
April 23, 2003 9:7 WSPC/103-M3AS 00265

Mathematical Models and Methods in Applied Sciences
Vol. 13, No. 4 (2003) 491–525
c© World Scientific Publishing Company

APPROXIMATE REDUCTION OF MULTI-TYPE

GALTON WATSON PROCESSES WITH TWO TIME SCALES

LUIS SANZ
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Departamento de Matemáticas, Universidad de Alcalá,
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Approximate aggregation techniques consist of introducing certain approximations that
allow one to reduce a complex system involving many coupled variables obtaining a

simpler “aggregated system” governed by a few “macrovariables”. Moreover, they give
results that allow one to extract information about the complex original system in terms
of the behavior of the reduced one. Often, the feature that allows one to carry out such
a reduction is the presence of different time scales.

In this work we deal with the approximate aggregation of a model for a population
subjected to demographic stochasticity and whose dynamics is controlled by two pro-
cesses with different time scales. There are no restrictions on the slow process while the
fast process is supposed to be conservative of the total number of individuals. The incor-
poration of the effects of demographic stochasticity in the dynamics of the population
makes both the fast and the slow processes being modelled by two multi-type Galton–
Watson branching processes. We present a multi-type global model that incorporates the
combined effect of the fast and slow processes and develop a method that takes advantage
of the difference of time scales to reduce the model obtaining an “aggregated” simpler
system. We show that, given the separation of time scales between the two processes is
high enough, we can obtain relevant information about the behavior of the multi-type
global model through the study of this simple aggregated system.
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1. Introduction

Approximate aggregation techniques provide a methodology for studying the

dynamics of some high dimensional dynamical systems by means of a lower
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dimensional one. We deal with systems that are complex in the sense of having

a large number of variables, and make use of the existence of different time scales

(i.e. of biological processes which take place with characteristic times very different

from each other) to introduce approximations that allow substitution of the global

system by a reduced system that retains at least some of the properties of the

original system.

We can think of a system with different time scales as an hierarchically struc-

tured system with division into subsystems that are weakly coupled and simultane-

ously exhibit a strong internal dynamics. The idea of aggregation is to choose a few

(usually one) “macrovariables” for each subsystem and to build a reduced system

for these macrovariables. In many cases the dimension of the aggregated system is

considerably lower than that of the original system.

These techniques have been widely studied in many different contexts: dis-

crete and continuous time models based on linear and nonlinear systems in both

autonomous and non-autonomous cases (see for example Refs. 1, 2, 6, 12, 17 and

19 where further references on the field can be found).

Currently, stochasticity is one of the main items in the field of ecological

modelling. In general, ecosystems are influenced by a large number of factors and

this makes it impractical to include all of them in a mathematical model. On the

other hand, its exclusion generates unexplained variation whose consideration im-

plies the use of stochasticity. In population models, this stochasticity appears in

two ways:

(a) When it affects the vital rates of the population and is supposed to arise from

random changes in the environment (climatic conditions, interaction with other

species, etc.) it is called “environmental stochasticity”.20 The study of aggre-

gation techniques for models subjected to environmental stochasticity has been

addressed by Sanz and Bravo de la Parra.18

(b) When it produces deviations in the behavior of each individual with respect to

the global vital rates, it is called demographic stochasticity. This second kind

of stochasticity becomes essential in the study of small populations, where its

effects may be crucial for the fate of the community, sometimes even causing

its total extinction.10

The classical mathematical tools for modelling the dynamics of a structured

population subjected to demographic stochasticity in discrete time are the multi-

type Galton–Watson branching processes.13,16 These models have been frequently

used in genetics, physics, mathematics and biology. Some recent contributions in the

field can be found in Refs. 5, 7, 15 and 21. The effects of environmental stochasticity

can be incorporated in these models, obtaining the so-called Multi-type Branching

Processes in Random Environments (MBPRE).3,8

Aggregation techniques in the context of systems subjected to demographic

stochasticity have been introduced in Ref. 4 to deal with a population without

age structure and living in a multipatch environment. The resulting multi-type
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g.w.p. is reduced to obtain a unitype process for the total size of the population.

Moreover, results are given that allow one to obtain information of the global process

in terms of the reduced one. Specifically, both the mean population vector and

the probability of extinction of the original model can be approximated by those

corresponding to the reduced unitype model.

This work extends the aggregation techniques presented in Ref. 4 in two direc-

tions: in the first place, we contemplate the approximate aggregation of a general

g.w.p. in which there are two time scales involved, being the resulting reduced sys-

tem a simpler multi-type g.w.p. governed by a set of so called “macrovariables”.

We present a “global” model for a system whose dynamics is controlled by two

processes with different time scales. Essentially, the slow process can correspond to

any general multi-type g.w.p. meanwhile the fast dynamics is associated to a pro-

cess which is conservative of the total number of individuals and is modelled by a

Markov chain. By making use of the existence of different time scales we introduce

approximations that allow us to reduce the global model. As an illustration of the

use of our aggregation technique, we undertake the reduction of a multiregional

age-structured model subjected to demographic stochasticity.

In the second place, we extend the analysis of the relationships between the

original system and the reduced model carried out in Ref. 4. We obtain relation-

ships between the two systems in our general setting in the following sense: if the

separation of time scales between the fast and the slow processes is large enough,

then certain features of the original system can be approximated by those corre-

sponding to the reduced one. These features include the mean and the moments

of second order of the population vector, the probability of extinction and, for the

subcritical case, the mean population vector conditional on non-extinction. As a

consequence of these results it follows that we can approximate the behavior of the

original complex model by studying the reduced system. Therefore, the aggregation

technique we propose constitutes a tool for the analysis of complex models with two

time scales and subjected to the effects of demographic stochasticity.

2. Organization of the Work and Main Results

Section 3 is devoted to motivate the aggregation procedure developed in the paper.

In order to do so, we set out a simple multiregional model which stands out as an

important particular case of the general model introduced below. It describes the

dynamics of an age-structured population with two age classes living in a two-patch

environment and subjected to the effects of demographic stochasticity.

In Sec. 4, we present a general multi-type g.w.p. for a structured population

whose dynamics is controlled by two processes with different time scales, to which

we will refer as fast and slow dynamics. We assume these processes to be subjected

to demographic stochasticity and, consequently, they are modelled by multi-type

g.w.p.’s. The model we propose can be considered as a generalization, that takes into

account the effects of demographic stochasticity, of a model previously presented
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by the authors17 corresponding to a system with two time scales in a deterministic

context.

The population is supposed to be structured in q groups attending to any cha-

racteristic of the individuals and each group is divided into subgroups in such a way

that the total number of subgroups is N . We impose no restrictions over the slow

process, meanwhile for the fast process we assume: (a) is internal for the groups,

i.e. there is no transference of individuals between the different groups by means

of the fast process and (b) is conservative of the total number of individuals and

consequently it is modelled through a Markov chain.

We introduce these two g.w.p.’s through their probability generating functions

(in the sequel p.g.f.’s) each of which is referred to the projection interval of the

corresponding process. Then we formulate a multi-type g.w.p. with N types that

takes into account the effect of both dynamics and is referred to the characteristic

time of the slow process.

In order to approximate the effect of the fast process over the time step of the

model, which is much longer than its own projection interval, we assume that in

each time step of the model the fast process acts in a large number k of times.

Here k can be interpreted as the ratio of the characteristic times for the slow and

the fast processes. In this way, the model that takes into account the joint effect

of the fast and the slow process referred to the characteristic time of the latter

can be interpreted as the “composition” of k iterations of the fast process followed

by one iteration of the slow process. Lemma 1 characterizes mathematically the

composition of multi-type g.w.p.’s and allows us to build the p.g.f. and the matrices

that characterize the first and second order moments for the population vector of

the global model.

In Sec. 5 we carry out the reduction of the global model in two steps. In the

first place we approximate the original system by an auxiliary system in which

the Markov chain modelling the fast process reaches its equilibrium distribution in

each time step of the model. By defining the macrovariables as the total population

in each group, we can reduce this auxiliary system obtaining a simpler aggregated

g.w.p. with q types. Propositions 1 and 2 allow one to construct this reduced system

in terms of the slow process and the equilibrium characteristics of the fast process.

Indeed, Proposition 1 gives the p.g.f., whose components are weighted sums of

the p.g.f.’s corresponding to the slow process being the weights dependent on the

equilibrium probabilities of the fast dynamics. On the other hand, Proposition 2

provides the matrices characterizing the moments of first and second order for

the reduced system. The last part of this section deals with the application of

the aggregation procedure just described to the multiregional model introduced in

Sec. 3.

The behaviors of the original model and the reduced model are compared in

Sec. 6. Proposition 3, which is a direct application of some previous results by

the authors17 regarding aggregation in a deterministic context, states that the
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expected growth rate of the population size for the global process can be obtained

as a perturbation of the expected growth rate for the reduced model. Moreover,

the dominant eigenvectors of the matrix of expected values for the global system

can be approximated in terms of those corresponding to the aggregated system.

These perturbations are characterized asymptotically when k, that measures the

separation of time scales between the slow process and the fast process, tends to

infinity. The size of this perturbation is related to the modulus of the subdomi-

nant eigenvalue of the matrix of expected values for the fast process, in such a way

that the faster the fast process reaches its equilibrium distribution, the smaller the

perturbation is.

Proposition 4 relates the properties of singularity, positive regularity and

super/subcriticality of the g.w.p.’s corresponding to the global system and the

reduced model. In particular, the latter is supercritical (subcritical) if and only if

the latter is for a high enough separation of time scales between the fast and the

slow process.

In Proposition 5 we show that the probability of extinction in finite time in the

global process can be obtained as a perturbation of the corresponding probability

of extinction in the reduced system, while Proposition 6, which is a generalization

of a similar result of the authors in Ref. 4, relates the probabilities of ultimate

extinction for both systems.

Proposition 7 allows us to approximate the asymptotic behavior of the mean

population vector for the global model in terms of the dominant eigenvalues and

eigenvectors of the matrix of expected values for the reduced model, meanwhile

Proposition 8 approximates the asymptotic behavior of the second order moments

of the original system in terms of information pertaining to the aggregated system.

As guaranteed by Proposition 4, in the case the aggregated system is subcritical

then so is the original model for a sufficiently high separation of time scales, and

consequently in both models population becomes eventually extinct. However in

both cases the expected population vector conditional on non-extinction approaches

a constant vector. Proposition 9, which constitutes our main result as far as the

relationships between the original and the reduced systems is concerned, allows one

to approximate the asymptotic behavior of the expected population vector condi-

tional on non-extinction in terms of the characteristics of the aggregated system.

In order to estimate the accuracy of the approximations mentioned above, i.e. of

the error we incur when studying the global system in terms of the reduced one, we

have carried out some computer simulations for the multiregional model of Sec. 3.

These show that the error is small even for moderate values of k and so our reduction

technique can be useful in the study of real biological populations.

3. A Multiregional Model with Fast Migration

In this section we consider a multiregional model for an age-structured population

with two age classes, young and adults. The population is distributed between two
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spatial patches and influenced by the effects of demographic stochasticity. Within

each age class (group) we classify the individuals into subgroups regarding the

patch (T1 or T2) they live in. For each n, let xij
n be the number of individuals

of age i living in patch j at time n. Then the population vector at time n is

Xn = (x11
n , x12

n , x21
n , x22

n )T and so the random sequence Xn is a realization of a

multi-type Galton–Watson branching process with four types.

The evolution of the population is governed by two processes: a birth–death

process corresponding to demography that models the transition among the two

age classes, and a Markov chain that models the migration among the two patches.

We assume that, as is often the case in real populations1,17 migration is a fast

process with respect to demography.

We impose two hypotheses on the birth–death process modelling demography:

(HE1) The newborn offspring is supposed to inhabit the patch of the father.

(HE2) Each individual can produce at most two offspring in a time step.

These hypotheses stand for this particular model but they will be removed from

the general setting described in Sec. 4.

Given a vector α = (α11, α12, α21, α22) ∈ Z4
+ let pij

S (α) denote the probability of

an individual of age i living at patch j to produce an offspring α (i.e. α11 young at

T1, α12 at T2, α21 adults at T1 and α22 at T2) after an iteration of the birth–death

process.

Note that hypothesis (HE1) implies that pi1
S (α) = 0 if α12 > 0 or α22 > 0 and

that pi2
S (α) = 0 if α11 > 0 or α21 > 0. Besides, from hypothesis (HE2), pi2

S (α) = 0

if α11 > 2 or α12 > 0. On the other hand, a young individual may produce an

adult by surviving to the next generation but it will never produce more than one,

so p1j
S (α) = 0 if α2j > 1. Finally, an adult can just produce young individuals, so

p2j
S (α) = 0 if α2j > 0. From these remarks we deduce that the p.g.f. associated to

the birth–death process in our example has the form:

G11
S (s) = p11

0000 + p11
1000s11 + p11

2000s
2
11 + p11

0010s21 + p11
1010s11s21 + p11

2010s
2
11s21 ,

G12
S (s) = p12

0000 + p12
0100s12 + p12

0200s
2
12 + p12

0001s22 + p12
0101s12s22 + p12

0201s
2
12s22 ,

G21
S (s) = p21

0000 + p21
1000s11 + p21

2000s
2
11 ; G22

S (s) = p22
0000 + p22

0100s12 + p22
0200s

2
12 ,

defined for s = (s11, s12, s21, s22) ∈ R4 where, in order to keep the notation compact,

we are denoting p11
1010 := p11

S (1, 0, 1, 0) and so on.

Besides, the matrix of expected values associated to the birth–death process is

M = (mij) ∈ R4×4 where

m11 = p11
1000 + 2p11

2000 + p11
1010 + 2p11

2010 ; m31 = p11
0010 + p11

1010 + p11
2010 ,

m22 = p12
0100 + 2p12

0200 + p12
0101 + 2p12

0201 ; m42 = p12
0001 + p12

0101 + p12
0201 ,

m13 = p21
1000 + 2p21

2000 ; m24 = p22
0100 + 2p22

0200

and the remaining components are null.
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Regarding migration, we assume that this is a conservative process of the to-

tal number of individuals in each of the age classes. Therefore, in each of these

age classes it is modelled by a Markov chain with two states corresponding to

the two patches. For each vector α = (α11, α12, α21, α22) ∈ Z4
+, let pij

F (α) denote

the probability of an i-aged individual living in patch j to produce an offspring α

after an iteration of the migration process. The p.g.f. associated to migration is

G11
F (s) = p11

F (e11)s11 + p11
F (e12)s12 ; G12

F (s) = p12
F (e11)s11 + p12

F (e12)s12 ,

G21
F (s) = p21

F (e21)s21 + p21
F (e22)s22 ; G22

F (s) = p22
F (e21)s21 + p22

F (e22)s22 ,

and is defined for s ∈ R4, where eij is the vector that describes a population

composed of a single individual with age i and living in patch j. Then, the matrices

of expected values for migration in each age class are

Pi =

(

pi1
F (ei1) pi2

F (ei1)

pi1
F (ei2) pi2

F (ei2)

)

; i = 1, 2

and for the whole population we have matrix P = diag{P1,P2}. We assume that

P1 and P2 are primitive.

Now, we formulate a global model that takes into account the joint effect of both

demography and migration in the following way: we set the time step of the model

as the projection interval of the birth–death process, and we assume that, in each

of these time steps, migration acts k times before the birth–death process does.

Here k can be interpreted as the ratio of the characteristic times of demography

and migration. Then, according to Lemma 1 bellow, the p.g.f. of the original system

is given by Gk(s) = GF ◦
(k)
· · · ◦GF ◦ GS , and the matrix of expectations for this

global model is MPk.

In this work we propose a reduction technique that allows us to study this

four-dimensional model by means of a two-dimensional one, called “aggregated

model”. In order to do so, let us first outline the former problem in a more general

context. In Sec. 5, we will describe the general aggregation procedure and apply it

to this particular case.

4. A Multi-Type Galton Watson Process with Two Time Scales

We consider a stage-structured population in which the population is classified into

stages or groups attending to any characteristic of the life cycle. Moreover, each

of these groups is divided into several subgroups that may correspond to different

spatial patches, different individual activities or any other characteristic that could

change the life cycle parameters. The model is general in the sense that we do not

state in detail the nature of the groups or the subgroups. Let q be the number of

groups and assume that each group i = 1, 2, . . . , q is itself split into Ni subgroups.

Therefore, the total number of subgroups is N = N1 + N2 + · · · + Nq.

We denote by xij
n the number of individuals in state (i, j), i.e. the number

of individuals in subgroup j of group i at time n; i = 1, 2, . . . , q and j =
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1, 2, . . . , Ni. The composition of the total population is then given by vector

Xn = (x11
n , . . . , x1N1

n , . . . , xq1
n , . . . , x

qNq

n )T ∈ RN , where “T” denotes transposition.

We assume that the evolution of the population is governed by two processes

whose corresponding characteristic time scales, and consequently their projection

intervals are very different from each other.

Moreover, the system is supposed to be subjected to demographic stochasticity,

i.e. the contribution of each individual at time n to the next generation takes place

according to a given probability law for offspring production. For a given individual,

this probability law is assumed to depend only on the state of the individual and

not on the size of the population or on other individuals, and so the evolution of

the system is modelled by means of a multi-type Galton–Watson branching process

(in the sequel g.w.p.) X0,X1, . . ..

In this way, the fast and the slow processes are modelled by two different g.w.p.’s,

each of which is referred to the projection interval of the corresponding process. We

choose as the projection interval of our model, that corresponding to the slow

dynamics, i.e. the time elapsed between times n and n+1 is the projection interval

of the slow process. For simplicity, we will denote the time span [n, n + 1) as ∆n.

In the remaining of this section we introduce the fast and the slow processes

through their probability generating functions (p.g.f.’s) and obtain the p.g.f. that

characterizes the evolution of the population when both processes are operating.

4.1. P.g.f. of the slow process

In the following, α = (α11, . . . , α1N1
, . . . , αq1, . . . , αqNq

) ∈ ZN
+ , i.e. α is a vector

of RN whose components are non-negative integers and s = (s11, . . . , s1N1
, . . . ,

sq1, . . . , sqNq
) ∈ RN . Throughout our work we will use the notation:

sα :=
∏

ij

s
αij

ij = sα11

11 · · · s
α1N1

1N1
· · · s

αq1

q1 · · · s
αqNq

qNq
.

Let eij be the canonical vector of RN that describes a population composed of

a single individual in state (i, j) and let us denote by ‖∗‖1 the 1-norm in RN , i.e. if

z = (z1, z2, . . . , zN)T we have ‖z‖1 = |z1| + |z2| + · · · + |zN |.

Assume the system is controlled by the slow process exclusively, and let hn =

(h11
n , . . . , h1N1

n , . . . , hq1
n , . . . , h

qNq
n ) denote the population vector for this system at

time n. Then we define

pij
S (α) := pr(hn+1 = α |hn = eij) ,

i.e. pij
S (α) is the probability of obtaining, by means of the slow process, αrs

individuals in state (r, s), r = 1, . . . , q; s = 1, . . . , Nr, from an individual in state

(i, j). The only assumption we impose on the characteristics of the slow process is

that, for each i and j, there is only a finite number of vectors α such that pij
S (α) > 0.

Then, the p.g.f. for the slow process is the function GS : RN → RN

GS(s) = (G11
S (s), . . . , G1N1

S (s), G21
S (s), . . . , G2N2

S (s), . . . , Gq1
S (s), . . . , G

qNq

S (s))
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given by

Gij
S (s) =

∑

α

pij
S (α)sα ; i = 1, . . . , q ; j = 1, . . . , Ni

where the summation is extended to all α ∈ ZN
+ .

We denote as M ∈ RN×N , the matrix of expected values for the slow dynamics.

We consider M divided into blocks Mij = [Mrl
ij ] ∈ RNi×Nj , 1 ≤ i, j ≤ q, in such a

way that M rl
ij = E(hir

n+1 |hn = ejl). Therefore,

M =









M11 · · · M1q

...
. . .

...

Mq1 · · · Mqq









,

where each block Mij characterizes the expected values for the transference of

individuals from group j to group i. In the same way, for each u = 1, . . . , q; v =

1, . . . , Nu, let

Vuv
S := E(hn+1h

T
n+1 |hn = euv)

−E(hn+1 |hn = euv)E(hT
n+1 |hn = euv) ∈ R

N×N

be the covariance matrix for the offspring produced by a parent in state (u, v),

in the slow process. This is a symmetric matrix whose element in the position

corresponding to states (i, r) and (j, l) is (Vuv
S )ir,jl = Cov(hir

n+1, h
jl
n+1 |hn = euv),

i.e. the covariance between the offspring of states (i, r) and (j, l) given a parent in

state (u, v).

4.2. P.g.f. of the fast process

Regarding the fast process we make the following assumptions:

(HA) The fast dynamics is an internal process for each group, i.e. there is no

transference of individuals from one group to a different one.

(HB) Within each group i = 1, . . . , q, the fast dynamics is a Markov chain with

a primitive transition matrix Pi = [prs
i ] (i.e. Pk

i is a positive matrix for some k) of

dimensions Ni ×Ni. This fact can be expressed by saying that, within each group,

the fast process corresponds to a positively regular singular multi-type branching

process with matrix of expected values Pi.

In this way, the matrix that characterizes the fast dynamics for the whole

population is P = diag(P1,P2, . . . ,Pq).

Assume for the moment that the system is controlled by the fast process

exclusively, and let wt denote the population vector for this system. Then, if the

time span [t, t + 1) denotes the projection interval of the fast process, we have that

for each i = 1, . . . , q; j = 1, . . . , Ni,

prij
F (α) = pr(wt+1 = α |wt = eij)

=

{

phj
i if α = eih for some h = 1, . . . , Ni ,

0 otherwise .
(4.1)
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The p.g.f. for the fast process is then a linear function GF (s) = (G11
F (s), . . .,

G1N1

F (s), . . . , Gq1
F (s), . . . , G

qNq

F (s)) where, according to (4.1),

Gij
F (s) =

∑

α

pij
F (α)sα =

Ni
∑

h=1

phj
i sih , i = 1, . . . , q ; j = 1, . . . , Ni .

Analogously, the probability for an individual initially in state (i, j) to be in state

(i, s) after k periods corresponding to the fast process, is given by the corresponding

entry of the matrix Pk
i = [(Pk

i )rl], i.e. pr(wt+k = eis |wt = eij) = (Pk
i )sj , so that

for all positive integers k,

pr(wt+k = α |wt = eij) =

{

(Pk
i )sj if α = eis for some s = 1, . . . , Ni ,

0 otherwise .
(4.2)

4.3. P.g.f. of the global process

As we stated before, we choose the projection interval of the slow process as the time

step ∆n of our “global” model. This model includes the effect of both the fast and

the slow processes and, in order to formulate it, we need to approximate the effect

of the former over a period much longer than its corresponding projection interval.

In order to do so, we will assume that during each ∆n, the fast process operates a

number k of times before the slow process does, where k can be interpreted as the

ratio between the projection intervals corresponding to the slow and fast dynamics.

Since the projection intervals of both processes are supposed to be very different

from each other, k is a large number and, moreover, we assume that it is an integer.

In order to determine the p.g.f. of this global model, we will study the

“composition” of Galton–Watson processes. Let us consider a population with m

types whose evolution is governed by two different g.w.p.’s Xn and Yn in Rm

characterized by p.g.f.’s GX and GY respectively. We assume that, in each time

step of the model, the population is first subjected to an iteration of the process

with p.g.f. GX followed by an iteration of the process with p.g.f. GY. Therefore, we

can think of the population as governed by a g.w.p. Zn which can be interpreted

as the “composition” of Xn and Yn. Then we have the following lemma, which

generalizes a result for the unitype case in Ref. 13 to the multi-type case:

Lemma 1. (a) The p.g.f. GZ of the resulting process Z verifies GZ = GX ◦ GY

(◦ denotes functional composition).

(b) Assume that the matrices of expected values for the processes X and Y

are B = [bij ] and T = [tij ] respectively, i.e. bij = E(xi
n+1 |Xn = ej); tij =

E(yi
n+1 |Yn = ej). Then, the matrix A of expected values for the process Z verifies

A = TB.

(c) For each j = 1, . . . , m, let C
j
X = [(Cj

X)rs] denote the matrix of second-

order moments for the offspring production of a “parent” of type j in pro-

cess X, i.e. (Cj
X )rs = E(xr

n+1x
s
n+1 |Xn = ej). Let V

j
Y denote the covariance
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matrix of offspring production for a parent of type j in process Y, i.e. (V j
Y )rs =

Cov(yr
n+1, y

s
n+1 |Yn = ej). Then the matrices C

j
Z and V

j
Z are given by

C
j
Z = TC

j
XTT +

m
∑

h=1

bhjV
h
Y , V

j
Z = C

j
Z −TBej(TBej)T .

Proof. (a) and (b) are Lemma 2 in Ref. 4. The proof of (c) is obtained by diffe-

rentiating twice in GZ = GX ◦GY . Indeed, let j be fixed. In order to compute C
j
Z

we need to evaluate the second derivatives of GZ

∂2Gj
Z(s)

∂sr∂sl

=
m
∑

α=1

m
∑

β=1

∂2Gj
X (GY (s))

∂sα∂sβ

∂Gβ
Y (s)

∂sl

∂Gα
Y (s)

∂sr

+

m
∑

α=1

∂Gj
X(GY (s))

∂sα

∂2Gα
Y (s)

∂sr∂sl

in s = 1. In the following we will use the notation E[zr
n+1 |Zn = ej ] ≡ Ej [z

r
n+1]. We

distinguish two cases: (i) First, let us consider the case where r 6= l. Then, taking

into account that GY (1) = 1 and rearranging some terms, we obtain:

Ej [z
r
n+1z

l
n+1] =

m
∑

α=1

m
∑

β=1

Ej [x
α
n+1x

β
n+1]Eβ [yl

n+1]Eα[yr
n+1]

+

m
∑

α=1

Ej [x
α
n+1](Eα[yr

n+1y
l
n+1] − Eα[yl

n+1]Eα[yr
n+1])

which can also be expressed as

(Cj
Z)rl =

m
∑

α=1

m
∑

β=1

trα(Cj
X)αβtlβ +

m
∑

α=1

bαj(V
α
Y )rl .

(ii) Now let us consider the case r = l. Then

Ej [(z
r
n+1)

2] − Ej [z
r
n+1] =

m
∑

α=1

m
∑

β=1

Ej [x
α
n+1x

β
n+1]Eβ [yl

n+1]Eα[yr
n+1]

+

m
∑

α=1

Ej [x
α
n+1](Eα[(yr

n+1)
2] − Eα[yr

n+1]
2)

−

m
∑

α=1

Ej [x
α
n+1]Eα[yr

n+1] .

This can be expressed alternatively in the form

(Cj
Z)rr − arj =

m
∑

α=1

m
∑

β=1

trα(Cj
X)αβtrβ +

m
∑

α=1

bαj(V
α
Y )rr −

m
∑

α=1

bαjtrα .
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Note that the negative terms on both sides are equal, since
∑m

α=1 bαjtrα =

(TB)rj = arj . Then, from (i) and (ii), we obtain C
j
Z = TC

j
XTT +

∑Ni

α=1 bαjV
α
Y as

we wanted to show. The rest of the result is immediate by the definition of V
j
Z .

As a result of the discussion above, the global process is a g.w.p. X0,X1, . . . that

can be considered as the composition of k iterations of the fast process followed by

one iteration of the slow process. Moreover, its p.g.f. is the function Gk : RN → RN

Gk(s) = (G11
k (s), . . . , G1N1

k (s), G21
k (s), . . . , G2N2

k (s), . . . , Gq1
k (s), . . . , G

qNq

k (s)) ,

given by

Gk(s) := GF ◦GF ◦
(k)
· · · ◦ GF ◦GS(s) = GF,k ◦GS(s) , (4.3)

where

GF,k := GF ◦GF ◦
(k)
· · · ◦ GF .

From (4.2) we have

Gij
F,k(s) =

∑

α

pr(wt+k = α |wt = eij)sα =

Ni
∑

h=1

(Pk
i )hjsih ,

i = 1, . . . , q; j = 1, . . . , Ni. So the expression of the p.g.f. of the global system in

terms of the characteristics of the slow and fast processes is

Gij
k (s) =

∑

α

pij
k (α)sα =

∑

α

Ni
∑

h=1

pih
S (α)(Pk

i )hjs
α , i = 1, . . . , q , j = 1, . . . , Ni .

Therefore, the transition probabilities corresponding to the original system are

given by

pij
k (α) = pr(Xn+1 = α |Xn = eij) =

Ni
∑

h=1

pih
S (α)(Pk

i )hj .

Using Lemma 1, we have that the matrix of expected values for the original

system is MPk.

5. Approximate Reduction of the Global Model

5.1. The auxiliary model

From the previous section we have that the fast process corresponds to a positive

Markov chain defined, for each group i, by a primitive column stochastic matrix Pi.

Therefore, the fast process in each group i has a stationary probability distribution

given by the positive right eigenvector vi = (v1
i , . . . , vNi

i )T of matrix Pi associated

to eigenvalue 1 and normalized so that the sum of its components is one, i.e.

Pivi = vi , 1T
i vi = 1 ,
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where 1i = (1, 1, . . . , 1)T ∈ RNi×1. Note that, since each Pi is stochastic 1T
i Pi =

1T
i .

Vector vi may be interpreted in terms of the behavior of the fast process in

group i. Consider the hypothetical situation in which the system was governed by

the fast process exclusively, and assume that ∆n is long enough with respect to the

projection interval corresponding to the fast process for this to reach its equilibrium

conditions during ∆n. In the sequel we will refer to this situation of equilibrium

for the fast process as “equilibrium fast process”. Then, for a population at time n

consisting of one individual in state (i, l), we would have that at the end of ∆n, the

probability of the individual being in state (i, j) would be vj
i (which, moreover, is

independent of l).

In this way, for each i = 1, . . . , q, the matrix that characterizes the equilibrium

probability distribution for the fast process in group i is

P̄i = lim
k→∞

Pk
i = vi1

T
i > 0 ,

and, therefore, the equilibrium conditions for the fast dynamics in the whole

population are characterized by matrix P̄ = diag(P̄1, P̄2, . . . , P̄q).

Let GF̄ be the p.g.f. for the equilibrium fast process, i.e.

GF̄ := lim
k→∞

GF,k . (5.4)

Then, its (ij)th component is

Gij

F̄
(s) = lim

k→∞
Gij

F,k(s) =

Ni
∑

h=1

lim
k→∞

(Pk
i )hjsih

=

Ni
∑

h=1

vh
i siα , i = 1, . . . , q ; j = 1, . . . , Ni . (5.5)

Note that Gij

F̄
is independent of j, so that for each i = 1, . . . , q, we can define

Gi
F̄

:= Gij

F̄
= limk→∞ Gij

F,k for all j = 1, . . . , Ni and then

GF̄ (s) = (G1
F̄

(s), (N1). . . , G1
F̄

(s), G2
F̄
(s), (N2). . . , G2

F̄
(s), . . . , Gq

F̄
(s), (Nq). . . , Gq

F̄
(s)) , (5.6)

Moreover, we define matrices

V : = diag(v1,v2, . . . ,vq) , U : = diag(1T
1 ,1T

2 , . . . ,1T
q ) .

Some of the properties of these matrices are gathered in the following lemma,

whose proof is straightforward:

Lemma 2. Matrices P, P̄,V and U verify :

(a) PP̄ = P̄P = P̄,

(b) PV = V,

(c) UP̄ = U, UV = Iq , P̄ = VU.
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We define the auxiliary process as the g.w.p. corresponding to the original sys-

tem when the fast process has reached equilibrium, i.e. the system X′
0,X

′
1,X

′
2, . . .

with X′
0 = X0 whose p.g.f. is

G′(s) := lim
k→∞

Gk(s) = lim
k→∞

GF,k ◦GS(s) = GF̄ ◦GS(s) . (5.7)

Taking into account (5.6) we have that the (ij)th component of G′ is indepen-

dent of j and then

G′(s) = (G′1(s), (N1). . . , G′1(s), G′2(s), (N2). . . , G′2(s), . . . , G′q(s), (Nq). . . , G′q(s)) ,

where

G′i(s) =

Ni
∑

h=1

vh
i Gih

S (s) =
∑

α

Ni
∑

h=1

pih
S (α)vh

i sα , i = 1, . . . , q . (5.8)

Note that for an initial population consisting in one individual, the dynamics of

the auxiliary system will depend on the group but not the subgroup to which this

individual belongs. The transition probabilities for the auxiliary system are

p′i(α) := pr(X′
n+1 = α |X′

n = eij) =

Ni
∑

h=1

pih
S (α)vh

i ,

i = 1, . . . , q , j = 1, . . . , Ni , (5.9)

not depending on the subgroup of the parent.

Using Lemma 1(b) we have that the matrix of expected values for the auxiliary

system is MP̄. Besides, a straightforward calculation from Lemma 1(c) shows that

the covariance matrices of offspring production for the auxiliary system are given

by

V′j =

Nj
∑

l=1

vl
jV

jl
S + Wj , j = 1, . . . , q , (5.10)

where Wj ∈ RN×N is a symmetric matrix with q2 blocks Wj
rs ∈ RNr×Ns given by

Wj
rs = Mrj(diag(vj) − vjv

T
j )MT

sj . (5.11)

5.2. Aggregated system

We define the macrovariables as the sum of the variables corresponding to each of

the groups in the auxiliary system

yi
n = x′i1

n + x′i2
n + · · · + x′iNi

n , i = 1, . . . , q ,

and therefore the vector of macrovariables for the population is

Yn = (y1
n, y2

n, . . . , yq
n)T ∈ R

q×1
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so we can write Yn = UX′
n.

For each i = 1, . . . , q, let ei be the ith canonical vector of Rq and let the p.g.f. of

the aggregated system be Ḡ : Rq → Rq. Then Ḡ(s) = (Ḡ1(s), Ḡ2(s), . . . , Ḡq(s))

where

Ḡi(s) =
∑

β

pr(Yn+1 = β |Yn = ei)sβ1

1 · · · sβq

q , i = 1, . . . , q ,

being the summation extended to all β ∈ Z
q
+. Note that due to the hypothesis on

the slow dynamics, pr(Yn+1 = β |Yn = ei) will be null but for a finite number of

vectors β.

The following result allows one to obtain the p.g.f. of the aggregated system in

terms of the characteristics of the fast and the slow processes:

Proposition 1. The p.g.f. of the aggregated system verifies

Ḡi(t1, t2, . . . , tq) = G′i(t1,
(N1). . . , t1, t2,

(N2). . . , t2, tq ,
(Nq). . . , tq) ,

or, in abbreviated notation,

Ḡi(t) = G′i(t1, t2, . . . , tq) =

Ni
∑

h=1

vh
i Gih

S (t1, t2, . . . , tq) , i = 1, . . . , q , (5.12)

where t = (t1, t2, . . . , tq) and ti = (ti,
(Ni). . . , ti).

Proof. For each i = 1, . . . , q and r = 1, . . . , Ni we know that G′ir does not depend

on r. Then we have, by definition, G′i(t1, t2, . . . , tq) =
∑

α pr(X′
n+1 = α |X′

n =

eir)t
α11+···+α1N1

1 . . . t
αq1+···+αqNq

q where pr(X′
n+1 = α |X′

n = eir) is independent of

r (∗). For i = 1, . . . , q let αi = αi1 + αi2 + · · · + αiNi
. Now, we sum over the αis in

two stages, first keeping αi constant and then summing over all the possible values

of αi. In this way, we have

G′i(t1, t2, . . . , tq)

=
∑

β1,...,βq

∑

α1=β1

. . .
∑

αq=βq

pr(X′
n+1 = α |X′

n = eir)tβ1

1 · · · tβq

q . (5.13)

In order to shorten the notation, let us denote ξi(β) =
∑

α1=β1
. . .
∑

αq=βq
pr(X′

n+1

= α |X′
n = eir) and ρi(β) = pr(Yn+1 = β |Yn = ei). All we need to prove

now is that ξi(β) = ρi(β) for each β. In that case, we would have from (5.13)

G′i(t1, t2, . . . , tq) =
∑

β1,...,βq
pr(Yn+1 = β |Yn = ei)tβ1

1 · · · t
βq

q = Ḡi(t1, t2, . . . , tq),

as we want to show. Now, by the definition of the macrovariables,

ρi(β) = pr





Nj
∑

l=1

x′jl
n+1 = βj ; j = 1, . . . , q |Yn = ei





= pr





Nj
∑

l=1

x′jl
n+1 = βj ; j = 1, . . . , q |

Ni
⋃

r=1

(X′
n = eir)
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=

(

Ni
∑

r=1

pr(X′
n = eir)

)−1
Ni
∑

r=1

pr





Nj
∑

l=1

x′jl
n+1 = βj ; j = 1, . . . , q |X′

n = eir





× pr(X′
n = eir) ,

where in the second equality we have expressed the event (Yn = ei) as union of

the disjoint events (X′
n = eir); r = 1, . . . , Ni. Now we write (

∑Nj

l=1 x′jl
n+1 = βj ; j =

1, . . . , q) =
⋃

α11+···+α1N1
=β1

· · ·
⋃

αq1+···+αqNq =βq
(X′

n+1 = α), where the union is

over all the possible vectors α ∈ ZN
+ such that αi1+· · ·+αiNi

= βi for all i = 1, . . . , q.

Then we have ρi(β) = (
∑Ni

r=1 pr(X′
n = e

ir))−1∑Ni

r=1

∑

α1=β1
· · ·
∑

αq=βq
pr(X′

n+1 =

α |X′
n = e

ir)pr(X′
n = e

ir) = (
∑Ni

r=1 pr(X′
n = e

ir))−1∑

α1=β1
· · ·
∑

αq=βq
pr(X′

n+1 =

α |X′
n = e

ir)
∑Ni

r=1 pr(X′
n = e

ir) = ξi(β) as we wanted to show, having used (∗) in

the second equality.

Using the previous result we can obtain the matrices of first and second order

moments for offspring production in the aggregated system.

Proposition 2. (a) The matrix M̄ ∈ Rq×q of expected values for the aggregated

system is

M̄ = UMV ∈ R
q×q

. (5.14)

(b) Moreover, the covariance matrices V̄j ∈ Rq×q for offspring production in the ag-

gregated system (where (V̄j)rl = Cov(yr
n+1, y

l
n+1 |Yn = ej) for each r, l = 1, . . . , q)

are given by

V̄j = UV′jUT =

Ni
∑

l=1

vl
jUV

jl
S UTs + Hj , j = 1, . . . , q

where the block (r, s) of Hj is Hj
rs = 1T

r Mrj(diag(vj) − vjv
T
j )MT

sj1s.

Proof. The results follow by differentiation in (5.12). (a) The first derivatives of

the p.g.f. associated to the aggregated system are

∂Ḡj

∂ti
(t1, . . . , tq) =

∂G′j(t1, t2, . . . , tq)

∂ti
=

Nj
∑

l=1

vl
j

∂Gjl
S

∂ti
(t1, t2, . . . , tq)

=

Nj
∑

l=1

vl
j

Ni
∑

r=1

∂Gjl
S

∂sir

(t1, t2, . . . , tq) , j = 1, . . . , q .

Let M̄ = [m̄ij ]. Then

m̄ij = Ej [y
i
n+1] =

∂Ḡj

∂ti
(1) =

Nj
∑

l=1

vl
j

Ni
∑

r=1

∂Gjl
S

∂sir

(1) =

Nj
∑

l=1

vl
j

Ni
∑

r=1

Mrl
ij = 1T

i Mijvj ,
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as we wanted to show. (b) The second derivatives of Ḡj are ∂2Ḡj

∂th∂ti
(t1, . . . , tq) =

∑Ni

r=1

∑Nh

s=1
∂2G′j(t1,t2,...,tq)

∂shs∂sir
; i, j, h = 1, . . . , q. Now, we distinguish two cases: (i) If

i 6= h we have

Ej(y
i
n+1y

h
n+1) =

Ni
∑

r=1

Nh
∑

s=1

Ejl[x
′ir
n+1x

′hs
n+1] (∗)

for any l = 1, . . . , Nj . (ii) If i = h, then

Ej [(y
i
n+1)

2] − Ej [y
i
n+1] =

Ni
∑

r=1

Ni
∑

s=1,s6=r

Ejl[x
′ir
n+1x

′is
n+1]

+

Ni
∑

r=1

(Ejl[(x
′ir
n+1)

2] − Ejl[x
′ir
n+1])

=

Ni
∑

r=1

Ni
∑

s=1

Ejl[x
′ir
n+1x

′is
n+1] −

Ni
∑

r=1

Ejl[x
′ir
n+1] .

Note that the negative terms on both sides are equal, since

Ni
∑

r=1

Ejl[x
′ir
n+1] = Ejl

[

Ni
∑

r=1

x′ir
n+1

]

= Ej [y
i
n+1] (∗∗)

and so (∗) holds everywhere. On the other hand, from (∗∗) we have

Ej [y
i
n+1]Ej [y

h
n+1] =

(

Ni
∑

r=1

Ejl[x
′ir
n+1]

)(

Nh
∑

s=1

Ejl[x
′hs
n+1]

)

=

Ni
∑

r=1

Nh
∑

s=1

Ejl[x
′ir
n+1]Ejl[x

′hs
n+1] .

From this expression and (∗) it follows that

Cov(yi
n+1y

h
n+1 |Yn = ej) =

Ni
∑

r=1

Nh
∑

s=1

Cov(x′ir
n+1x

′hs
n+1 |X

′
n = ejl) ,

for every i, h = 1, . . . , q, (where the value of l is irrelevant) which can be expressed

in matrix form as V̄j = UV′jUT, being V̄j and V′j , respectively, the covariance

matrices for offspring production of the aggregated and the auxiliary systems given

a parent in state j. Now, the result is a direct consequence of (5.10) and (5.11).

5.3. Aggregation of a multiregional model with fast migration

Next we will build an aggregated system for the multiregional model described

in Sec. 3, according to the procedure proposed in Sec. 5. First we must remark

that, in this example, the migration process satisfies hypotheses (HA) and (HB)
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established in Sec. 4 for the fast process. Furthermore, the stationary probability

distribution of the migration process for each group i is given by vi, the normalized

right eigenvector associated to eigenvalue 1 in matrix Pi (note that these matrices

were assumed to be column stochastic and primitive). This vector can be obtained

from the transition probabilities of the process as

vi = (v1
i , v2

i )T =

(

pi2
F (ei1)

pi1
F (ei2) + pi2

F (ei1)
,

pi1
F (ei2)

pi1
F (ei2) + pi2

F (ei1)

)T

.

Now, from Eq. (5.8), the auxiliary process X′
n = (x′11

n , x′12
n , x′21

n , x′22
n )T has p.g.f.

G′(s) = (G′1(s), G′1(s), G′2(s), G′2(s))

where G′1(s) = v1
1G11

S (s) + v2
1G

12
S (s), G′2(s) = v1

2G21
S (s) + v2

2G22
S (s), and its matrix

of expected values is MP̄.

The two variables corresponding to the reduced system are the total population

in each class for the auxiliary system, i.e.

yi
n = x′i1

n + x′i2
n , i = 1, 2

and the p.g.f. of the aggregated system is obtained by applying Proposition 1

Ḡ1(s1, s2) = G′1(s1, s1, s2, s2) = p̄1(0, 0) + p̄1(1, 0)s1 + p̄1(2, 0)s2
1

+ p̄1(0, 1)s2 + p̄1(1, 1)s1s2 + p̄1(2, 1)s2
1s2 ,

Ḡ2(s1, s2) = G
′2(s1, s1, s2, s2) = p̄2(0, 0) + p̄2(1, 0)s1 + p̄2(2, 0)s2

1 ,

where

p̄1(0, 0) = v1
1p11

0000 + v2
1p12

0000 , p̄1(1, 0) = v1
1p11

1000 + v2
1p12

0100 ,

p̄1(2, 0) = v1
1p11

2000 + v2
1p12

0200 , p̄1(0, 1) = v1
1p11

0010 + v2
1p12

0001 ,

p̄1(1, 1) = v1
1p11

1010 + v2
1p12

0101 , p̄1(2, 1) = v1
1p11

2010 + v2
1p12

0201 ,

p̄2(0, 0) = v1
2p21

0000 + v2
2p22

0000 , p̄2(1, 0) = v1
2p21

1000 + v2
2p22

0100 ,

p̄2(2, 0) = v1
2p21

2000 + v2
2p22

0200 .

Finally, the matrix of expectations for the aggregated system is

M̄ = UMV =

(

m11v11 + m22v12 m13v21 + m24v22

m31v11 + m42v12 0

)

.

In summary, our technique has taken advantage of the presence of time scales to

reduce a g.w.p. with four types to an aggregated system with only two types. The

reduced system is constructed in terms of the probabilities defining demography

and the stationary equilibrium distribution of migration. Note that if we consider a

multiregional model like the one above but with q age classes and t spatial patches,

we would have to deal with a g.w.p. with qt types. Our aggregation procedure

renders a reduced model with only q types.
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6. Relationships Between the Original and the Aggregated System

In order to relate the spectral properties of the matrices MP̄ and M̄ of expected

values for the auxiliary and aggregated systems respectively, we will make use of

the following lemma.

Lemma 3. Matrices MP̄ and M̄ verify:

(a) For n ≥ 2,

(MP̄)n = MVM̄n−1U , M̄n = U(MP̄)n−1MV .

(b) det(λIN −MP̄) = λN−q det(λIq − M̄); in particular, the dominant eigenvalues

of matrices MP̄ and M̄, together with their respective multiplicities, coincide.

(c) If r and l are respectively right and left eigenvectors of M̄ associated to λ 6= 0

then MVr and UTl are respectively right and left eigenvectors of MP̄ associated

to λ.

Proof. (a) Straightforward from (5.14) and Lemma 2. (b) Direct consequence of

the fact that the nonzero eigenvalues, including multiplicities, of AB coincide with

those of BA.11 (c) We know M̄r = λr 6= 0, i.e. UMVr = λr 6= 0 (∗) so it

must be MVr 6= 0. Multiplying on the left by MV and using Lemma 2 we have

MP̄MVr = λMVr. Analogously, we know that lTM̄ = λlT 6= 0, i.e. lTUMV =

λlT 6= 0, so lTU 6= 0. Multiplying on the right by U and using Lemma 2 we have

lTUMP̄ = λlTU, as we wanted to show.

From hypothesis (HB) on the fast process, the blocks Pi are column-stochastic

primitive matrices, so they have 1 as their dominant eigenvalue which, moreover, is

simple and the subdominant eigenvalues have modulus strictly lower than 1. Now

let us consider the eigenvalues of P ordered by decreasing modulus (note that the

set of eigenvalues of P is the union of those corresponding to different Pi)

1 = γ1 = γ2 = · · · = γq > |γq+1| ≥ · · · ≥ |γN | ,

and let

γ > |γq+1| , (6.15)

i.e. γ is any real number greater than the modulus of the greater “subdominant

eigenvalue” of P. Note that γ can always be taken smaller than 1.

Let us introduce some concepts and notation which will be useful in the

subsequent developments. A non-negative matrix A is said to be column allowable

(row allowable) if it has at least a nonzero element in each of its columns (rows). A

is said to be allowable if it is both column and row allowable. The product of row

(column) allowable matrices is row (column) allowable. It is easy to check that if

A is row (column) allowable and B is a positive matrix, then AB > 0 (BA > 0)

as long as the product is defined. If A = [aij ] is any real matrix, we will denote by

|A| the matrix [|aij |] where | ∗ | denotes the absolute value.
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In the following we will say that a property holds “for large enough k” when

there exists an integer k0 such that the property holds for k ≥ k0.

The following proposition, which in particular relates some of the spectral

properties of matrices MPk and M̄, hinges on results obtained by the authors

in Ref. 17 to study aggregation techniques in a deterministic context:

Proposition 3. (a) The matrices of expected values for the original system and

the auxiliary model are related by MPk = MP̄ + o(γk); k → ∞. In particular, for

k large enough, both matrices have the same incidence matrix.

(b) Moreover, let λ be a simple and strictly dominant eigenvalue of M̄ associated

to right and left eigenvectors r and l, respectively. If k is large enough, matrix MPk

has a simple and strictly dominant eigenvalue λk that can be expressed in the form

λk = λ + o(γk) ,

and associated to λk are right and left eigenvectors rk and lk that can be written in

the form

rk = MVr + o(γk) , lk = UTl + o(γk) .

Proof. Straightforward application of Propositions 4.4 and 4.5. in Ref. 17. Matrix

P̄ here plays the role of matrix A in that reference.

The properties of super/sub criticality, positive regularity and non-singularity16

are related, for the original, auxiliary and aggregated systems, in the next result.

Proposition 4. For large enough k, we have:

(a) If the original system is positively regular, then so is the aggregated system.

Besides, if the aggregated system is positively regular and matrix M is row-

allowable, then the original system is positively regular.

(b) The non-singularity of the original system is equivalent to the non-singularity of

the auxiliary system and also equivalent to the non-singularity of the aggregated

system.

(c) The original system is supercritical (subcritical) if and only if the aggregated

system is supercritical (subcritical).

Proof. (a) Using Proposition 3 we have that MPk is primitive for large enough

k if and only if MP̄ is. Now assume MPk (and consequently MP̄) is primitive.

This means that, for some n, (MP̄)n > 0. Now, using Lemma 3(a) and the fact

that matrices V and U are always allowable due to the positivity of vectors vi and

1i, we have M̄n+1 = U(MP̄)nMV > 0 and so M̄ is primitive. Conversely, if M̄ is

primitive, then M̄n > 0 for some n. Now, if M is row-allowable, then so is MV,

and therefore, using Lemma 3, we have (MP̄)
n+1

= MVM̄
n
U > 0 which means

that MP̄ , and therefore MPk for large enough k, is primitive.
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(b) Recall that the singularity or non-singularity of a g.w.p. depends only on the

signs (positive or zero) of the coefficients of its p.g.f. Using (5.4), (5.5) and the

fact that Pk and P̄ have the same incidence matrix for large enough k, we have

that for each value of α, the coefficient of sα in GF̄ is nonzero if and only if the

coefficient of sα in GF,k is nonzero. Consequently, we have that the coefficient of

sα in G′ is nonzero if and only if the coefficient of sα in Gk is nonzero. Therefore,

for large enough k the original system is non-singular if and only if the auxiliary

system is. Now we will prove that the aggregated system is non-singular if and

only if the auxiliary system is. Let G′i(s) =
∑

α p′i(α)sα for all i = 1, . . . , q be

the p.g.f. of the auxiliary system. Assume that the auxiliary system is singular,

i.e. for all i , G′i is a linear function. Then for all i and all α ∈ ZN
+ such that

p′i(α) > 0 we have α11 + · · · + α1N1
+ · · · + αq1 + · · · + αqNq

= 1. Then Ḡi(t) =
∑

α p′i(α)t
α11+···+α1N1

1 · · · t
αq1+···+αqNq

q is a linear function for all i = 1, . . . , q, since

one and only one of the αrs is one and the rest is zero. Therefore the aggregated

system is singular. Conversely, assume the auxiliary system is non-singular. Then

there exists i = 1, . . . , q and α ∈ ZN
+ such that α11 + · · ·+ α1N1

+ · · ·+ αq1 + · · ·+

αqNq
6= 1 and p′i(α) > 0. Then Ḡi(t) =

∑

α p′i(α)t
α11+···+α1N1

1 · · · t
αq1+···+αqNq

q is

not linear and so the aggregated system is non-singular.

(c) Direct consequence of Proposition 3(b).

6.1. Probability of extinction

Let the probabilities of extinction by time n for the three systems be defined by

qij
k (n) = pr(Xn = 0 |X0 = eij) , i = 1, . . . , q , j = 1, . . . , Ni

q′i(n) = q′ij(n) = pr(X′
n = 0 |X0 = eij) , i = 1, . . . , q , j = 1, . . . , Ni

q̄i(n) = pr(Yn = 0 |Y0 = ei) , i = 1, . . . , q .

Note that, as a consequence of (5.9), q′ij(n) must be independent of j. Therefore,

the vectors defining the probabilities of extinction by time n are given by

qk(n) = (q11
k (n), . . . , q1N1

k (n), . . . , qq1
k (n), . . . , q

qNq

k (n)) ∈ R
N ,

q′(n) = (q′1(n), (N1). . . , q′1(n), . . . , q′q(n), (Nq). . . , q′q(n)) ∈ R
N ,

q̄(n) = (q̄1(n), q̄2(n), . . . , q̄q(n)) ∈ R
q .

Since Yn = UX′
n and U is an allowable matrix, it follows that for all n =

1, 2, . . . ,

Yn = 0 if and only if X′
n = 0 , (6.16)

i.e. the population goes extinct in the auxiliary system if and only if it goes extinct

in the aggregated system.

The following result establishes, in a precise sense, a relationship between the

original and the auxiliary system:
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Lemma 4. For all values of α ∈ ZN
+ :

(a) pij
k (α) = p′i(α) + o(γk),

(b) For n fixed, pr(Xn = α |X0 = eij) = pr(X′
n = α |X0 = eij) + o(γk).

(c) Gk(s) = G
′
(s) + o(γk) uniformly in 0 ≤ s ≤ 1.

Proof. Absolutely analogous to that of Proposition 4 in Ref. 4.

The probabilities of extinction by time n for the three systems are related by

the following proposition.

Proposition 5. For all n = 1, 2, . . .

(a) qk(n) = q′(n) + o(γk),

(b) q′i(n) = q̄i(n) , i = 1, . . . , q.

(c) qij
k (n) = q̄i(n) + o(γk) , i = 1, . . . , q ; j = 1, . . . , Ni.

Note that, from (c), the probabilities of extinction in finite time for the global

process can be approximated by those corresponding to the aggregated process.

Proof. (a) Immediate consequence of Lemma 4 (b) for α = 0. (b) Let i = 1, . . . , q

and j = 1, . . . , Ni be fixed. Then

q̄i(n) = pr(Yn = 0 |Y0 = ei) = pr



X′
n = 0 |

Ni
⋃

j=1

(X′
0 = eij)





=





Ni
∑

j=1

pr(X′
0 = eij)





−1
Ni
∑

j=1

pr(X′
n = 0 |X′

0 = eij)pr(X′
0 = eij)

= pr(X′
n = 0 |X′

0 = eij) = q′i(n) ,

where in the second equality we have used (6.16) and in the fourth the fact that

pr(X′
n = 0 |X′

0 = eij) is independent of j. (c) Immediate from (a) and (b).

The probabilities of ultimate extinction for the three systems are defined by

qij
k := pr

(

lim
n→∞

Xn = 0 |X0 = eij
)

= lim
n→∞

qij
k (n) , i = 1, . . . , q ; j = 1, . . . , Ni ,

q′i := pr
(

lim
n→∞

X′
n = 0 |X0 = eij

)

= lim
n→∞

q′i(n) , i = 1, . . . , q ,

q̄i := pr
(

lim
n→∞

Yn = 0 |Y0 = ei
)

= lim
n→∞

q̄i(n) , i = 1, . . . , q ,

which can be gathered in the vectors qk = (q11
k , . . . , q1N1

k , . . . , qq1
k , . . . , q

qNq

k ), q′ =

(q′1, (N1). . . , q′1, . . . , q′q, (Nq). . . , q′q) and q̄ = (q̄1, q̄2, . . . , q̄q). Using the fact that q′i(n) =



April 23, 2003 9:7 WSPC/103-M3AS 00265

Approximate Reduction of Multi-Type Galton–Watson Processes 513

q̄i(n) ; i = 1, . . . , q and taking limits n → ∞ we obtain

q̄i = q′i , i = 1, . . . , q , (6.17)

which relates the probabilities of ultimate extinction for the auxiliary process and

the aggregated system. Regarding the relationship between the global process and

the aggregated system we have the following proposition, which is a generalization

of a similar result in Ref. 4:

Proposition 6. Let the aggregated system be positively regular and non-singular

and let M be row allowable (so the global system will also meet these requirements

for large enough k). Then:

(a) If the aggregated system is subcritical, which implies q̄ = 1, then the original

system is also subcritical, and consequently qk = 1.

(b) If the aggregated system is supercritical, i.e. q̄ < 1, then the original system is

also supercritical, i.e. qk < 1 and besides

lim
k→∞

qij
k = q̄i for all i = 1, . . . , q , j = 1, . . . , Ni .

Proof. (a) Obvious from Proposition 4.

(b) Assume the aggregated process is supercritical. Then, Proposition 4 guarantees

that the original system is also supercritical. Besides, using (6.17) we only need to

show that limk→∞ qk = q′. This has been done in Ref. 4 (Theorem 1), and all the

reasonings carried out there, are valid in the present situation.

6.2. Moments of the population vector

In order to study the statistical moments of the population vector of the global

system in terms of those corresponding to the aggregated system, we introduce the

following hypothesis:

H1. Matrix M̄ has a simple and strictly dominant eigenvalue λ associated to

right and left eigenvectors r and l respectively, for which we will assume the follow-

ing normalization conditions

‖r‖1 = 1 , lTr = 1 . (6.18)

Observe that hypothesis H1 is weaker than the condition that the aggregated

system be positively regular.

6.2.1. Expected values

Note that if a certain square matrix A has a strictly dominant eigenvalue µ which

is simple and is associated to right and left eigenvectors v and u respectively, we

have

lim
n→∞

An

µn
=

vuT

uTv
. (6.19)
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Then, given H1, the asymptotic behavior of the vector of mean values for the

aggregated system is given by

lim
n→∞

E(Yn)

λn
= lTUX0r .

Now we have:

Proposition 7. Given H1, then the asymptotic behavior of the vector of expected

values for the original and auxiliary system is given by

lim
n→∞

E(X′
n)

λn
=

1

λ
(lTUX0)MVr ,

lim
n→∞

E(Xn)

λn
k

=
1

λ
(lTUX0)MVr + o(γk) .

Proof. Direct consequence of (6.19), Lemma 3 and Proposition 3.

6.2.2. Second order moments

As a tool for the subsequent developments we will characterize the asymptotic

behavior of the second order moments of a general g.w.p. following the approach

of Ref. 8. For this we will use the Kronecker matrix product,9 which is defined for

two matrices A = [aij ] ∈ Cm×n and B = [bij ] ∈ Cr×s as the matrix of size mr×ns

given by

A⊗B : =















a11B a12B · · · a1nB

a21B a21B · · · a2nB

...
...

. . .
...

am1B am2B · · · amnB















, (6.20)

i.e. A ⊗B is a matrix with mn blocks in which the block in position (i, j) has the

form aijB. A notable property of the Kronecker product that we will frequently

use in the sequel is

(A1⊗A2⊗· · ·⊗Am)(B1⊗B2⊗· · ·⊗Bm) = (A1B1)⊗(A2B2)⊗· · ·⊗(AmBm) .(6.21)

Moreover, for A = [aij ] ∈ Rm×n we define

A := (a11, a12, . . . , a1n, a21, a22, . . . , a2n, . . . , am1, am2, . . . , amn)T ∈ R
mn×1 .

Now, let Z0, Z1, Z2, . . . be a generic g.w.p. with m types and let A = [aij ] ∈

Rm×m be the matrix of expected values of the system, i.e. aij = E(zi
n+1 |Zn = ej).

Let Vj = [V j
rl] ∈ Rm×m be the covariance matrix for the offspring of an individual

of type j, i.e. V j
rl = Cov(zr

n+1, z
l
n+1|Zn = ej) ; j, r, l = 1, . . . , m and let Cj(n) =

E(ZnZT
n |Z0 = ej) = [Cj

rs(n)] be the matrix of moments of second order at time

n, given the initial condition ej , i.e. Cj
rs(n) = E(zr

nzs
n |Z0 = ej). Let

D := (V1 |V2 | · · · |Vm) ∈ R
m2×m ,
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Then the moments of first and second order of our system can be described by

vector

(

E(Zn)

Cj(n)

)

of dimension (m+m2)×1. Following Ref. 8, the evolution of this

vector is given by
(

E(Zn+1)

Cj(n + 1)

)

= Ω

(

E(Zn)

Cj(n)

)

, (6.22)

where

Ω =

(

A 0

D A ⊗A

)

∈ R
(m+m2)×(m+m2)

with 0 the m × m2 null matrix.

The next result characterizes the asymptotic behavior of the moments of second

order in the supercritical and subcritical cases in terms of the dominant spectral

characteristics of A. The critical case is not discussed, for λ = 1 would be a double

eigenvalue for Ω and several different situations may arise in terms of the charac-

teristics of A and D.

Lemma 5. In the conditions above, let A have a simple and strictly dominant

eigenvalue λ with associated right and left eigenvectors r and l respectively. Assume

that the initial population is Z0 = ej . Then we have:

(a) Supercritical case. If λ > 1, then the spectral radius of Ω is λ2 and right and

left associated eigenvectors are

(

0

r⊗ r

)

and

(

h

l⊗ l

)

respectively, where h =

(λ2I−AT)−1DT(l⊗ l). Moreover,

lim
n→∞

Cj(n)

λ2n
=

(lT ⊗ lT)((ejejT ) + D(λ2I −A)−1ej)

(lTr)2
(r ⊗ r) .

(b) Subcritical case. If λ < 1, then the spectral radius of Ω is λ and right and left

associated eigenvectors are

(

r

s

)

and

(

l

0

)

respectively, where s = (λI −A ⊗

A)−1Dr. Besides

lim
n→∞

Cj(n)

λn
=

lTej

lTr
(λI −A⊗A)−1Dr .

Proof. Let λ1, . . . , λn be the eigenvalues of A with λ = |λ1| > |λ2| ≥ · · · ≥ |λn|.

The eigenvalues of A⊗A are the product “all with all” of the eigenvalues of A (see

Ref. 9). The eigenvalues of Ω are then the set {λi, λjλl ; i, j, l = 1, . . . , m}.

(a) If λ > 1, then it is obvious that ρ(Ω) = λ2 (being a simple and strictly dominant

eigenvalue) and

(

0

r⊗ r

)

is an associated right eigenvector. Since λ2 cannot

be an eigenvalue of A, then (λ2I −A) and (λ2I −AT) are invertible matrices.
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If we define W1 = (λ2I−A)−1, then hT = (lT ⊗ lT)DW1. Furthermore, it is

straightforward to check that W1A + I = λ2W1. Now

(hT | lT ⊗ lT)Ω = ((lT ⊗ lT)D[W1A + I] | lTA ⊗ lTA)

= ((lT ⊗ lT)Dλ2W1 |λlT ⊗ λlT) = λ2(hT | lT ⊗ lT)

and therefore

(

h

l⊗ l

)

is a left eigenvector of Ω associated to λ2. Now, since

λ2 is a simple and strictly dominant eigenvalue for Ω, we have

lim
n→∞

(

E(Zn)

Cj(n)

)

λ2n
= lim

n→∞

Ωn

λ2n

(

E(Z0)

Cj(0)

)

=

(

0

r ⊗ r

)

(hT | lT ⊗ lT)

(

E(Z0)

Cj(0)

)

(hT | lT ⊗ lT)

(

0

r ⊗ r

)

=

(

hTZ0 + (lT ⊗ lT)Cj(0)
)

(lTr) ⊗ (lTr)

(

0

r⊗ r

)

=

(

lT ⊗ lT
)

(DW1e
j + (ejejT ))

(lTr)2

(

0

r ⊗ r

)

as we wanted to show. We have used E(Z0) = ej and C
j
0 = ejejT .

(b) If λ < 1, then it is obvious that ρ(Ω) = λ and besides it is simple and strictly

dominant, for if we had |λiλj | = |λ| for some i and j, then we would have

|λ| = |λiλj | ≤ |λ|2 which is impossible. Therefore matrix (λI −A ⊗ A) is

invertible. Checking that

(

l

0

)

is a left eigenvector of Ω associated to λ is

straightforward. If we define W2 = (λI −A ⊗ A)−1 we have s = W2Dr and,

besides, (A ⊗A)W2 + I = λW2. Now

Ω

(

r

s

)

=

(

Ar

[I + (A ⊗A)W2]Dr

)

=

(

λr

λW2Dr

)

= λ

(

r

s

)

.

Also

lim
n→∞

(

E(Zn)

Cj(n)

)

λn
=

(

r

s

)

(lT |0T)

(

E(Z0)

Cj(0)

)

(lT |0T)

(

r

s

) =
lTej

lTr

(

r

s

)

as we wanted to show.
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Note that, in the supercritical case, the moments of second order of the popu-

lation vector have an asymptotic rate of increase of λ2, meanwhile the asymptotic

structure of this vector is characterized by r⊗r. In the subcritical case, the asymp-

totic rate of increase of the moments of second order is λ and the asymptotic

structure of this vector is defined by s = (λI −A ⊗A)−1Dr.

Coming back to our aggregated system we have the following. For each j =

1, . . . , q, let C̄j(n) = [C̄j
rs(n)] = E(YnYT

n |Y0 = ej) ∈ Rq×q be the matrix

of second order moments for the aggregated system at time n, given an initial

individual in group j and let

D̄ = (V̄1 | V̄2 | · · · | V̄q) ∈ R
q2×q .

Assume that initially there is only one individual in group j, i.e. Y0 = ej . Then,

from H1 and Lemma 5 we have that the asymptotic behavior of the second order

moments of this system is characterized in the following way:

(a) Supercritical case. If λ > 1, then

lim
n→∞

(C̄j(n))

λ2n
=

(lT ⊗ lT)((ejejT ) + D̄(λ2I − M̄)−1ej)

(lTr)2
(r ⊗ r) .

(b) Subcritical case. If λ < 1, then

lim
n→∞

(C̄j(n))

λn
=

lTej

lTr
(λI − M̄⊗ M̄)−1D̄r .

Let us consider the N ×N matrices C
jl
k (n) and C′j(n) of second order moments

for the original and auxiliary system at time n. Note that, according to (5.9), the

matrices corresponding to the auxiliary system are independent of the subgroup of

the father.

C
jl
k (n) = E(XnXT

n |X0 = ejl) ; C′j(n) = E(X′
nX′T

n |X0 = ejl) ,

j = 1, . . . , q ; l = 1, . . . , Nj .

Besides, let

D′ = (V′1 |
(N1)
· · · |V′1 |V′2 |

(N2)
· · · |V′2 | · · · |V

′q |
(Nq)
· · · |V

′q) ∈ R
N2×N . (6.23)

Then, the asymptotic behavior of the moments of second order for the original

system and the auxiliary system is characterized by the following result:

Proposition 8. Assume X0 = ejl, j = 1, . . . , q, l = 1, . . . , Nq . Given H1 we have:

(a) Supercritical case. If λ > 1 then

lim
n→∞

(C′j(n))

λ2n

=
1

λ2

(lTU ⊗ l
T
U)((ejl

e
jlT ) + D

′(λ2
I − MP̄)−1

e
jl)

(lTr)2
(MVr ⊗ MVr) ,
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lim
n→∞

(Cjl
k

(n))

λ2n
k

=
1

λ2

(lTU ⊗ l
T
U)((ejl

e
jlT ) + D

′(λ2
I − MP̄)−1

e
jl)

(lTr)2
(MVr ⊗ MVr) + o(γk) .

(b) Subcritical case. If λ < 1, then

lim
n→∞

(C′j(n))

λn
=

1

λ

lTUejl

lTr
(λI −MP̄⊗MP̄)−1D′MVr ,

lim
n→∞

(Cjl
k (n))

λn
k

=
1

λ

lTUejl

lTr
(λI −MP̄⊗MP̄)−1D′MVr + o(γk) .

Proof. Let us define the matrix Dk which is the analog, for the original system,

of matrix D′ in (6.23). The components of Gk and G′ are polynomials and so

are their second derivatives. Moreover, their coefficients are linear functions of the

probabilities pij
k (α) and p′i(α) respectively, and so it is straightforward to show,

using Lemma 4, that Dk = D′+o(γk). Now the result follows directly from Lemma 5

and property (6.21) of the Kronecker product.

6.3. Subcritical case: mean population conditional on

non-extinction

It is known that for a subcritical positively regular g.w.p. Zn there exists an asymp-

totic stationary distribution for the population conditional on non-extinction which,

moreover, is independent of the (nonzero) initial population (see Ref. 14 for a com-

plete discussion of the subcritical case). In other words, for each α ∈ Zm
+ and each

z0 6= 0, limn→∞ pr(Zn = α |Zn 6= 0, Z0 = z0) exists and is independent of z0. Con-

sider the generic g.w.p. under the hypothesis that A is primitive. Let us consider

the dominant eigenvectors r and l of A normalized in the way ‖r‖1 = 1, lTr = 1.

Then we have that the limit

ξ := lim
n→∞

rT(1 − q(n))

λn

exists and, under very general conditions that are trivially satisfied if the p.g.f. has

only a finite number of summands, is strictly positive. Moreover, we have

lim
n→∞

E(Zn |Zn 6= 0, Z0 = z0) =
1

ξ
r (6.24)

for any z0 6= 0.

We know that, for k large enough, the subcriticality of the original system

is equivalent to that of the aggregated system. Let us now address the study

of the relationship between the expected value of the population conditional on

non-extinction for the original system and the aggregated system. We introduce

the following hypothesis on the aggregated system.
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H2. Let the aggregated system be positively regular (i.e. M̄ primitive) and

subcritical ( i.e. λ < 1) and let M be row allowable. For the dominant eigenelements

of M̄ we will use the same notation and normalization conditions as in H1.

Observe that, according to Proposition 4, H2 guarantees that the auxiliary sys-

tem is also subcritical and positively regular, and so is the original system for large

enough k. Then we know that the following three limits:

ξ̄ := lim
n→∞

rT(1− q(n))

λn
, ξ′ := lim

n→∞

(MVr)T(1− q′(n))

λn‖MVr‖1
,

ξk := lim
n→∞

rT
k (1− qk(n))

(λk)n‖rk‖1
,

exist and are positive.

From H2 we have, for the aggregated system, that given any nonzero initial

condition y0

lim
n→∞

E(Yn |Yn 6= 0, Y0 = y0) =
1

ξ̄
r . (6.25)

The following proposition, which constitutes our main result, characterizes the

asymptotic behavior of the mean population conditional on non-extinction for the

original system:

Proposition 9. Given H2 holds, then:

(a) ξ′ = λ
‖MVr‖1

ξ̄.

(b) limk→∞ ξk = ξ′ = λ
‖MVr‖1

ξ̄.

(c) For the auxiliary and the original systems we have, respectively,

lim
n→∞

E(X′
n |Xn 6= 0, X0 = x0) =

1

λξ̄
MVr

lim
k→∞

lim
n→∞

E(Xn |Xn 6= 0, X0 = x0) =
1

λξ̄
MVr ,

for any initial population x0 6= 0.

Note that, for large enough k, we can approximate the asymptotic behavior of

the mean population vector for the original system conditional on non-extinction

in terms of the parameters λ, ξ̄ and r corresponding to the reduced model.

Proof. In the first place, let us point out a preliminary result regarding any sub-

critical positively regular g.w.p. Zn with m types, matrix of expected values A and

λ = ρ(A). Since for each j = 1, . . . , m we have

E(Zn |Zn 6= 0, Z0 = ej) =
E(Zn |Z0 = ej)

1 − pr(Zn = 0 |Z0 = ej)

=
E(Zn |Z0 = ej)

1 − qj(n)
=

1

1 − qj(n)
Anej ,



April 23, 2003 9:7 WSPC/103-M3AS 00265
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then, passing to the limit n → ∞ and using (6.24) and (6.19) we obtain

ξ =
1

lj
lim

n→∞

1 − qj(n)

λn
for all j = 1, . . . , q . (6.26)

(a) It follows from Lemma 3 that ‖MVr‖1

λ
Utl is the dominant left eigenvector of

the auxiliary system meeting the normalization requirements of H1, and so its

(ij)th component is ‖MVr‖1

λ
li. Now, applying (6.26) to the auxiliary system we

obtain ξ′ = λ
‖MVr‖1

1
li

limn→∞
1−q′i(n)

λn for all i = 1, . . . , q, and the result follows

using the fact that q′i(n) = qi(n) for all n.

(b) Analogously, from Proposition 3 we obtain that the dominant left eigenvector of

the original system meeting the normalization requirements of H1 has the form
‖MVr‖1

λ
Utl+o(γk), so that its (ij)th component can be written as ‖MVr‖1

λ
li +

o(γk) and then ξk = λ
‖MVr‖1li+o(γk)

limn→∞
1−q

ij

k
(n)

(λk)n for all i = 1, . . . , q;, j =

1, . . . , Ni. From here it follows that:

lim
k→∞

ξk =
λ

‖MVr‖1li
lim

k→∞
lim

n→∞

1 − qij
k (n)

(λk)n
=

λ

‖MVr‖1li
lim

n→∞
lim

k→∞

1 − qij
k (n)

(λk)n

=
λ

‖MVr‖1li
lim

n→∞

1 − q′i(n)

λn
= ξ′ ,

where we have used that limk→∞ λk = λ (Proposition 3), limk→∞ qij
k (n) =

q′i(n) (Proposition 5) and that the two limits n → ∞ and k → ∞ in
1−q

ij

k
(n)

(λk)n

can be interchanged due to the uniform convergence guaranteed by Lemma A.1

(see the Appendix).

(c) Straightforward from (a), (b) and (6.24).

6.4. Numerical simulations

The previous results show that the main parameters related to the dynamics of

the original system can be approximated in terms of information corresponding to

the aggregated model. Those results characterize the approximations in the limit

k → ∞. In order to show that the approximations are good for finite values of k

and consequently our aggregation procedure is useful for the study of real biological

populations, we have performed some numerical simulations. These simulations

correspond to the age-structured multiregional model of Sec. 3 and its corresponding

reduced model, and we have chosen two of the most relevant parameters, growth

rate of the expected population size and probability of ultimate extinction, to carry

out the study.

Regarding the error we make when approximating λk ≈ λ, Proposition 3 sug-

gests that it depends on both, |γq+1| (the modulus of the subdominant eigenvalue

of P) and k (the separation between the time scales of the slow and fast processes).

Accordingly, for each h ∈ {0.1, 0.2, . . . , 0.9} we have constructed 50 random

examples of original systems such that |γq+1| = h. Then, in each example we have
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Fig. 1. Mean relative error obtained in the approximation of the growth rate and the probability
of extinction. For each value of |γq+1| = 0.1, 0.2, . . . , 0.9, we randomly generated 50 models. In
each case we compared the quantities obtained on the aggregated system with those observed on
the original system for different values of k.

obtained the corresponding aggregated system and compared λk and λ in one hand

and qk and q̄ in the other, for different values of k.

Figure 1(a) shows how the mean relative error generated in the approximation

of the growth rate increases with |γq+1| when k is fixed. Here, the maximum mean

error obtained over the 450 generated models was about 1.5% corresponding to the

case k = 1. Figures 1(b) and (c) show that these deviations decrease when k grows,

becoming near to 0.5% for k = 10.

In the approximation of the extinction probability (see Figs. 1(d)–(f) the

maximum mean error increases moderately taking values around 25% for k = 1

and falling down to 11% for k = 10.

The simulations carried out suggest a direct relationship between the accuracy

of the approximations and both quantities: |γq+1| and k. Furthermore, it is shown

that, even for small values of k, the maximum mean error obtained is less than 10%

in most of the cases except for some specific instances with high values of |γq+1|

which corresponds to the case in which the fast process converges very slowly. In

summary, the aggregation method proposed seems appropriate for describing the

dynamics of real biological populations.
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Appendix

Lemma A.1. Under hypothesis H2, there exists k0 such that the sequence 1−qk(n)
(λk)n

converges to a certain vector b as n → ∞ uniformly for k ≥ k0.

Proof. Let us define Gk(n, s) = Gk ◦ Gk◦
(n)
· · · ◦ Gk ◦ Gk(s) with components

Gir
k (n, s), i = 1, . . . , q ; r = 1, . . . , Ni and let

hk(n) = (h11
k (n), . . . , h1N1

k (n), . . . , hq1
k (n), . . . , h

qNq

k (n))

:= Gk(n,0) − 1 = qk(n) − 1 .

For each i = 1, . . . , q, r = 1, . . . , Ni and each n and n′ we have, by the general

theory of g.w.p., hir
k (n + n′) = Gir

k (n + n′,0) − 1 = Gir
k (n,Gk(n′,0)) − 1. Now,

using Taylor’s theorem for Gir
k (n, ∗) around s = 1 and the fact that Gir

k (n,1) = 1

we obtain

hir
k (n + n′) = hk(n′)gradGir

k (n,1) +
1

2
hk(n′)Hir

k (n, n′)hT
k (n′) , (A.1)

where Hir
k (n, n′) is the Hessian matrix of Gir

k (n, ∗) evaluated at a point of the

segment that joins 1 and Gk(n′,0) = qk(n′) ≥ 0 and gradGir
k (n,1) corresponds

to the (ir)th column of (MPk)n. Now we define the column vector f ir
k (n, n′) :=

1
2H

ir
k (n, n′)hT

k (n′) and the matrix Fk(n, n′) ∈ RN×N such that its (ir)th column

is f ir
k (n, n′) ; i = 1, . . . , q ; r = 1, . . . , Ni. Using (A.1) we can write hk(n + n′) =

hk(n′)[(MPk)n + Fk(n, n′)]. Next we will show that hk(n)
(λk)n is a uniform Cauchy

sequence for k large enough and the lemma will be proved.

Note that, from hypothesis H2 and Proposition 4, there exists k0 such that the

original process is positive regular (i.e. MPk be primitive) for k ≥ k0. Moreover,

since λk
k→∞
→ λ < 1 (Proposition 3), given any σ, λ < σ < 1, we can choose k0 such

that λk < σ for k ≥ k0.

In the remaining of the proof, let ‖ ∗ ‖ denote both the l∞ norm in RN and its

associated matrix norm in R
N×N . Now let n0, n1 and n2 be arbitrary and k ≥ k0.

Then
∥

∥

∥

∥

hk(n0 + n1)

(λk)n0+n1
−

hk(n0 + n2)

(λk)n0+n2

∥

∥

∥

∥

≤

∥

∥

∥

∥

hk(n0)

(λk)n0

∥

∥

∥

∥

(∥

∥

∥

∥

∥

(

MPk

λk

)n1

−

(

MPk

λk

)n2
∥

∥

∥

∥

∥

+ (λk)n0

∥

∥

∥

∥

Fk(n0, n1)

(λk)n0+n1
−

Fk(n0, n2)

(λk)n0+n2

∥

∥

∥

∥

)
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≤

∥

∥

∥

∥

hk(n0)

(λk)n0

∥

∥

∥

∥

(∥

∥

∥

∥

∥

(

MPk

λk

)n1

−

(

MPk

λk

)n2
∥

∥

∥

∥

∥

+ σn0

∥

∥

∥

∥

Fk(n0, n1)

(λk)n0+n1
−

Fk(n0, n2)

(λk)n0+n2

∥

∥

∥

∥

)

.

Now, MPk is primitive and so ‖(MPk

λk
)n1 − (MPk

λk
)n2‖ tends to zero when n1

and n2 tend to infinity. Moreover, taking into account that Lemma A.2 (see below)

guarantees that ‖hk(n)
(λk)n ‖ and ‖ Fk(n,n′)

(λk)n+n′ ‖ are bounded as functions of n and n′,

uniformly for k large enough, the desired result follows.

Lemma A.2. There exists k0 such that (a) ‖(MPk

λk
)n‖, (b) ‖Ck(n)

(λk)n ‖, (c) ‖hk(n)
(λk)n ‖

and (d) ‖ Fk(n,n′)

(λk)n+n′ ‖ are bounded as functions of n and n′, uniformly for k ≥ k0.

Proof. We know from (6.22) that

(

E(Xn)

Ck(n)

)

= (Ωk)n

(

X0

(X0X
T
0 )

)

where Ωk =

(

MPk 0

Dk MPk ⊗ MPk

)

and Dk was defined in the proof of Proposition 8. By

inspection of Ωk it follows that, in order to prove (a) and (b) it suffices to prove

that ‖(Ωk/λk)n‖ is bounded as a function of n uniformly for k large enough. We

know that, for large enough k, λk < 1 is a simple and strictly dominant eigenvalue

for MPk. So, from Lemma 5, ρ(Ωk) = λk is also simple and strictly dominant

and has associated right and left eigenvectors ak =

(

rk

sk

)

and bk =

(

lk

0

)

where

sk = (λI−MPk ⊗MPk)−1Dkrk. From Dk = D′ + o(γk) (proof of Proposition 8)

and Proposition 3 we have that ak and bk converge when k → ∞, and so the desired

result will follow if we prove that (Ωk

λk
)n n→∞

→ akb
T
k uniformly for k large enough.

For each k let us consider the eigenvalues of MPk and MP̄ ordered by decreasing

modulus be, respectively, λk > |λk,2| ≥ · · · ≥ |λk,N | and λ > |λ̄2| ≥ · · · ≥ |λ̄N |.

Using a Jordan canonical decomposition of Ωk we can write (Ωk

λk
)n−akb

T
k = (Ek

λk
)n

where Ek is a matrix such that ρ(Ek) = max{|λk,2|, (λk)2}. From the continuity of

the eigenvalues on the entries of the matrix it follows λk
k→∞
→ λ and λk,2

k→∞
→ λ̄2 and

so ρ(Ek

λk
)

k→∞
→ max{ λ̄2

λ
, λ} < 1. Therefore, there exists σ < 1 such that ρ(Ek

λk
) < σ

for k large enough. Consequently (Ek

λk
)n n→∞

→ 0 uniformly for k big enough and the

result follows.

(c) Let us recall that the partial derivatives of any order of a p.g.f. evaluated at

any point s ≥ 0 are always non-negative. Moreover, if G(s) denotes the p.g.f. of the

generic g.w.p. Zn, in Lemma 5, we have that for all j, r and l, and each s verifying

0 ≤ s ≤ 1 it follows that:

0 ≤
∂2Gj

∂sr∂sl

(s) ≤
∂2Gj

∂sr∂sl

(1) = Cj
rl − δrlarj ≤ Cj

rl , (A.2)

where δrl denotes the Kronecker delta.



April 23, 2003 9:7 WSPC/103-M3AS 00265
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From (A.2) it follows that Hir
k (n, n′) ≥ 0 for any i, r, n and n′. Besides, by

definition, hk(n) ≤ 0 for all n and so hk(n′)Hir
k (n, n′)hT

k (n′) ≥ 0 for all n and

n′. Now, from (A.1), 0 ≤ −hk(n + n′) ≤ −hk(n′)(MPk)n, so |hk(n + n′)| ≤

|hk(n′)|(MPk)n. Using that for the l∞ norm |A| ≤ |B| ⇒ ‖A‖ ≤ ‖B‖, we have

‖hk(n + n′)‖ ≤ ‖hk(n′)‖‖(MPk)n‖ ≤ 2‖(MPk)n‖. Making n′ = 0 we obtain

‖hk(n)
(λk)n ‖ ≤ 2‖(MPk

λk
)n‖. Now, using part (a), the boundedness of ‖hk(n)

(λk)n ‖ as a func-

tion of n, uniformly for k large enough follows.

(d) From (A.2) applied to Gir
k (n, s) we obtain Hir

k (n, n′) ≤ Cir
k (n) and therefore

‖Hir
k (n, n′)‖ ≤ ‖Cir

k (n)‖. Now, for each i = 1, . . . , q and r = 1, . . . , Ni,
∥

∥

∥

∥

f ir
k (n, n′)

(λk)n+n′

∥

∥

∥

∥

=
1

2

∥

∥

∥

∥

Hir
k (n, n′)hT

k (n′)

(λk)n+n′

∥

∥

∥

∥

≤
1

2

∥

∥

∥

∥

Hir
k (n, n′)

(λk)n

∥

∥

∥

∥

∥

∥

∥

∥

hT
k (n′)

(λk)n′

∥

∥

∥

∥

≤
1

2

∥

∥

∥

∥

Cir
k (n)

(λk)n

∥

∥

∥

∥

∥

∥

∥

∥

hT
k (n′)

(λk)n′

∥

∥

∥

∥

and now the boundness of ‖ Fk(n,n′)

(λk)n+n′ ‖ as a function of n and n′ uniformly for k large

enough follows using (b) and (c).
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