline
with respect to size) and even in the absence of competi-
tion. This finding suggests the need to examine other
physiological size-dependent processes that can have a
greater impact on long term population structure, includ-
ing allometric relations (Hara and Yokozawa, 1994).
Altogether different plant traits are likely to be correlated,
defining species specific strategic such as r-like species that
experience both a faster decline in growth rates with respect
to size and shade intolerance, or K-like species with more
conservative metabolism and greater tolerance of shade.
Suites of traits associated with a given selective pressure
can be under genetic control (Chapin et al., 1993) or result
from tradeoffs among traits (Tilman, 1988).

Further understanding of the mechanisms leading to a
given diameter distribution shape should also take into
consideration disparity of ecological site conditions that
can influence growth rates as well as interspecific compe-
titive relationships. For example a variety of stand
structure curves have been reported for the same species
along an environmental gradient (Parker, 1984; Butson et
al., 1987) or depending on whether stands were mixed or
monospecific (Lorimer and Krug, 1983).
Over the last decades a number of empirical and

simulation studies have been key for increasing our
understanding of the mechanisms underlying forest struc-
ture. Previous models aiming to understand changes in
stand structure in terms of species individual ecology have
typically relied on individual-based simulations that trace
the fate of each individual tree through its biological cycle
(Shugart, 1984; Tilman, 1988). Analytical models of stand
dynamics by means of PDE allow us to connect stand level
patterns to in individual tree performance and to accom-
modate a wide range of diameter distributions in terms of a
few biologically interpretable parameters. Also they are
preferred to simulations because of increases in computing
speed (Lischke et al., 1998). Aggregated and analytical
models are of greater heuristic interest as can be analyzed
for some particular cases.
Development of a general theory of stand dynamics will

require advances in several fronts. First, in our study the
definition of forest stand implies a patch size small enough
so trees within the stand interact with same strength
regardless of the distance among them. Tree competition,
however, is rather a neighborhood process (sensu Pacala et
al., 1996) in which emergent or aggregated collective forest
properties such as production may depend critically on
local individual interactions (Pacala and Deutschman,
1995; Levin and Pacala, 1997). Therefore, our results can
only be extrapolated to small stands. Secondly plants are
plastic and can change their allometry in response to
resource variability, with these changes having a critical
impact on stand structure (Hara and Yokozawa, 1994).
Third, many of the processes involved in forest dynamics
are stochastic and predictability seems only possible at
certain scales. Understanding how local stochastic pro-
cesses scale up to the stand and forest level as deterministic
processes seems key in order to provide a realistic
description of system dynamics (Lischke et al., 1998).
Therefore, the challenge remains to keep model complexity
at its minimum but still gradually include critical biological
detail such as plasticity, stochasticity and spatial interac-
tions that are essential components of forest stand
dynamics.
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Appendix A. Numerical method

In this section we describe a method which integrates
numerically Eqs. (3)–(5) along the characteristic curves and
uses the composite trapezoidal quadrature rule to approx-
imate the nonlocal terms. Also, this scheme employs a
selection procedure, at each time level, that avoids an
increment on the number of nodes. We begin rewriting the
partial integro-differential equation in a more suitable form
for its numerical treatment. So we define

mðx; z; uÞ ¼ mðx; zÞ þ gxðx; zÞ � gzðx; zÞgðxÞu,

where gðxÞ ¼ ðp=4Þx2, thus (3) has the form

utðx; tÞ þ gðx;Bðx; tÞÞ uxðx; tÞ

¼ �mðx;Bðx; tÞ; uðx; tÞÞuðx; tÞ, ð30Þ

x0oxoxM , t40. Next, we denote by xðt; t�;x�Þ the
characteristic curve of Eq. (30) that takes the value x� at
time t�. This is the solution of the next initial value problem

x0ðt; t�;x�Þ ¼ gðxðt; t�;x�Þ;Bðxðt; t�;x�Þ; tÞÞ; tXt�;

xðt�; t�;x�Þ ¼ x�:

(
(31)

Note that xðt; 0; xMÞ ¼ xM , tX0; because we are assuming
that gðxM ; zÞ ¼ 0. Then, we define the function

wðt; t�; x�Þ ¼ uðxðt; t�;x�Þ; tÞ; tXt�, (32)

that satisfies the next initial value problem

d

dt
wðt; t�;x�Þ ¼ �mðxðt; t�;x�Þ;Bðxðt; t�;x�Þ; tÞ;

wðt; t�; x�ÞÞwðt; t�;x�Þ; tXt�;

wðt�; t�;x�Þ ¼ uðx�; t�Þ;

8>>><
>>>:

(33)

and therefore, it can be represented with the next formula

wðt; t�; x�Þ ¼ uðx�; t�Þ exp �

Z t

t�
mðxðt; t�;x�Þ;

�

Bðxðt; t�; x�Þ; tÞ;wðt; t�;x�ÞÞdt
�
. ð34Þ

(Recall that Bðx; tÞ is defined by (1).) We suppose that
uðxM ; 0Þ ¼ 0 and then uðxM ; tÞ ¼ 0, tX0. We shall use this
property in our numerical method. However, it can be
easily modified to cover other cases.

Let J and N be positive integers, we define the spatial
and time discretization parameters as h ¼ ðxM � x0Þ=J and
k ¼ T=N, respectively. The discrete time levels are tn ¼ n k,
0pnpN, and the initial grid nodes are X 0

j ¼ j h, 0pjpJ.
We suppose that the approximations to the theoretical
solution in such nodes are known, U0

j , 0pjpJ. Thus,
we denote

X0 ¼ fX 0
0 ¼ x0;X

0
1; . . . ;X

0
J�1;X

0
J ¼ xMg,

U0 ¼ fU0
0;U

0
1; . . . ;U

0
J�1;U

0
J ¼ 0g.

Also we introduce I0 ¼ fI00; I
0
1; . . . ; I

0
J�1; I

0
J ¼ 0g, where

I0j ¼ Q0
j ðX; cðXÞUÞ, (35)

is defined as the discrete version of (1) at x ¼ X 0
j ,

j ¼ 0; 1; . . . ; J.
We will obtain the numerical approximations at the time

level t1 as follows: first we define the grid nodes
X1 ¼ fX 1

0 ¼ x0;X
1
1; . . . ;X

1
J ;X

1
Jþ1 ¼ xMg, by the numerical

integration of (31)

X 1
jþ1 ¼ X 0

j þ k gðX
1=2
jþ1; I

1=2
jþ1Þ; 0pjpJ � 1. (36)

Then we calculate the corresponding approximations to the
theoretical solution U1 ¼ fU1

0;U
1
1; . . . ;U

1
J ;U

1
Jþ1 ¼ 0g, by

means of the following discretization of (34):

U1
jþ1 ¼ U0

j expð�kmðX
1=2
jþ1; I

1=2
jþ1;U

1=2
jþ1ÞÞ,

0pjpJ � 1. ð37Þ

Finally, we derive the approximation U1
0 to uðx0; t1Þ from a

discrete version of the boundary condition (4)

U1
0 ¼

I10 rðI10Þ

gðx0; I
1
0Þ
, (38)

where

X
1=2
0 ¼ x0; X

1=2
jþ1 ¼ X 0

j þ
k

2
gðX 0

j ; I
0
j Þ,

0pjpJ � 1; X
1=2
Jþ1 ¼ xM ,

U
1=2
jþ1 ¼ U0

j exp �
k

2
mðX 0

j ; I
0
j ;U

0
j Þ

� �
,

0pjpJ � 1; U
1=2
Jþ1 ¼ 0,

and we define

I
1=2
j ¼ Q

1=2
j ðX; cðXÞUÞ; 1pjpJ þ 1,

I1j ¼ Q1
j ðX; cðXÞUÞ; 0pjpJ þ 1,

Qs
j ðX;VÞ ¼

XJþ1
l¼j

X s
lþ1 � X s

l

2
ðV s

l þ Vs
lþ1Þ,

0pjpJ þ 1; s ¼
1

2
; 1.

We observe that, at consecutive time levels, we are working
with a different number of nodes because we have
introduced a new node that fluxes through the boundary.
So, at the time level tn we have ðJ þ 1Þ grid nodes, and at
time level tnþ1 we have ðJ þ 2Þ but we want to keep
constant the number of nodes not to increase the
computational cost. Therefore we select one characteristic
curve and we do not compute the approximations at such
curve. Then, we eliminate the first grid node X 1

l
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that satisfies

jX 1
lþ1 � X 1

l�1j ¼ min
1pjpJ

jX 1
jþ1 � X 1

j�1j, (39)

and the corresponding value in the vectors U1 and I1.
Next, we describe the general time step tnþ1,

0pnpN � 1. Now, we suppose that the numerical
approximations at the previous time level tn are known

fX n
0 ¼ x0;X

n
1; . . . ;X

n
J�1;X

n
J ¼ xMg,

fUn
0;U

n
1; . . . ;U

n
J�1;U

n
J ¼ 0g,

and fIn
0; I

n
1; . . . ; I

n
J�1; I

n
Jg. We recall that X n

j and X nþ1
jþ1 ,

0pjpJ � 1, are (numerically) in the same characteristic
curve. First, we compute the grid values at the time level
tnþ1,

Xnþ1 ¼ fX nþ1
0 ¼ x0;X

nþ1
1 ; . . . ;X nþ1

J ;X nþ1
Jþ1 ¼ xMg,

by means of the numerical integration of (31)

X nþ1
jþ1 ¼ X n

j þ k gðX
nþ1=2
jþ1 ; I

nþ1=2
jþ1 Þ; 0pjpJ � 1, (40)

and the approximations to the theoretical solution in these
nodes at such time level

Unþ1 ¼ fUnþ1
0 ;Unþ1

1 ; . . . ;Unþ1
J ;Unþ1

Jþ1 ¼ 0g,

using the discretization of (34)

Unþ1
jþ1 ¼ Un

j expð�kmðX
nþ1=2
jþ1 ; Inþ1=2

jþ1 ;Unþ1=2
jþ1 ÞÞ,

0pjpJ � 1.

We complete the equations at the time level tnþ1 with the
approximation Unþ1

0 to uðx0; tnþ1Þ using a discretization of
the boundary condition (4)

Unþ1
0 ¼

Inþ1
0 ðI

nþ1
0 Þ

gðx0; I
nþ1
0 Þ

, (41)

where

X
nþ1=2
0 ¼ x0; X

nþ1=2
jþ1 ¼ X n

j þ
k

2
gðX n

j ; I
n
j Þ,

0pjpJ � 1; X
nþ1=2
Jþ1 ¼ xM ,
u0ðxÞ ¼

5þ 5
x� 2

2
þ 1

� �3

;

10þ 15
x� 2

2
1þ

x� 2

2

� �
þ 3

5 2�
x� 2

2

� �3

2þ 3
x� 2

2

��
0

8>>>>>>>>>>><
>>>>>>>>>>>:
U
nþ1=2
jþ1 ¼ Un

j exp �
k

2
mðX n

j ; I
n
j ;U

n
j Þ

� �
,

0pjpJ � 1; U
nþ1=2
Jþ1 ¼ 0,

and we define

I
nþ1=2
j ¼ Q

nþ1=2
j ðX; cðXÞUÞ; 1pjpJ þ 1,

Inþ1
j ¼ Qnþ1

j ðX; cðXÞUÞ; 0pjpJ þ 1,

Qs
j ðX;VÞ ¼

XJþ1
l¼j

X s
lþ1 � X s

l

2
ðVs

l þ V s
lþ1Þ,

s ¼ nþ
1

2
; nþ 1.

Now, we have J þ 2 nodes at the time level tnþ1 and we
want to keep constant the number of nodes therefore we
select one characteristic curve and we do not compute the
approximations at such curve. Then, we eliminate the first
grid node X nþ1

l that satisfies

jX nþ1
lþ1 � X nþ1

l�1 j ¼ min
1pjpJ

jX nþ1
jþ1 � X nþ1

j�1 j, (42)

and the corresponding value in the vectors Unþ1 and Inþ1.
Appendix B. Simulations conditions

In all simulations performed we used parameters values
x0 ¼ 1 and xM ¼ 51 for minimum and maximum d.b.h.
sizes, the initial and final times are, respectively, t ¼ 0 and
tf ¼ 100. Dynamics of stand structure shown in Fig. 2
correspond to 17 uniformly distributed times
t ¼ 0; 6:25; 12:50; . . . ; 87:50; 93:75; 100.
Simulations reported in this study depart from young even-

aged populations. For the initial and boundary conditions to
be mathematically consistent it is required that the constant
recruitment rate verifies RðtÞ ¼ R ¼ gðx0;Bðx0; 0ÞÞu0ðx0Þ and
so we need to distinguish in the recruitment law among cases
with and without recruitment. Initial d.b.h. distribution for the
case with positive constant recruitment is an asymmetric
unimodal curve defined in the following form for technical
reasons related to the numerical method (Fig. 3):
xp2;

0
x� 2

2

� �3
x� 2

2
� 2

� �
; 2oxp4;

� 1

�
1þ 2

x� 2

2
� 1

� �� ��
; 4oxp6;

x46:

(43)
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Fig. 3. Initial d.b.h. distribution for: (a) constant non-zero recruitment;

(b) zero recruitment.

u0ðxÞ ¼

0; xp2;

5
x� 4

2
þ 1

� �3

; 2pxp4;

5 1þ 3
x� 4

2
1þ

x� 4

2

� �
þ 6

x� 4

2

� �3
x� 4

2
� 2

� � !
; 4oxp6;

5 2�
x� 4

2

� �3

; 6oxp8;

0; x48:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(44)

The corresponding initial distribution for the case without recruitment is represented by a symmetric unimodal curve
(Fig. 3) defined as
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