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This paper analyses the effect of migration frequency on the stability and persistence of a
host-parasitoid system in a two-patch environment. The hosts and parasitoids are allowed to
move from one patch to the other a certain number of times within a generation. When this
number is low, i.e. when the time-scales associated with migration and demography are of the
same order, host-parasitoid interactions are usually not persistent. When this number is high,
however, persistence is more likely. Moreover, in this situation, aggregation methods can be
used to simplify the proposed initial model into an aggregated model describing the dynamics
of both the total host and parasitoid populations. Analysis of the aggregated model shows
that the system reaches a stable steady state for some regions of the parameter domain.
Persistence occurs when the movement of the parasitoids is asymmetrical, i.e. they move
preferentially to one of the two patches. We show that the growth rate of the host population
is a key parameter in determining which migration strategies of the parasitoids lead to
persistent host-parasitoid interactions.

r 2003 Elsevier Science Ltd. All rights reserved.
Introduction

Many theoretical studies of the dynamics of
spatially distributed host-parasitoid systems
have been conducted (for a review see Hassell
& Wilson, 1997; Hassell, 2000a, b). A point of
particular interest is whether non-persistent
host-parasitoid interactions become persistent
when they are considered in a spatial context.
The example of the Nicholson–Bailey model is
very demonstrative. This model does not allow
for persistent host-parasitoid interactions (the
number of hosts and parasitoids show diverging
oscillations over time, leading to extinction). In a
patchy environment, however, if the Nicholson–
Bailey model acts on every patch and dispersal
nCorresponding author. Tel.: 33-472-431284.
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occurs between the patches, host-parasitoid
interactions may turn out to be persistent. The
dispersal between the patches is global when the
hosts and the parasitoids are redistributed
among all the patches in each generation
according to a given distribution (e.g. Hassell
& May, 1973, 1974; Hassell et al., 1991b). In this
case, the persistence of host-parasitoid interac-
tions is assured if the distribution for the
parasitoids is sufficiently heterogeneous. More
precisely, the square of the coefficient of varia-
tion of this distribution must be more than 1 (the
‘CV241’ rule, Pacala et al., 1990; Hassell et al.,
1991b; Taylor, 1993). The dispersal between
the patches is local when the hosts and the
parasitoids move to adjacent patches in each
generation. In this case, host-parasitoid interac-
tions persist provided the number of patches is
r 2003 Elsevier Science Ltd. All rights reserved.
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large enough (Hassell et al., 1991a; Comins et al.,
1992; Rohani & Miramontes, 1995). In addition,
the spatial dynamics of the system shows a
variety of patterns (spirals, spatial chaos, crystal
lattice), depending on the proportion of hosts
and parasitoids that move to adjacent patches.
Such complex patterns arising from simple rules
have opened fresh perspectives in understanding
some of the complexity of natural systems
(Bascompte & Solé, 1995), particularly as they
have turned out to be fairly realistic (Rohani
et al., 1997). The time hosts and parasitoids
spend traveling from one patch to another also
appears to have stabilizing effects, regardless of
whether dispersal is global (Hassell & May,
1974; Weisser & Hassell, 1996) or local (Weisser
et al., 1997). Other potentially stabilizing factors
apart from dispersal have also been investigated:
spatial heterogeneity in the growth rates of the
hosts (Reeve, 1988, 1990; Holt & Hassell, 1993),
spatial heterogeneity in the initial number
of hosts and parasitoids (Adler, 1993), within-
generation redistribution of the parasitoids
(Rohani et al., 1994), spatial heterogeneity in
the carrying capacity of the hosts (Allen et al.,
2001), and demographic stochasticity (Keeling
et al., 2002). These studies have been extended to
more complex systems involving two parasitoids
and one host (Hassell et al., 1994), two hosts and
one parasitoid (Comins & Hassell, 1996; Bonsall
& Hassell, 2000), and host, parasitoid, and
hyperparasitoid (Comins & Hassell, 1996). An-
other extension involves introducing evolutiona-
rily stable migration strategies (ESS) into the
models and investigating the consequences for
ecological stability and persistence (van Baalen
& Sabelis, 1993, 1999; Savill et al., 1997;
Schreiber et al., 2000). The potentially destabi-
lizing effect of dispersal has also been studied:
persistent host-parasitoid interactions in each
patch may cease to be persistent when there is
dispersal among patches (Reeve, 1988; Rohani
et al., 1996; Rohani & Ruxton, 1999a, 1999b).

Most parasitoids are winged adults (e.g.
wasps, flies, midges, see Godfray, 1994) as are
some hosts (e.g. butterflies, flies). This enables
them to move frequently from one patch to
another. In a butterfly–wasp system, for exam-
ple, the adult butterflies disperse and oviposit,
and then the wasps disperse and attack the
caterpillars. There are several experimental
studies indicating that adult parasitoids make
several flights from patch to patch within a
generation (Briggs & Latto, 2000; Tenhumberg
et al., 2001) and both parasitoids and hosts are
able to fly long distances (Byrne, 1999; Altizer
et al., 2000; Hastings, 2000). The objective of the
present paper is to analyse the conditions for
persistence of host-parasitoid interactions with
respect to migration frequency. We first present
a general host-parasitoid model in a heteroge-
neous environment. The spatial heterogeneity is
described by means of two patches. In each of
them, changes in the local host and parasitoid
densities follow either the Nicholson–Bailey or
the May (1978) models. Host and parasitoid
individuals can move from one patch to the
other a certain number of times within a
generation. When this number is high, i.e. when
the time-scales associated with migration and
demography are markedly different from each
other, we take advantage of the two different
time-scales to reduce the system. The study of
the reduced system is carried out and the
dynamics of the reduced and complete systems
are compared. The model is finally extended to
the situation where the migration of the para-
sitoids depends on host density.

Presentation and Reduction of the Model

The classical structure of a model describing
the dynamics of a host-parasitoid system reads
as follows:

Ntþ1 ¼ lNt f ðPtÞ;

Ptþ1 ¼ cNt 1� f ðPtÞ½ �: ð1Þ

The two state variables are the host population
Nt and the parasitoid population Pt at genera-
tion t. Parameter l is the growth rate of the host
population. It is assumed that in the absence of
the parasitoid, the host population grows, which
implies that l41. Parameter c is the average
number of parasitoids that emerge from a single
infected host. The function f(Pt) is the propor-
tion of hosts that are not infected between t and
t+1. It is reasonable to assume that this
proportion decreases with increasing values of
Pt, that no host is infected when there is no
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parasitoid and that all hosts are infected when
the number of parasitoids tends to infinity, i.e.

f 0ðPtÞo0;

f ð0Þ ¼ 1;

limPt-N f ðPtÞ ¼ 0:

ð2Þ

More general host-parasitoid models allow the
function f to depend on both Nt and Pt, i.e.
f(Nt,Pt).

A particular form of function f, f ðPtÞ ¼
expð�aPtÞ; corresponds to the classical Nicholson–
Bailey model, with the positive parameter
a representing the searching efficiency of the
parasitoids. When f ðPtÞ ¼ ð1þ aPt=bÞ�b; the
system (1) is the model of May (1978), b being
a positive parameter defining the degree of
aggregation of parasitoids. The Nicholson–
Bailey model can be considered a limit case,
where b-N; of May’s model. The Nicholson–
Bailey model has two fixed points: a trivial one,
the origin (0,0), and a non-trivial one, which is
positive when l41. It can be shown that the two
fixed points are unstable for all parameter values
(see, e.g. Edelstein-Keshet, 1988). Consequently,
this model does not predict persistent host-
parasitoid interactions. May’s model also has
two fixed points, the origin and a non-trivial one,
which is positive when l41. In this case, May
(1978) showed that this fixed point is stable when
bo1. Otherwise, this model also predicts non-
persistent host-parasitoid interactions (except
immediately outside the domain of stability,
where the system shows fluctuations ensuring
persistence).

A GENERAL HOST-PARASITOID MODEL IN A

TWO-PATCH ENVIRONMENT

We will now consider a system with two
spatial patches. We define four state variables,
the host and the parasitoid population densities
on each patch at generation t, denoted ðN1;t;N2;tÞ
and ðP1;t;P2;tÞ respectively, with the first index
indicating the patch number. We denote the
population vector Vt ¼ ðN1;t;N2;t;P1;t;P2;tÞ:

In the time elapsed between t and t+1, two
processes are involved in the model: the migra-
tion of hosts and parasitoids between the two
patches and the demography on each patch.

Let us describe first the migration part of the
model. We assume constant migration propor-
tions. We denote by fij the proportion of hosts
migrating from patch i to patch j and by gij

the corresponding proportion for the parasi-
toids. Then we define the migration matrix M as
follows:

M ¼

1� f12 f21 0 0

f12 1� f21 0 0

0 0 1� g12 g21

0 0 g12 1� g21

0
BBB@

1
CCCA: ð3Þ

Secondly, we propose the general host-parasitoid
model (1) for describing the demography on
each patch:

N1;tþ1 ¼ l1N 0
1;t f ðP0

1;tÞ;

N2;tþ1 ¼ l2N 0
2;t f ðP0

2;tÞ;

P1;tþ1 ¼ cN 0
1;t 1� f ðP0

1;tÞ
h i

;

P2;tþ1 ¼ cN 0
2;t 1� f ðP0

2;tÞ
h i

;

ð4Þ

where V
0

t ¼ ðN
0

1;t;N
0

2;t;P
0

1;t;P
0

2;tÞ denotes the po-
pulation densities after migration. Parameters
l141 and l241 are the host growth rates on
each patch. We assume a patch-independent
value of parameter c and of function f. We define
the following density-dependent demography
matrix:
DðV
0

tÞ ¼

l1f ðP0
1;tÞ 0 0 0

0 l1f ðP0
2;tÞ 0 0

0 0 c½1� f ðP0
1;tÞ�

N 0
1;t

P0
1;t

0

0 0 c½1� f ðP0
2;tÞ�

N 0
1;t

P0
2;t

0
BBBBBBBBB@

1
CCCCCCCCCA

: ð5Þ
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Then, eqns (4) can be rewritten as

Vtþ1 ¼ DðV 0
t ÞV

0
t : ð6Þ

Finally, the complete model combines migration
and demography as follows:

Vtþ1 ¼ DðMkVtÞMkVt; ð7Þ

where k is an integer approximately describing
the ratio between the time-scales associated with
migration and demography (here we suppose
that this ratio is the same for the parasitoids and
the hosts). It is assumed that between t and t+1,
the migration process occurs k times whereas the
demography acts only once. In other words, it is
assumed that before the demography starts, the
hosts and the parasitoids explore the environ-
ment by a series of k migrations and then settle
down.

When k¼ 1, the model consists of one
migration phase and one demography phase
for each generation, which is an assumption
made in most models with local dispersal. When
kb1, it is assumed that the migration process
is very fast in comparison to the demography,
which is the implicit assumption made in the
models with global dispersal. We shall see in the
next section that in the case kb1, the complete
model (7) can be simplified into a reduced model
(the aggregated model) the properties of which
are easier to analyse. We will also see that this
reduced model is a good approximation of the
complete model, even for moderate values of k.

THE AGGREGATED MODEL

The existence of two different time-scales
allows us to apply aggregation methods. The
idea is to consider the events occurring at the
fastest scale as being instantaneous compared
to the slower events. This means that fewer
variables or parameters are needed to describe
the evolution of the system. To carry out
aggregation we choose a global variable (some-
times also called a macrovariable) for each
subsystem and build up a reduced system for
these global variables.

Aggregation methods were initially applied to
ecology (Iwasa et al., 1987). If the consistency
between the dynamics of the global variables in
the original and the reduced (or aggregated)
system is only approximate, it is referred to as an
approximate aggregation (Iwasa et al., 1989).
Approximate aggregation has been developed
extensively (Auger & Poggiale, 1998; Bravo de la
Parra & Sánchez, 1998; Bravo de la Parra et al.,
1999; Sanz & Bravo de la Parra, 1999; Auger &
Bravo de la Parra, 2000) for systems with two
time-scales. This kind of aggregation has been
used to study both continuous (Auger &
Poggiale, 1996; Auger & Pontier, 1998; Bernstein
et al., 1999; Auger et al., 2000a, b) and discrete
(Charles et al., 1998, 2000; Chaumot et al., in
press) models in ecology.

We now proceed to construct the aggregated
model. In our case, the global variables are the
total densities of the host and parasitoid
populations Nt and Pt:

Nt ¼ N1;t þ N2;t;

Pt ¼ P1;t þ P2;t:
ð8Þ

There are two properties of the fast part of the
model, the migration process, which makes
possible finding a reduced system for the chosen
global variables: Nt and Pt are constants of
motion, and, for fixed values of Nt and Pt, the
state variables N1,t, N2,t, P1,t and P2,t reach an
equilibrium. The first step in constructing the
aggregated system consists in calculating this
fast equilibrium in terms of the global variables.
Then, assuming that between time t and time
t+1 the fast system has reached its equilibrium,
we can substitute the equilibrium values for the
state variables. Finally, adding up the two host
and the two parasitoid equations of the complete
model (7) we obtain the following aggregated
model (see Appendix A for the details of the
calculation):

Ntþ1 ¼ Nt l1nn1f ðmn
1PtÞ þ l2nn2 f ðmn

2PtÞ
	 


;

Ptþ1 ¼ cNt 1� nn1f ðmn
1PtÞ � nn2 f ðmn

2PtÞ
	 


;
ð9Þ

where

nn1 ¼
f21

f12 þ f21
; nn2 ¼

f12

f12 þ f21
; ð10Þ

mn

1 ¼
g21

g12 þ g21
; mn

2 ¼
g12

g12 þ g21
: ð11Þ
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In the particular case, l1 ¼ l2 ¼ l; nn1 ¼ nn2 ¼
1=2 and mn

1 ¼ mn
2 ¼ 1=2 the aggregated model

simplifies to

Ntþ1 ¼ lNt f ðPt=2Þ;

Ptþ1 ¼ cNt½1� f ðPt=2Þ�
ð12Þ

which is the general model (1) with Pt=2 instead
of Pt: Model (12) is identical to the local model
(4) on each patch and consequently exhibits the
same dynamics. This means that when the local
model is unstable on both patches, the aggre-
gated model shows the same behavior, which is
the case of the Nicholson–Bailey model.

A priori, it would be expected that in the case
of frequent migrations, a system of two con-
nected patches would merge as a single patch, so
that the aggregated model would show the same
dynamics as each of the local models. However,
we shall now show that, for some values of the
parameters, the aggregated model exhibits qua-
litatively different dynamics from the local
models. In particular, we shall see that, although
the local host-parasitoid systems are unstable,
the aggregated model can have a fixed point that
is asymptotically stable.

The analysis of the aggregated model (9) is
carried out in Appendix B. In the case l1 ¼ l2 ¼
l; there is one positive fixed point ðNn;PnÞ
defined by

nn1f ðmn
1PnÞ þ nn2 f ðmn

2PnÞ ¼ 1=l;

Nn ¼
1

c

l
l� 1

Pn:
ð13Þ

This positive fixed point is stable when:

DetðJnÞo1

DetðJnÞ ¼ � nn1m
n

1f 0ðmn

1PnÞ þ nn2m
n

2 f 0ðmn

2PnÞ
	 


P
 :

ð14Þ

When condition (14) holds, the positive fixed
point is stable and the system shows damped
oscillations of Nt and Pt: host-parasitoid inter-
actions are persistent. Henceforth we call
domain of stability of the model the regions of
the parameters domain where the condition
of stability (14) holds. When DetðJnÞ41; the
positive fixed point is locally unstable and the
system shows amplified oscillations of Nt and Pt:
The oscillations may not amplify indefinitely,
but approach an invariant curve, leading to
persistent host-parasitoid interactions. Conse-
quently, the persistence of host-parasitoid inter-
actions is not restricted to the domain of
stability. Henceforth we call the regions of the
parameters domain where persistence is assured
the domain of persistence of the model. In the
following sections, we will focus on the domain
of stability, but we will also explore the domain
of persistence.

HOST-DENSITY DEPENDENT MIGRATION

OF THE PARASITOIDS

We now extend the model to the situation
where parasitoid migration depends on host
density. More precisely, we assume that the
proportion of parasitoids migrating from patch i

to patch j, gij, decreases with increasing number
of hosts in patch i, Ni;t: Here we choose

g12 N1;t

� �
¼

1

1þ Na
1;t

;

g21 N2;t

� �
¼

1

1þ Na
2;t

: ð15Þ

The value of gij ranges from 1, for small values
of Ni;t; to 0 for high values, and the function is
steeper for high values of the parameter a40:

The complete model is still given by eqn (7),
but the migration matrix is now a function of
the population vector, i.e. M(Vt). Similarly, the
aggregated model is still given by eqns (9), but
the equilibrium patch frequencies for the para-
sitoids after migration are now functions of total
host density, i.e. mn

1ðNtÞ and mn
2ðNtÞ: Equations

(10) still holds, whereas eqns (11) becomes (see
Appendix C)

mn

1 Ntð Þ ¼
1þ nn1Nt

� �a
2þ nna1 þ nna2

� �
Na

t

;

mn

2 Ntð Þ ¼
1þ nn2Nt

� �a
2þ nna1 þ nna2

� �
Na

t

: ð16Þ

For small values of host density, Nt, mn
1 and

mn
2 are close to 1/2: the parasitoids show

no preference for a particular patch. For
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high values of Nt, mn
1-nna1 =ðnna1 þ nna2 Þ and

mn
2-nna2 =ðnna1 þ nna2 Þ: In the case a ¼ 1; mn

1-nn1
and mn

2-nn2: the distribution of the parasitoids
is similar to that of the hosts. When a41, the
parasitoids are more aggregated than the hosts.
The parameter a controls parasitoid aggrega-
tion at high host density, and has similarities
with the parasite aggregation index defined in
Hassell and May (1973). Here, however, the
parasitoid distribution also depends on host
density.

In the case l1 ¼ l2 ¼ l; the aggregated model
still has one positive fixed point ðNn;PnÞ defined
by eqns (13) with mn

1ðN
nÞ and mn

2ðN
nÞ: However,

it was not possible to derive a condition as
simple as eqn (14) for the stability of this fixed
point. This stability was therefore determined by
calculating the trace and determinant of the
Jacobian matrix.

Results

DOMAIN OF STABILITY OF HOST-PARASITOID

INTERACTIONS IN THE COMPLETE MODEL

Extensive numerical stability analyses and
simulations of the complete model show that
increasing the value of k (the number of
migrations performed by the hosts and para-
sitoids within a generation) generally promotes
the stability of the host-parasitoid interactions.
For example, for all sets of parameters
f12; f21; g12; g21f g with f12; f21; g12 and g21 taken

in 0:1; 0:2;y; 0:9f g; we found 156 sets that lead
to a stable positive fixed point of the model with
Fig. 1. Domain of stability (in black) of the complete m
values of fij (proportion of hosts migrating from patch i to j) a
hosts and parasitoids). The parameters are l1 ¼ l2 ¼ 2; a ¼ 0:
simulation.
k¼ 1 and 210 sets with k¼ 5 in the case l1 ¼
l2 ¼ 2; 40 sets with k¼ 1 and 102 sets with k¼ 5
in the case l1 ¼ l2 ¼ 5: These results were
obtained with the Nicholson–Bailey function
f ðPtÞ ¼ expð�aPtÞ for the proportion of non-
parasitized hosts, a¼ 0.05 and c¼ 1, but chan-
ging the values of a and c has no effect on the
stability. For an illustrative particular case where
g12 ¼ 0:1 and g21 ¼ 0:8 (proportions of the
parasitoids migrating), Fig. 1 shows the values
of f12 and f21 (proportions of the hosts migrat-
ing) that assure the stability of the interactions
when k¼ 1 [Fig. 1(a)] and k¼ 5 [Fig. 1(b)].
Although the stability is possible with k¼ 1, it
is more likely with k¼ 5.

SIMULATED DYNAMICS OF THE COMPLETE MODEL

AND THE AGGREGATED MODEL

In the case of persistent host-parasitoid
interactions, the dynamics of the aggregated
model in the (N,P) space either shows spirals
[Fig. 2(a) left], i.e. damped oscillations of Nt and
Pt, or approaches an invariant curve [Fig. 2(a)
right]. The aggregated model exhibits the same
qualitative behavior as the complete model even
for moderate values of k [Fig. 2(b)]. When k is
large enough, the dynamics of the aggregated
and complete models are indistinguishable
[Fig. 2(a) and Fig. 2(c)].

We now focus on the dynamics of the
aggregated model for three reasons: simulations
show that the aggregated model provides a good
approximation of the complete model even for
odel with Nicholson–Bailey local demography for different
nd k (number of migrations performed in each generation by
05; c ¼ 1; g12 ¼ 0:1; g21 ¼ 0:8: The boundaries are obtained by
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Fig. 2. Evolution of the global variables N (host density) and P (parasitoid density) in the aggregated model and in the
complete model with Nicholson–Bailey local demography. The parameters are l1 ¼ l2 ¼ l ¼ 2; a ¼ 0:05; c ¼ 1; f12 ¼ 0:3;
f21 ¼ 0:2 (nn1 ¼ 0:4; nn2 ¼ 0:6) and g12¼ 0.05, g21¼ 0.45 (mn

1 ¼ 0:9; mn
2 ¼ 0:1) (left side) or g12¼ 0.45, g21¼ 0.05 (mn

1 ¼ 0:1;
mn
2 ¼ 0:9) (right side). The initial conditions are N1;0 ¼ N2;0 ¼ P1;0 ¼ P2;0 ¼ 75 in the complete model and N0 ¼ P0 ¼ 150 in

the aggregated model.
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moderate values of k; numerical stability ana-
lyses of the complete model show that the
stability of host-parasitoid interactions is more
likely when k is high, i.e. when the complete
model can be approximated by the aggregated
model; the aggregated model is more tractable
analytically than the complete model.

DOMAIN OF STABILITY OF HOST-PARASITOID

INTERACTIONS IN THE AGGREGATED MODEL

If we use the Nicholson–Bailey function
for the proportion of non-parasitized hosts, i.e.
f ðPtÞ ¼ expð�aPtÞ; eqns (13), which defines the
positive fixed point ðNn;PnÞ of the aggregated
model, and eqn (14), which states the condition
of stability of this point, become

nn1 exp �amn
1Pn

� �
þ nn2 exp �amn

2Pn
� �

¼ 1=l;

Nn ¼
1

c

l
l� 1

Pn;
ð17Þ

nn1m
n
1 exp �amn

1Pn
� �

þ nn2m
n
2 exp �amn

2Pn
� �	 


a
l2

l� 1
Pno1:

ð18Þ
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In this case, the aggregated model is equivalent
to model D in Hassell & May (1973) except that
now the host and parasitoid distributions (nni
and mn

i ) are related to individual properties (the
migrations parameters fij and gij) by eqns (10)
and (11).

The first equation in eqn (17) and the
definition of nn2 ¼ 1� nn1 and mn

2 ¼ 1� mn
1 show

that eqn (18) actually depends just on three
parameters: l, nn1 and mn

1 : We have determined
numerically the values of these parameters for
which the condition of stability (18) holds. For
four values of parameter l, Fig. 3 shows the
regions of the domain of the parameters nn1 and
mn
1 that assure the stability of the fixed point

given by eqns (17) and, therefore, the persistence
of the host-parasitoid interactions.

For small values of the growth rate of the host
population, l, the persistence of the host-
parasitoid interactions occurs for either high
values of nn1 and small values of mn

1 or small
values of nn1 and high values of mn

1 [Fig. 3(a)].
Fig. 3. Domain of stability (in black) of the aggregated m
values of mn

1 (proportion of migrant parasitoids migrating to p
and l (growth rate of the host population). The boundaries a
This means that the proportion of the migrant
parasitoids that migrate to patch 1, mn

1; is
negatively correlated to the proportion of the
migrant hosts that migrate to patch 1, nn1 (exactly
the same can be said for patch 2).

Conversely, for high values of l, the persis-
tence of the host-parasitoid interactions occurs
for either small values of nn1 and mn

1 or high values
of nn1 and mn

1 [Fig. 3(d)]. The proportion of the
migrant parasitoids that migrate to patch 1 is
positively correlated to the proportion of the
migrant hosts that migrate to patch 1.

For intermediate values of l; the persistence
of the host-parasitoid interactions occurs for
intermediate values of nn1 and either high values
or small values of mn

1 [Fig. 3(b) and (c)]. The
proportion of the migrant parasitoids that
migrate to patch 1 is not correlated to the
proportion of the migrant hosts that migrate to
patch 1.

Using May’s model as local demography,
i.e. f ðPtÞ ¼ ð1þ aPt=bÞ�b; eqns (13) and (14)
odel with Nicholson–Bailey local demography for different
atch 1), nn1 (proportion of migrant hosts migrating to patch 1)
re obtained by simulation.
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become

nn1 1þ amn
1Pn=b

� ��bþnn2 1þ amn
2Pn=b

� ��b¼ 1=l;

Nn ¼
1

c

l
l� 1

Pn;
ð19Þ

nn1m
n
1 1þ amn

1Pn=b
� ��b�1þnn2m

n
2 1þ amn

1Pn=b
� ��b�1

h i

a
l2

l� 1
Pno1:

ð20Þ

Equation (20) now depends on four para-
meters: l, nn1; mn

1 and b. We have determined
numerically the values of these parameters for
which the condition of stability (20) holds. For
bo1, the system is stable whatever the values of
the parameters l, nn1 and mn

1: For high values
of b (b410), we get the same domains of
stability as in Fig. 3. For b¼ 1.5 and for four
values of the parameter l, Fig. 4 shows the
regions of the domain of the parameters nn1 and
mn
1 that assure the stability of the fixed point

given by eqns (19).
Fig. 4. Domain of stability (in black) of the aggregated m
Figure 4 shows more clearly than Fig. 3 that
the domain of stability of the aggregated model
shrinks with increasing values of l, i.e. stability
of host-parasitoid interactions is promoted by
small values of the growth rate of the host
population.

DOMAIN OF PERSISTENCE OF HOST-PARASITOID

INTERACTIONS IN THE AGGREGATED MODEL

We have explored the values of the parameters
for which the condition of stability (18) does not
hold, but the system eventually shows oscilla-
tions assuring the persistence of the host-para-
sitoid interactions (gray areas in Fig. 5).

DENSITY OF HOSTS AND PARASITOIDS AT

EQUILIBRIUM IN THE AGGREGATED MODEL

Host density Nn and parasitoid density Pn at
equilibrium are given by eqns (13) for the
aggregated model. Provided k is large enough,
these numbers are approximately equal to the
host density and the parasitoid density at
odel with May local demography and b¼ 1.5.



Fig. 5. Domain of stability (black) and domain of persistence (black and gray) of the aggregated model with Nicholson–
Bailey local demography.

Fig. 6. Parasitoid density at equilibrium Pn. Nicholson–Bailey local demography with a¼ 0.05 and c¼ 1.
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equilibrium for the complete model. Pn increases
with either increasing values of nn1 and decreasing
values of mn

1 or decreasing values of nn1 and
increasing values of mn

1 (Figs 6 and 7). The same
is true of Nn, as Nn is proportional to Pn, see the
second equation in eqns (17).

HOST-DENSITY DEPENDENT MIGRATION OF

THE PARASITOIDS

If we use the Nicholson–Bailey function for
the proportion of non-parasitized hosts, the
stability of the positive fixed point ðNn;PnÞ of
the aggregated model extended to host-density
dependent migration of the parasitoids depends
on four parameters, l, nn1; a and the product ac.
For two values of the parameter l, Fig. 8 shows
the regions of the domain of the parameters nn1
and a that assure the stability of the fixed point
and, therefore, the persistence of host-parasitoid
interactions. This figure was obtained with
a¼ 0.05 and c¼ 1. It appears that the domain
of stability shrinks slightly for increasing values
of ac. For higher values of the growth rate of the
host population, l, the persistence of the host-
parasitoid interactions is assured for a wider
range of values of the parasitoid aggregation
index, a. The parasitoid density Pn at equili-
brium is shown in Fig. 9. For fixed values of a,
there are two symmetrical values of nn1 which
lead to a maximum value of Pn. These values
also correspond to a maximum value of the host
density Nn, because of the second equation in
eqns (13). The values change little with a; but
depend on l. For l¼ 3, Pn is maximal for
nn1E0:35 and nn1E0:65; whereas for l¼ 5, Pn is
maximal for nn1E0:25 and nn1E0:75:

Discussion

Our study shows that non-persistent host-
parasitoid interactions on two patches may
become persistent when the hosts and para-
sitoids move between the two patches. Other
authors (Hassell et al., 1991a; Comins et al.,
1992) have suggested that the persistence of host-
parasitoid interactions in a patchy environment
with migration is assured when the number of



Fig. 7. Parasitoid density at equilibrium. May local demography with a¼ 0.05, c¼ 1 and b¼ 1.5.

Fig. 8. Domain of stability (in black) of the aggregated model with host-density dependent migration of the parasitoids
for different values of a (parasitoid aggregation index), nn1 (proportion of migrant hosts migrating to patch 1) and l (growth
rate of the host population). Nicholson–Bailey local demography with a¼ 0.05 and c¼ 1.
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patches is high (some hundreds of patches at
least). In our work, persistence occurs even if
there are only two patches, provided that the
movement is asymmetrical, i.e. the parasitoids
(and sometimes the hosts too) move preferen-
tially to one of the two patches. This result is in
line with those reported by Ives (1992), who
showed that variability in dispersal rate pro-
moted stability in a two-patch continuous-time
host-parasitoid model. Comins & Blatt (1974)
also established that biased diffusion had a
stabilizing effect in prey–predator models. We
also showed that when movement between the
patches occurs several times within a generation,
the interactions are generally more likely to be
stable. This occurs when the movement is
asymmetrical, which explains why Rohani &
Miramontes (1995), who considered several
symmetrical migrations within a generation in
their model, found no stabilizing effect. It should
be noticed that Adler (1993) did find persistent
host-parasitoid interactions in a two-patch
environment even for symmetrical migrations,
but in rather specific situations, where the initial
value of each population was set very close to the
unstable equilibrium point of the system. Unlike
the systems studied by Rohani et al. (1996) and
Rohani & Ruxton (1999a, b), our system did not
show any destabilizing effect of migration: when
the interactions were persistent on each patch in
the absence of migration (May local demogra-
phy with bo1), they were also persistent in the
two-patch environment with migration.

We found that the persistence of host-para-
sitoid interactions is facilitated for small values
of the growth rate of the host population l
(Hassell et al., 1973, 1974; Comins et al., 1992
and Adler, 1993 got a similar result). For small
values of l, persistence is assured when most of
the parasitoids migrate to one patch and most of
the hosts to the other patch [Fig. 3(a)], i.e. hosts
and parasitoids avoid each other. Such situa-
tions where hosts and parasitoids exhibit ‘‘con-
trary choices’’ are probably rare in the field.



Fig. 9. Parasitoid density at equilibrium Pn. Host-
density dependent migration of the parasitoids and
Nicholson–Bailey local demography with a¼ 0.05 and
c¼ 1.
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However, Fox & Eisenbach (1992) have reported
such a situation, and Schreiber et al. (2000)
showed that contrary choices could be evolutio-
narily stable strategies and promote ecological
stability. For high values of l, persistence is
assured when most of the parasitoids and most
of the hosts migrate to the same patch [Fig. 3(d)],
i.e. the hosts and parasitoids aggregate and
display ‘‘congruent choices’’. These findings
suggest that the host and parasitoid strategies
(avoidance or aggregation) that lead to a stable
system depend considerably on the growth rate
of the host population.

Furthermore, for a system with a stable fixed
point, we can ask the following question: which
migration strategies of the hosts and parasitoids
maximize their biomass (i.e. maximize host
density Nn and parasitoid density Pn at equili-
brium)? For small values of l, Pn (and Nn) are
maximum for the most asymmetrical movements
of the hosts and parasitoids in different direc-
tions [Fig. 6(a)], i.e. when hosts and parasitoids
avoid each other as much as possible. For high
values of l, Pn (and Nn) are maximum for the
most symmetrical movements of the hosts and
the most asymmetrical movements of the para-
sitoids in the direction where the hosts move
preferentially [Fig. 6(b)], i.e. when the parasi-
toids aggregate as much as possible on the patch
where most of the hosts are, whereas the hosts
still avoid the parasitoids. Then, at a critical
value, lc, of l, the parasitoids ‘‘switch strate-
gies’’; they avoid hosts whose lolc, whereas
they aggregate with hosts whose l4lc. The
value of lc can be defined: it is the value of l
for which Pn (and Nn) are maximum for
symmetrical movements of the hosts (i.e. for
nn1 ¼ nn2 ¼ 0:5). This value depends on the local
demography of our model. For a Nicholson–
Bailey local demography lcE4:3; whereas for a
May local demography, the value of lc depends
on the parameter b: lc decreases when b

increases, and with b¼ 1.5 as in Figs. 4 and 7,
lcE7:1: When the migration of parasitoids is
host-density dependent, Pn (and Nn) are not
maximum for the most asymmetrical movements
of the hosts or for the most symmetrical move-
ments, but for some particular intermediate
values. These values change little with the
parasitoid aggregation index but, as before, they
change considerably with the growth rate of the
host population. For l¼ 3 the maximum is
obtained when about 65% of the migrant hosts
go to one patch and 35% to the other patch
[Fig. 9(a)], whereas for l¼ 5 the maximum
occurs when 75% go to one patch and 25% to
the other patch [Fig. 9(b)].

We used aggregation methods to simplify the
analysis of our model. Indeed, aggregation
methods make it possible to obtain a global
(aggregated) model involving a reduced number
of variables and parameters, which is more
tractable analytically or numerically (e.g. for a
bifurcation analysis). These methods can be
applied to the study of dynamical systems with
two time-scales. The variables handled by the
aggregated model (the aggregated variables) are
chosen as variables that remain constant at the
fast time-scale. In our model, the migration
process is repeated several times within a
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generation, whereas the demography is applied
only once, i.e. migration operates on a fast time-
scale and demography on a slow time-scale.
Migration is conservative for the total host and
parasitoid densities, and so these variables are
chosen as aggregated variables. In our case the
aggregated variables are simply the sum of the
fast time-scale variables, but the global variables
may be more complex functions of the fast time-
scale variables (Auger & Poggiale, 1998). One
should remember that the aggregated model is
only an approximation of the complete model.
There are few mathematical results that can be
used to estimate the quantitative differences
between the dynamics of the aggregated model
and the complete model, and so this has to be
checked numerically. In our model, we found
that when k (the ratio between the fast time-scale
and the slow time-scale) is of the order 10–100
there was a very good quantitative agreement
between the dynamics of the two models.

In the aggregated model, it is easy to evaluate
the consequences of changes in properties of
individuals (such as the migration parameters)
on the persistence of host-parasitoid interac-
tions. Consequently, aggregation methods can
be used to study how properties at the popula-
tion level emerge from properties at the indivi-
dual level. In this regard, our model shares some
characteristics with the model of Schofield et al.
(2002), who also explored the consequences of
different within-generation search and flight
strategies of individuals on the between-genera-
tion dynamics of the host and parasitoid
populations. In the study reported here, we
considered constant host and parasitoid migra-
tion rates and also host-density dependent
migration of the parasitoids. In future work,
we would like to investigate other types of
migration behavior, such as parasitoid-density
dependent migration of the hosts to model the
avoidance by hosts of patches with many
parasitoids. Both types of density-dependent
migrations could also be considered together.
The present study focuses on host-parasitoid
interactions in two patches. It could be extended
to interactions in a row or an array of patches.
A condition for persistent interactions in the
two-patches model is asymmetrical movements
of the individuals. This condition is likely to be
preserved in a model with a row or an array of
patches. Asymmetrical movements could gener-
ate spatial structures different from those
generated by symmetrical movements (spirals,
spatial chaos, crystal lattice). Aggregation meth-
ods are promising in their ability to relate such
structures to individual properties.
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Proyecto de Investigación BFM2002-01615 (Spanish
MCYT). We thank two anonymous referees for their
helpful comments.
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Appendix A

CONSTRUCTING THE AGGREGATED MODEL

The first step in constructing the aggregated
model consists in studying the fast dynamics, in
our case the migration process. We can observe
that the migration matrix M (3) is a stochastic
matrix. Migration is conservative, i.e. it keeps
the total host and parasitoid densities constant.
We denote these constants N and P, respectively.
We must look for the existence of a stable
equilibrium ðN

0n
1 ;N

0n
2 Þ and ðP

0n
1 ;P

0n
2 Þ solution of

the equation V
0

t ¼ MV
0

t :

N 0n
1 ¼ ð1� f12ÞN 0n

1 þ f21ðN � N 0n
1 Þ;

N 0n
2 ¼N � N 0n

1 ;

P0n
1 ¼ ð1� g12ÞP0n

1 þ g21ðP � P0n
1 Þ;

P0n
2 ¼P � P0n

1 : ðA:1Þ

The fast equilibrium for the hosts is

N 0n
1 ¼

f21

f12 þ f21
N; N 0n

2 ¼
f12

f12 þ f21
N ðA:2Þ

and that for the parasitoids

P0n
1 ¼

g21

g12 þ g21
P; P0n

2 ¼
g12

g12 þ g21
P: ðA:3Þ
We define equilibrium patch frequencies for the
hosts and the parasitoids

nn1 ¼
f21

f12 þ f21
; nn2 ¼

f12

f12 þ f21
; ðA:4Þ

mn

1 ¼
g21

g12 þ g21
; mn

2 ¼
g12

g12 þ g21
: ðA:5Þ

Then, at the fast equilibrium, the densities on
each patch and the total density for the hosts
and the parasitoids are related by

N 0n
1 ¼ nn1N; N 0n

2 ¼ nn2N;

P0n
1 ¼ mn

1P; P 0n
2 ¼ mn

2P: ðA:6Þ

In order to obtain the aggregated model, the
second step consists in assuming that the fast
system has reached its equilibrium between time
t and time t+1. The aggregated model can then
be obtained by adding the two host and the two
parasitoid equations of the complete model (7)
and substituting the fast equilibrium values
(A.6). Simple calculations yield the following
aggregated model:

Ntþ1 ¼ Nt l1nn1f ðmn
1PtÞ þ l2nn2f ðmn

2PtÞ
	 


;

Ptþ1 ¼ cNt 1� nn1f ðmn
1PtÞ � nn2f ðmn

2PtÞ
	 




ðA:7Þ

Appendix B

ANALYSIS OF THE AGGREGATED MODEL

We look for the existence of a positive fixed
point (Nn,Pn) of the aggregated model (9). It is
solution of the equations:

l1nn1f ðmn
1PnÞ þ l2nn2 f ðmn

2PnÞ ¼ 1;

Pn ¼ cNn 1� nn1f ðmn
1PnÞ � nn2 f ðmn

2PnÞ
	 


:
ðB:1Þ

Because of the assumptions made about f,
see eqns (2), the function on the left-hand side
of the first equation monotically decreases with
Pn and takes the value l1nn1 þ l2nn2 for Pn¼ 0.
Consequently, when l1nn1 þ l2nn241 there is a
unique positive value for Pn. The second
equation then gives the corresponding value for
Nn, which is also positive. To study the local
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stability of the positive fixed point, let us
calculate the Jacobian matrix

Jn ¼

1 Nn l1nn1m
n
1f 0ðmn

1PnÞ þ l2nn2m
n
2f 0ðmn

2PnÞ
	 


Pn

Nn
cNn �nn1m

n
1f 0ðmn

1PnÞ � nn2m
n
2f 0ðmn

2PnÞ
	 


0
@

1
A


ðB:2Þ

Because f 0ðmn
1PnÞo0 and f 0ðmn

2PnÞo0; both the
trace and the determinant of Jn are positive.
Consequently, local stability is assured when

TrðJnÞo1þ DetðJnÞo2: ðB:3Þ

The first inequality is always satisfied. The
condition for local stability of the positive
fixed point ðNn;PnÞ of the aggregated model is
DetðJnÞo1:

In the case l1 ¼ l2 ¼ l; l1nn1 þ l2nn2 ¼ l41 is
satisfied and the equations above simplify. The
positive fixed point (Nn,Pn) is defined by

nn1f ðmn
1PnÞ þ nn2 f ðmn

2PnÞ ¼ 1=l;

Nn ¼
1

c

l
l� 1

Pn:
ðB:4Þ

This positive fixed point is stable when

� nn1m
n

1f 0ðmn

1PnÞ þ nn2m
n

2f 0ðmn

2PnÞ
	 
 l2

l� 1
Pno1:

ðB:5Þ
Appendix C

EQUILIBRIUM PATCH FREQUENCIES FOR

HOST-DENSITY DEPENDENT MIGRATION

OF THE PARASITOIDS

Following Appendix A, equilibrium patch
frequencies for the hosts are

nn1 ¼
f21

f12 þ f21
; nn2 ¼

f12

f12 þ f21
ðC:1Þ

and those for the parasitoids

mn

1 ¼
g21

g12 þ g21
; mn

2 ¼
g12

g12 þ g21
ðC:2Þ

with

g12 ¼
1

1þ N 0na
1

¼
1

1þ ðnn1NÞa
;

g21 ¼
1

1þ N 0na
2

¼
1

1þ ðnn2NÞa
: ðC:3Þ

Substituting eqns (C.3) into eqns (C.2) gives

mn

1 ¼
1þ ðnn1NÞa

2þ ðnna1 þ nna2 ÞNa;

mn

2 ¼
1þ ðnn2NÞa

2þ ðnna1 þ nna2 ÞNa: ðC:4Þ
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