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Abstract

Most classical prey–predator models do not take into account the behavioural structure of the population. Usually, the predator

and the prey populations are assumed to be homogeneous, i.e. all individuals behave in the same way. In this work, we shall take

into account different tactics that predators can use for exploiting a common self-reproducing resource, the prey population.

Predators fight together in order to keep or to have access to captured prey individuals. Individual predators can use two

behavioural tactics when they encounter to dispute a prey, the classical hawk and dove tactics. We assume two different time scales.

The fast time scale corresponds to the inter-specific searching and handling for the prey by the predators and the intra-specific

fighting between the predators. The slow time scale corresponds to the (logistic) growth of the prey population and mortality of the

predator. We take advantage of the two time scales to reduce the dimension of the model and to obtain an aggregated model that

describes the dynamics of the total predator and prey densities at the slow time scale. We present the bifurcation analysis of the

model and the effects of the different predator tactics on persistence and stability of the prey–predator community are discussed.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

An important issue in population dynamics is to
understand the effects of individual tactics that may
adopt individuals at the population and community
levels. Individuals compete for mating, food and
territory. Different behavioural traits (Lott, 1991;
Stamps and Buechner, 1985) occur among individuals
of the same population and between different popula-
tions (Stamps and Buechner, 1985; Perret and Blondel,
1993; Pontier et al., 1995). Some phenotypic cha-
e front matter r 2005 Elsevier Ltd. All rights reserved.
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racteristics, such as aggressivity, can differ between
populations. For example, in urban populations, do-
mestic cats rarely fight while in rural populations,
individuals are more likely to be aggressive for mating
and to get access to some resource, (Liberg and Sandell,
1988; Pontier et al., 1995; Auger and Pontier, 1998;
Pontier et al., 2000). Individuals are capable of learning
and to change tactics along their life time according to
the environmental conditions, to their age, to their
physical conditions and to the results of previous
contests (Wolf and Waltz, 1993; Liberg, 1981; Yamane
et al., 1996). Behavioural plasticity allows an individual
to be more flexible and to adopt the behaviour that can
maximize its survival in the present environmental
condition.

In previous works (Auger and Pontier, 1998; Pontier
et al., 2000), we investigated the effects of aggressiveness

www.elsevier.com/locate/yjtbi
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on population dynamics. In these articles, individual
competed for some resource and the model was aimed a
looking for the effects of this competition on the level o
equilibrium density of the total population in the lon
term. The competition process was described by th
classical hawk–dove model occurring at the fast tim
scale which was coupled to a population dynamic
model at a slow time scale. This model was able to show
the relationship between the equilibrium density of th
population which was a decreasing function of th
proportion of aggressive (hawk) individuals in th
population and was compared to the case of th
domestic cat population for which rural (low density
populations are mainly hawk and urban (high density
populations are mainly dove. However, in this previou
model, the resource was assumed to be constant, i.e. at
constant level not depending for example on th
predator density. The aim of this work is to take int
account the interaction between the population and th
resource in the frame of a predator–prey model. Th
resource is assumed to be a prey and the population is it
predator.

The prey population grows logistically when no
predated. Individual predators can use different tactic
to get the resource. Predators can catch a prey and eat it
but they can also dispute a prey to another predato
who has previously captured a prey. The aim of thi
work is to investigate the effects of individual tactic
(hawk and dove) that can be used by predators on th
overall stability of the predator–prey system. In
previous attempt (Auger et al., 2002) we presented such
a model. In this contribution, we make explicit th
process by which a predator manipulating a prey i
found by a searching predator leading to a contes
between the two predators. With respect to the previou
work, we also incorporate a more realistic Holling typ
II functional response.

As in (Auger et al., 2002), we also considered tw
different time scales: a fast time scale corresponding t
the hawk–dove game between predators and a slow tim
scale corresponding to prey growth and predato
demography. The existence of two time scales was used
to reduce the dimension of the model (a set of three ODE

for the prey, hawk predator and dove predator densities
and to obtain an aggregated model that describes th
dynamics of the total predator and prey densities at th
slow time scale. For the aggregation methods we refer t
(Bravo de la Parra et al., 1995; Auger and Poggiale
1998; Bernstein et al., 1999; Auger and Bravo de l
Parra, 2000).

In this article, we also incorporate searching an
handling activities of the predators. The handling
searching processes shall occur at the fast time scale a
well as the hawk–dove game. The resulting seven
dimensional complete model is reduced to a two
dimensional aggregated model.
The question that arises naturally in this model relate
to the tactics that is the most favourable for predators
Should predators be aggressive and fight to monopoliz
the prey resource or should predators do not disput
preys with conspecifics occasioning fightings and result
ing injuries? There is not a simple answer to thi
question. We show in this paper that it depends on th
value of the cost.

In Neat et al. (1998a, b) the role of injury and energ
metabolism during fights between male ciclid fish Tilapi

zillii is studied experimentally. Both behavioural me
chanisms underly the making of the strategic decision
in animal fighting. It is concluded that the injury dat
and energy metabolism data suggest that escalate
fighting is costly for both winners and losers, bu
especially so for losers.

For the temporal change of the tactic, we will assum
the classical replicator dynamics which together with th
hawk–dove game model gives the well known predictions
when costs were lower than the gain a monomorphi
hawk predator population, and a dimorphic predato
population, when the costs are larger than the gain.

We will perform a full analysis of the aggregate
models by presenting complete bifurcation analysi
diagrams. The resulting model resembles the well know
Rosenzweig–MacArthur predator–prey model (Rosenz
weig, 1971) but its long term dynamics behaviour differ
significantly. For the Rosenzweig–MacArthur mode
we know that if the parameter values are such that a
asymptotically stable interior equilibrium exists, then i
is also globally stable (Hsu et al., 1978) and if such a
equilibrium is unstable, a unique globally asymptoticall
stable limit cycle exists (Cheng, 1981). Similar to th
Bazykin model (Kuznetsov, 1998; Bazykin, 1998), wher
in addition to the linear predator death rate term in th
Rosenzweig–MacArthur model a quadratic death term
for the predator is introduced, the dynamic behaviour o
our model is more complex. A stabilizing effect is foun
due to mutual interference between the predators. Thi
effect is similar to that found in the Beddington–DeAn
gelis predator–prey model, see Beddington (1975)
DeAngelis et al. (1975).

The paper is organized as follows: First we present th
complete model. Then we show that by use o
aggregation methods, it is possible to build a globa
predator–prey model governing the total prey an
predator densities, by total predator density we signif
the predator density obtained by summation over a
individual predator categories such as searching, hand
ling, hawk and dove sub-populations. Thereafter, w
present the results of the bifurcation analysis of th
aggregated models with respect to two relevant para
meters, the carrying capacity and the costs for fight. Th
article ends with a general discussion on advantages o
different tactics and their effects on the stability of th
predator–prey system.
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2. Formulation of the model

This section is devoted to the introduction of the
model. We take into account two types of processes. On
the individual level, the model describes the behaviour
of the predator individuals with respect to defending
and fighting for food. On the population level, the
model describes birth and death processes. We first
explain the behavioural processes, then we describe the
population processes. Finally, we build the complete
model. It is a seven-dimensional system. The mathema-
tical study is provided in the next section.

2.1. Behavioural model

On the individual level, predator individuals have
three possible states of behaviour: they can be searching
for prey, finding a prey or defending it. Individuals in
each of these subpopulations can play the hawk or dove
tactics. We denote by pSD, pFD, pDD, pSH , pFH and pDH

the biomass of searching and dove predators, finding
and dove predators, defending and dove predators,
searching and hawk predators, finding and hawk
predators and defending and hawk predators, respec-
tively. The individuals can change their tactics only in
the defending subpopulation. Let

pS ¼ pSD þ pSH , (1a)

pF ¼ pFD þ pFH , (1b)

pD ¼ pDD þ pDH (1c)

be the biomass of searching predators, finding predators
and defending predators, respectively.

Fig. 1 illustrates the fluxes between the six compart-
ments. The fluxes between the subpopulation follow
from mass-action arguments. For instance individuals
(both posing the hawk and dove tactics) enter the
finding subpopulation when they meet a prey individual
and enter the defending subpopulation when they meet a
finding predator individual. In the defending state the
individuals can change their tactics via learning. The
fluxes between the hawk and dove behaviours are given
by the following gain matrix according to the hawk–
dove model introduced in game theory (Hofbauer and
Sigmund, 1998):

DH DD

A ¼

G�C
2

G

0 G
2

0
@

1
A DH

DD
, ð2Þ

where the pay-offs are to the individuals listed on the
right when confronted with individuals listed above. The
gain G of the game is the average amount of preys that
two predators dispute per unit of time. When two hawks
fight, they can get wounded. Let C be the cost due to
fighting between hawks per a pair of defending
predators and per unit of time. C is a positive parameter
which is allowed to be larger than the gain G.

The hawk–dove game provides a simple characteriza-
tion of contests between predators over a prey of value
G. All predators are equal in their abilities, but may
differ in terms of the behaviour that they adopt in a
contest with another predator. A predator that plays
hawk behaves aggressively and a predator that plays
dove displays to the other predator and retreats if the
other predator behaves aggressively.

Thus if a hawk contests the prey with a dove the hawk
gets the prey. If two doves contest the prey they share it,
each gets half the prey. If two hawks contest the prey
they fight, one wins the other loses. The winner gets the
prey and both winner and loser a cost that represents the
loss in weight as a result of the injuries. At population
level we say that each predator gets the half of the net
gain that is ðG � CÞ=2.

Let u be the vector u ¼ ððpDH=pDÞ; ðpDD=pDÞÞ
T, where

T denotes the transpose. We define ðAuÞD and ðAuÞH as
follows:

ðAuÞH ¼
G � C

2

pDH

pD

þ G
pDD

pD

, (3a)

ðAuÞD ¼
G

2

pDD

pD

, (3b)

where ðAuÞH (resp. ðAuÞD) represents the average gain of
a pure hawk (resp. dove) individual playing the hawk
(resp. dove) tactic all the time against a population with
given proportions ðpDH=pDÞ of hawks and ðpDD=pDÞ of
doves. The average gain for the whole population reads

uTAu ¼
pDH

pD

ðAuÞH þ
pDD

pD

ðAuÞD. (4)

The proportions ðpDH=pDÞ and ðpDD=pDÞ change in
time according to a behavioural model. Each predator
learns the gain of another randomly chosen other
predator and changes to the others tactic if he/she
perceives that the other’s gain is higher. However,
information concerning the difference in the average
gain of the two strategies is imperfect, so the larger the
difference in the gains, the more likely the predator is to
perceive it, and change. Based on these assumptions in
Gintis (2000) the following equations are derived:

dpDD

dt
¼ cððAuÞD � uTAuÞpDD, (5a)

dpDH

dt
¼ cððAuÞH � uTAuÞpDH , (5b)

where c is a rate constant. These equations are called the
replicator dynamic equations, After some algebraic
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SD

FD

DD

bpSpFH bpSpFD

c

anpSH

searching

defending

strategy  exchange

�pDH �pDD

anpSD

bpFpSD

bpFpSH

�pFD
�pFH

finding

SH

FH

DH

Fig. 1. The predator fluxes between the six compartments pSD; pSH ; pFD; pFH ; pDD; pDH . The fluxes except those between defending individuals are due

to encounters between predator individuals in a different behaviour state or between a predator individual and a prey individual modelled by the law

of mass-action. The fluxes between the two defending state model fluxes due to the change of tactics (hawk or dove) and these fluxes are modelled

using the replicator equation. All fluxes change at the fast time-scale.
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manipulations one obtains

dpDD

dt
¼ c

pDH

pD

pDD

pD

ððAuÞD � ðAuÞH Þ, (6a

dpDH

dt
¼ c

pDH

pD

pDD

pD

ððAuÞH � ðAuÞDÞ, (6b

where c40 is the proportional coefficient. The inter
pretation of Eqs. (6a) and (6b) is simple. Indeed, when
the gain of the dove (resp. hawk) is greater than the gai
of the hawk (resp. dove), the time derivative of Eq. (6) i
positive (resp. negative) and thus the dove populatio
(resp. hawk) increases. In other words, when a tacti
leads to a better benefit than another, individuals switc
to use it. Adding Eqs. (6a) and (6b) shows that th
number of defending predator individuals pD ¼ pDD þ

pDH does not change due to the fact that som
individuals alter their tactics.

When the changes of behaviour for the predator
individuals occur at the fast time scale, we have th
following equations for the dynamics of the predato
population:

dpSD

dt
¼ �bpF pSD � anpSD þ bpFD þ gpDD, (7a

dpFD

dt
¼ �bpSpFD þ anpSD � bpFD, (7b
dpDD

dt
¼ bpF pSD � gpDD þ bpSpFD

þ cððAuÞD � uTAuÞpDD, ð7c

dpSH

dt
¼ �bpF pSH � anpSH þ bpFH þ gpDH , (7d

dpFH

dt
¼ �bpSpFH þ anpSH � bpFH , (7e

dpDH

dt
¼ bpF pSH � gpDH þ bpSpFH

þ cððAuÞH � uTAuÞpDH , ð7f

where t is the fast time scale. The parameter a40 is th
prey–predator encounter rate for the predator, b40 i
the rate of returning from handling a prey, g40 is th
rate of returning from handling a prey after dispute. Th
magnitude of the rates a; c;b and g are such that a
the terms on the right-hand side of the equations are o
the same order.

In our model, after a predator catched a prey there i
a time-window in which the predator can encounte
another searching (both hawk and dove) predator. If i
does, it enters the defending state in which it fights an
thereafter handles the prey without interference wit
other predators. Both predator individuals become
searching predator after time 1=g. If it does not, th
predator individual handles its prey without interferenc
with other predators and enters the searching state 1=
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after it found a prey. Hawk and dove predators have the
same catch rate a.

We assume that each day predators capture a few
preys. Therefore, at the fast time scale, predators are
involved in the processes which are described in Fig. 1.
A searching predator can capture a prey and it becomes
a finding predator. If the finding predator is not found
by another searching predator, it eats its prey comple-
tely and switches thereafter back to the searching state.
Otherwise, if during its prey manipulation, the finding
predator is encountered by another searching predator,
both of them come into contest and switch to the
defending state. In the defending state, their interaction
is described by the hawk–dove game. Therefore,
predators enter in contest at the same rate as they enter
in the defending state, given by the expression bpSpF (see
Fig. 1). This expression represents the number of
contests per unit of time which depends on the densities
of searching and finding predators. At each contest, two
defending predators dispute a single prey. Therefore, the
prey biomass (assumed to be equal for all prey
individuals) that pairs of defending predators dispute
per unit of time is bpSpF . As a consequence, a single
defending predator disputes bpSpF=ðpD=2Þ leading to

G ¼ 2
bpSpF

pD

, (8)

which is the gain of the game, that is the prey biomass
per unit of time that is obtained by a pair of defending
predator. When there are many contests per unit of
time, hawk predators fight more frequently and get
more injured. Thus, in a similar way as for the gain, we
assume that the per unit of time cost is proportional to
the rate at which predators come into contest and
consequently the cost per unit of time is proportional to
the gain. Observe that the dimension of the gain and
cost are per unit of time, since we consider the increased
biomass of the predator due to ingestion of prey
biomass per unit of time while the biomasses of the
prey and predator are expressed in the same dimensions,
for instance C-mole or grams.

At this stage we make some remarks. The predator–
prey and predator–predator encounters occur at the
individual level and we assume a well-mixed environ-
ment so that the law of mass-action is valid. Also
fightings are between individuals. Hence the pay-offs are
first formulated at the individual level. However,
assuming large numbers of individuals allows us to use
averages for the predator population of which the state
is described by six biomass variables. Therefore, all
rates, but also the gain and costs, are finally defined per
predator biomass instead of per individual. Conse-
quently, it is possible that although the gain shared by
two disputing individuals is constant in (2), the average
gain rate defined in (8) is time-dependent when the
composition of the predator population changes in time.
Later in the subsection we will show that in the fast
equilibrium, this gain and also costs tend rapidly to a
constant.

2.2. Predator– prey model

Let us now consider the temporal change of the total
population biomasses. Firstly, we consider the prey
dynamics. We assume a slow logistic growth for the prey
in the absence of predator population. Furthermore, the
prey are caught by searching predators. We assume that
the loss of prey is proportional to the capture of prey,
which, according to the mass-action law, is proportional
to prey density and searching predator density. The
model for the prey population reads

dn

dt
¼ � rn 1�

n

K

� �
� apSn

� �
, (9)

where r is the intrinsic population growth rate, K is the
carrying capacity and a is the prey–predator encounter
rate for the prey. We assume that prey growth takes long
periods of time (several weeks). Therefore, the logistic
growth appears as a small term in Eq. (9). We thus
introduce a small dimensionless parameter � which is
used to slow down the growth speed. Furthermore, we
assume that the prey biomass which is captured per unit
of time remains small. In other words, the prey biomass
which is ingested per days remains small with respect to
the total prey biomass. Thus, the predation term is also
small in Eq. (9).

Secondly, we consider the predator population
dynamics. Preys that are ingested by predators allow
maintenance and growth. This is a slow process which
takes long periods of time (several weeks) with respect to
the day which is the time scale of prey captures. Prey
biomass is used for maintenance of predators and is also
converted into new predator biomass via reproduction.
This conversion of prey biomass is assumed to occur
slowly and we again use the small dimensionless
parameter �.

The predators in the finding state and in the defending
state consume prey individuals and increase the predator
population density. Two contributions must be con-
sidered, the flux of prey biomass corresponding to preys
handled by finding predators and the flux of prey
biomass that predators dispute in the defending state.
They correspond to prey biomass ingested by predators
and converted into predator biomass with some
efficiency given by parameter a.

The predator population model is slow and reads as
follows:

dpSD

dt
¼ �ða ðbpFD þ ðAuÞDpDDÞ � mpSDÞ, (10a)

dpFD

dt
¼ ��mpFD, (10b)
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dpDD

dt
¼ ��mpDD, (10c

dpSH

dt
¼ �ða ðbpFH þ ðAuÞHpDH Þ � mpSH Þ, (10d

dpFH

dt
¼ ��mpFH , (10e

dpDH

dt
¼ ��mpDH , (10f

where a is the efficiency coefficient. The first contribu
tion is the flux of prey biomass when hawk (resp. dove
predators return from finding to searching. These pre
biomass fluxes are small, �bpFH for hawks (resp. �bpFD

for doves). The second contribution corresponds t
preys that are consumed by defending predators and i
the prey biomass flux associated to the flux of predator
entering the defending state from the searching an
finding states, ðAuÞHpDH for hawks (resp. ðAuÞDpDD fo
doves). We recall that ðAuÞH (resp. ðAuÞD) represents th
average prey biomass that hawk (resp. dove) defendin
predators eats per unit of time. Then, we must multipl
by the number of predators of each type to obtain th
total prey biomass ingested by the hawk and dov
defending sub-populations.

We assume that the predators have a natural deat
rate m at the slow time scale and that the slow predato
increase of biomass which is due to prey consumption
only occurs in the searching state.

The complete model is obtained by coupling th
previous predator behavioural model and the popula
tions model as follows:

dpSD

dt
¼ � bpF pSD � anpSD þ bpFD þ gpDD

þ �ða ðbpFD þ ðAuÞDpDDÞ � mpSDÞ, ð11a

dpFD

dt
¼ �bpSpFD þ anpSD � bpFD � �mpFD, (11b

dpDD

dt
¼ bpF pSD � gpDD þ bpSpFD

þ cpDDððAuÞD � uTAuÞ � �mpDD, ð11c

dpSH

dt
¼ � bpF pSH � anpSH þ bpFH þ gpDH

þ �ða ðbpFH þ ðAuÞHpDH Þ � mpSH Þ, ð11d

dpFH

dt
¼ �bpSpFH þ anpSH � bpFH � �mpFH , (11e

dpDH

dt
¼ bpF pSH � gpDH þ bpSpFH

þ cpDH ððAuÞH � uTAuÞ � �mpDH , ð11f
dn

dt
¼ � rn 1�

n

K

� �
� anpS

� �
. (11g
3. The aggregation method

We deal with the seven-dimensional system (11), b
means of the aggregation method. We take advantage o
the two time scales to reduce the dimension of th
complete previous system of seven equations into
system of two equations only. For aggregation methods
we refer to Iwasa et al. (1987, 1989), Auger and Bravo d
la Parra (2000), Bravo de la Parra et al. (1995). The
permit to reduce the study to a two-dimensional system
governing the total population variables n and p

Indeed, these variables are slow, that is they almost d
not change on the fast processes time scale. Conse
quently, the total population dynamics governed by th
aggregated model and the complete model are � close
Thus we analyze the system by considering n and p a
constant and we show that the remaining system has
stable fast equilibrium. Then we replace the fas
variables by their equilibrium values in the n and
derivatives equations. The obtained model is calle
‘‘aggregated model’’ and is analyzed in the next section

3.1. Fast equilibrium

Using the fast system (7) one can build a three
dimensional system governing the variables pS, pF an
pD. This system reads

dpS

dt
¼ �bpF pS � anpS þ bpF þ gpD, (12a

dpF

dt
¼ �bpSpF þ anpS � bpF , (12b

dpD

dt
¼ 2bpF pS � gpD. (12c

Notice that the sum of the three equations in (12) i
null. Indeed, the total number of predators is no
affected by the change of behaviour of individuals. As
consequence, we can omit one equation by considerin
the total number of predators p ¼ pS þ pF þ pD. W
replace pD by p� pS � pF in Eqs. (12a, b). We thus ge
the following set of differential equations:

dpS

dt
¼ �bpF pS � anpS þ bpF þ gðp� pS � pF Þ, (13a

dpF

dt
¼ �bpSpF þ anpS � bpF . (13b

At equilibrium, both equations are vanishing. Let p�S, p

and p�D denote the equilibrium values of th
variables. By using the second equation, we get th



ARTICLE IN PRESS
P. Auger et al. / Journal of Theoretical Biology 238 (2006) 597–607 603
following relation:

p�F ¼
an

bþ bp�S
p�S. (14)

We then substitute this expression for pF in the right-
hand side of Eq. (13a) and put it equal to zero since we
are interested in the equilibria of the fast system. We get

p�S ¼
gðbp� b� anÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2ðbp� b� anÞ2 þ 8abgbnpþ 4g2bbp

q
2ð2abnþ bgÞ

.

(15)

Finally, we have

p�D ¼ p� p�S � p�F . (16)

Now, let us denote by p�SD, p�FD, p�DD, p�SH , p�FH , p�DH

the equilibrium values associated to the fast system,
obtained by letting � ¼ 0 in the previous seven-dimen-
sional system (7) and let t ¼ �t.

At the fast equilibrium, a simple calculation shows
that G� ¼ g. In the same way we denote the costs at the
fast equilibrium by C� ¼ d. Since we have constant
equilibrium of the fast system, the gain is constant and
equals the return rate from the defending state to the
searching state. In a similar way also the costs d are
constant.

It remains to determine the equilibrium values pn
SD,

pn
FD, pn

DD, pn
SH , pn

FH , pn
DH . It is easy to check that this

equilibrium state is reached at the same conditions that
are needed by the defending subpopulations to reach the
game dynamics equilibrium of system (6). That is, the
fast game dynamics, pDH3pDD , is decoupled from the
fast predator composition dynamics, pSH3pFH3pDH

and pSD3pFD3pDD. We obtain for pn
DH and pn

DD

pn

DH ¼
g
d

pn

D; pn

DD ¼
d� g
d

pn

D. (17)

Hence, there is only a positive nontrivial equilibrium
when god. This is the dimorphic case where the
predator population consists of hawk and dove pre-
dators. There are also the two trivial equilibria, the
monomorphic cases, ðpn

DH ; p
n
DDÞ ¼ ð0; p

n
DÞ (only doves)

and

pn

DH ¼ pn

D; pn

DD ¼ 0 (18)

(only hawks). It is easy to show that: if god, then the
nontrivial equilibrium is stable and the other ones are
unstable, while if g4d then the nontrivial becomes
unstable and the trivial equilibrium ðpn

DH ; p
n
DDÞ ¼ ðp

n
D; 0Þ

becomes stable.
The equilibrium values for the other variables can be

calculated with the following formulas:

p�FD ¼
ang

ðbp�S þ bÞðbp�F þ anÞ � anb
p�DD, (19a)

p�SD ¼
bp�FD þ gp�DD

bp�F þ an
, (19b)
p�FH ¼
ang

ðbp�S þ bÞðbp�F þ anÞ � anb
p�DH , (19c)

p�SH ¼
bp�FH þ gp�DH

bp�F þ an
. (19d)

Observe that the denominators are positive and there-
fore also the biomasses of the subpopulations.
In Appendix A, we show that this equilibrium of
the six-dimensional fast system (7) is hyperbolically
stable; a requirement for applying the aggregation
technique.
3.2. The aggregated model

We build the population model where we use time-
scale arguments. The derivative of the total predator
population p ¼ pSD þ pFD þ pDD þ pSH þ pFH þ pDH

equals

dp

dt
¼ aðbpF þ ðAuÞHpDH þ ðAuÞDpDDÞ � mp, (20)

here we use the fact that 1=b is the handling time and the
definition of the gain of the hawk–dove game.

A straightforward calculation shows that the equa-
tions for the total populations densities can be rear-
ranged as follows:
�
 If god then we have the dimorphic case (mixed hawk
and dove predators) which we call model I:

dn

dt
¼ rn 1�

n

K

� �
� anpn

S, (21a)

dp

dt
¼ �mpþ a bp�F þ

g
2

1�
g
d

� �
pn

D

� �
. (21b)
�
 If g4d then we have the monomorphic case (only
hawk predators) which we call model II:

dn

dt
¼ rn 1�

n

K

� �
� anpn

S, (22a)

dp

dt
¼ �mpþ a bp�F þ

g
2

1�
d
g

� �
pn

D

� �
, (22b)

where the values of pn
S, pn

F are given by (14,15) and
pn

D ¼ p� pn
S � pn

F . Observe that the switch between
the models when g ¼ d is smooth with respect to the
state variables nðtÞ and pðtÞ.
After this two-dimensional system has been solved,
approximations for the densities of the various sub-
populations pSDðtÞ; pFDðtÞ; pDDðtÞ; pSH ðtÞ; pFH ðtÞ; pDH ðtÞ

can be calculated, according to the quasi-steady state
assumption, with Eqs. (17)–(19).
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Fig. 2. The two-dimensional bifurcation diagram for the aggregated

system using d and K as bifurcation parameters. The transcritical

bifurcation (TC) marks the region of coexistence for K values above

this curve. Two supercritical Hopf bifurcations (H�) mark regions

where the system cycles. Parameters: r ¼ 1:0, b ¼ 1:0, b ¼ 1:0, g ¼ 1:0,
a ¼ 1:0, a ¼ 1:0 and m ¼ 0:5. The solid vertical curve separates the

regions where models I and II apply.
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Fig. 3. One-parameter diagram of the prey (bottom) predator (top)

biomasses, n and p respectively, with d as bifurcation parameter and

K ¼ 10. This point is below the Bautin bifurcation point B where the

positive equilibrium becomes unstable at a supercritical Hopf H�,

where stable oscillations occur. For these limit cycles the maximum

and minimum values are plotted.
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4. Bifurcation analysis of the aggregated model

We present bifurcation diagrams for the aggregate
model, two-parameter bifurcation diagram Fig. 2 an
one-parameter bifurcation diagrams (Figs. 3 and 4). Th
bifurcation diagrams were calculated using the softwar
packages AUTO (Doedel et al., 1997), LOCBIF (Khibni
et al., 1993; Kuznetsov, 1998).

In a one-parameter bifurcation diagram Fig. 3 th
biomass of the prey (bottom panel) and predator (to
panel) are plotted as a function of the free parameter
while other parameters are fixed at values given, whil
K ¼ 10. Stable equilibria are presented by a solid lin
and unstable equilibria by a dashed line in which cas
there is a limit cycle that surrounds the unstabl
equilibrium. The maximum and minimum values durin
one period are plotted as solid lines when the limit cycl
is stable and dashed lines when it is unstable (this latte
case does not occur for K ¼ 10).

For intermediate d values in a range around the valu
d ¼ g ¼ 1 bounded by supercritical Hopf bifurcation
H� for each model, the positive equilibrium is stable
Outside this range for low and high d values the solution
oscillates. In this cyclic regime the minimum of the pre
population becomes very low and extinction due t
stochastic effects becomes likely.

In Fig. 4 a similar plot is given, where K ¼ 20. Agai
the equilibrium is unstable for low and high d-values
The Hopf bifurcations are however of a different natur
than those for K ¼ 10 given in Fig. 3. Here the Hop
bifurcations, for each model, are subcritical denoted b
Hþ. For instance for increasing d this means that th
originating limit cycle is unstable and close to the Hop
bifurcation there are two attractors a stable equilibrium
and a stable limit cycle. This stable limit cycle emanate
from a tangent bifurcation of the limit cycle, denoted b
Tc, where a stable and an unstable limit cycle coincide

So, for K ¼ 10 there are two supercritical Hop
bifurcations H� and for K ¼ 20 two subcritical Hop
bifurcations Hþ. Hence there is an intermediate critical K

value where the Hopf bifurcations change nature. Th
critical points are codim-two Bautin bifurcation points
These points are denoted by B in the two-paramete
bifurcation diagram (Fig. 2) where d and K act a
bifurcation parameters. The tangent bifurcation of th
limit cycle, denoted by Tc, originates in this point (Fig. 2)

Below the transcritical bifurcation curve TC th
predator cannot invade the prey population for th
carrying capacity K is too low to support both prey an
predator population.
e
l

-
e
r
,

5. Discussion and conclusions

We stress that although the equations of th
behavioural part are the same as those in the classica
hawk–dove contest in evolutionary theory, the inter
pretations of the various terms here differ. In th
classical hawk–dove contests, see for instance (Hofbaue
and Sigmund, 1998), the gain is the increase in fitness
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Fig. 4. One-parameter diagram of the prey (bottom) predator (top)

biomasses, n and p respectively, with d as bifurcation parameter and

K ¼ 20. This point is above the point B where the positive equilibrium

becomes unstable at a subcritical Hopf bifurcation Hþ where unstable

oscillations occur. These unstable limit cycles become stable in a

tangent bifurcation point for limit cycles, denoted by Tc. For these

limit cycles the maximum and minimum values are plotted (solid:

stable and dashed: unstable).
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here it is the increase in predator-biomass due to the
consumption of prey-biomass. In the classical hawk–-
dove game the rate of change of the tactics (on the
evolutionary time-scale) is small with respect to the
predator–prey development rate (ecological time-scale),
here the rates in the replicator equations are fast just as
the predator–prey interaction rate in the Holling disc-
equation with respect to the predator–prey development
rate. In the classical hawk–dove game mutants invade
the resident strategies and cause an evolutionary
sequence to an evolutionary endpoint, here the defend-
ing predator individuals learn and switch tactics fast,
possibly many times during their lifetime.

For the growth of the prey we use the logistic
equation which is a basic paradigm in population
ecology, introduced in almost any textbook on ecology.
In Kooi et al. (1997, 1998b) it is argued that when the
prey consumes a nutrient and is consumed itself by a
predator the law of mass conservation is not obeyed.
However, the resulting model is three dimensional. In
this article we concentrate on the effects of behavioural
aspects in the predator–prey interaction on the dynamics
and for the sake of simplicity we assumed logistic
growth of the prey. The resulting model is two-
dimensional and this simplifies the analytical treatment.
Numerical bifurcation analysis in combination with
aggregation techniques for a fast–slow predator–prey-
nutrient system under batch and chemostat environ-
mental conditions without recycling is performed in
Kooi et al. (1998a, 2002) for the case when nutrient
recycling is possible.

Let us say a few words about the structure and
meaning of the aggregated models. Therefore, we
consider the limiting case b! 0. The quadratic equa-
tion for pS has the following positive solution

p�S ¼
bp

bþ an
, (23)

when b! 0. Furthermore, we have

p�F ¼ p� p�S ¼
anp

bþ an
¼

an

b
p�S; p�D ¼ 0. (24)

Hence, the limiting case b ¼ 0 yields indeed the classical
Rosenzweig–MacArthur model with the Holling type II
functional response for the trophic interaction between
the predator and prey population. The aggregated
model (21), (22), reads

dn

dt
¼ rn 1�

n

K

� �
� anpn

S;
dp

dt
¼ �mpþ abp�F , (25)

or

dn

dt
¼ rn 1�

n

K

� �
�

banp

bþ an
;

dp

dt
¼ �mpþ a

banp

bþ an
.

(26)

For this Rosenzweig–MacArthur model, the paradox
of enrichment holds and for large values of the carrying
capacity K of the prey, the equilibrium becomes unstable
and a stable limit cycle occurs. In the general case when
ba0, the bifurcation diagram shows that in a given cost
range, there is a stable equilibrium point with constant
prey and predator biomasses. For example, if the cost d
is set close to g ¼ 1, then an increase of the carrying
capacity K of the prey does not lead to oscillations of
prey and predator biomasses. Therefore, in this range of
costs, the paradox of enrichment is not observed. In this
range, the prey–predator system is stable. This can occur
for a pure hawk predator population, corresponding to
model I, where costs should be limited (smaller than the
gain). Therefore, to have global stability, fightings
between hawks should not involve too much injuries.
However, stability can also occur for a mixed hawk–-
dove predator population, corresponding to model II,
for a cost close but smaller than the return rate.
Therefore, it turns out that the behavioural interactions
between the defending predators has a stabilizing effect
on the prey–predator system. This is in agreement with
the findings in DeAngelis et al. (1975) where it is stated
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that: ‘‘mutual interference between the predators is
major stabilizing factor in a nonlinear system.’’

The bifurcation diagram also shows that for small an
large cost values, the paradox of enrichment is observed
with a stable equilibrium at small prey carrying capacit
and a stable limit cycle for larger ones. However, due t
the existence of a Bautin bifurcation which is neve
possible in the classical Rosenzweig–MacArthur mode
there exists a narrow area of cost values in which
stable equilibrium and a stable limit cycle separated b
the stable manifold of the unstable limit cycle can co
occur. Therefore, according to initial conditions, th
prey and predator populations can coexist at constan
biomasses or cycle.

We also studied the bifurcation diagrams for differen
values for the other parameters, for example b. W
found that the bifurcation pattern is robust for reason
able ranges of these parameters around the referenc
values mentioned in the caption of Fig. 2.
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Appendix A. Stability of the fast system

The Jacobian matrix evaluated at the equilibrium
ðp�S; p

�
F Þ of the two-dimensional system for the stat

variable ðpS; pF Þ reads

J ¼
�bpn

F � an� g �bpn

S þ b� g

�bpn

F þ an �bpn

S � b

 !
. (27

Clearly, the trace of this matrix is negative. Th
determinant reads

detðJÞ ¼ bbpn

F þ 2abnpn

S þ gbpn

S þ gbþ bbpn

F

� gbpn

F þ gan

detðJÞ4� gbpn

F þ gan ¼ gðan� bpn

F Þ. ð28

Now, at equilibrium, (13b) is equivalent (if pn
Sa0) to

an� bpn

F ¼ b
pn

F

pn
S

40, (29

and hence the determinant is positive. Therefore, bot
eigenvalues of the Jacobian matrix are negative or hav
negative real part. This shows that the equilibrium
ðp�S; p

�
F Þ, given in (15), is stable for the system (13).

With (16) the solution of the three-dimensional system
(12) converges to the equilibrium ðp�S; p

�
F ; p
�
DÞ, where p�D

is given in (15), after a small perturbation.
The equilibria ðp�DH ; p

�
DDÞ are those of replicato

equations (6), where p�D ¼ p�DD þ p�DH is given in (15)
The equilibrium values are given by (17) and (18) whe
god and g4d respectively. This equilibrium of th
replicator system (6) which is decoupled from the othe
elements of the complete fast system (7) is stable.

By definition (1) we have pS ¼ pSD þ pSH . So, the sum
of the searching hawk and dove predator biomasses p

converges to its equilibrium state after small perturba
tions from ðp�S; p
�
F ; p
�
DÞ. However, both pSD and pSH d

not need to converge to their equilibrium value
separately, only their sum does. The same holds fo
the finding predators pF ¼ pFD þ pFH . Therefore w
analyze the complete fast system.

The six-dimensional fast system (7) reads

dpSD

dt
¼ �bp�F pSD � anpSD þ bpFD þ gp�DD, (30a

dpFD

dt
¼ �bp�SpFD þ anpSD � bpFD, (30b

0 ¼ bp�F pSD � gp�DD þ bp�SpFD, (30c

dpSH

dt
¼ �bp�F pSH � anpSH þ bpFH þ gp�DH , (30d

dpFH

dt
¼ �bp�SpFH þ anpSH � bpFH , (30e

0 ¼ bp�F pSH � gp�DH þ bp�SpFH , (30f

where ðp�S; p
�
F ; p
�
DÞ and ðp

�
DH ; p

�
DDÞ are the equilibria o

the decoupled subsystems.
Eq. (30c) gives

bp�F pSD þ bp�SpFD ¼ gp�DD, (31

where p�DD is given in (18). Substitution of the expressio
for pFD into (30a) yields

dpFD

dt
¼ �ðbp�S þ an

p�S
p�F
þ bÞpFD þ

angp�DD

bp�F
. (32

Because of the negative rate, small perturbations of pFD

from its equilibrium (19a) diminishes exponentially
Then, since p�F ¼ pFD þ pFH , also pFH returns to it
equilibrium value (19d) after a small perturbation
Similarly one can show that this holds also for pSD

and pSH . We conclude using the special case of Theorem
1.1 mentioned on page 316 in Coddington and Levinso
(1955) that the equilibrium of the fast system is stable.

This allows application of the aggregation techniques
see Sakamoto (1990).
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