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Abstract-In this work, we deal with the reduction of a time discrete model for a population 
distributed among N spatial patches and whose dynamics is controlled both by reproduction and by 
migration. These processes take place at different time scales in the sense of the latter being much 
faster than the former. We incorporate the effect, of demographic stochasticity into the population, 
which results in both dynamics being modelled by multitype Galton-Watson branching processes. 
We present a multitype global model that incorporates the effect, of the two processes and develop a 
method that takes advantage of the difference of time scales to reduce the model obtaining a unitype 
“aggregated” process that approximates the evolution of the total size of the population. We show 
that, given the separation of time scales between the birth-death process and the migration process 
is sufficiently high, we can obtain both qualitative and quantitative information about the behavior 
of the multitype global model through the study of this simple aggregated model. @ 2002 Elsevier 
Science Ltd. All rights reserved. 

Keywords-Approximate aggregation, Multiregional models, Demographic stochasticity. 

1. INTRODUCTION 

As a consequence of the intrinsic complexity of many ecological systems, their modelling implies 
dealing with systems involving a large number of variables. Indeed, in general, populations are 
not homogeneous, but they are composed of individuals with different ages, sizes, activities, 
locations, etc. Models that incorporate this inherent complexity of the populations often lead 
to systems with a large number of variables. These describe the biological system in detail, but 
have the severe disadvantage of being difficult to handle analytically. 

A common approach to deal with such complex models is the use of computer simulations, 
but this involves dealing with restrictions, generally unknown, concerning robustness of solutions 

*Author to whom all correspondence should be addressed. 
This work has been partially supported by Proyecto de Investigaci6n PB98-0702 (Spanish M.E.C.). 

0895-7177/02/S - see front matter @ 2002 Elsevier Science Ltd. All rights reserved. Typeset by &&TEx 
PII: SO895-7177(02)00103-6 



48 A. BLASCO et al. 

with respect to parameters and initial conditions. Another possibility consists in simplifying the 
model by ignoring some characteristics of the individuals, but in this way, we lose information 
about the internal structure of the population which may be crucial in its dynamics. 

Frequently, in detailed models, we can distinguish several processes that take place at different 
time scales. Indeed, changes taking place at the population level, such as the growth of the 
population, are frequently slow in comparison with those taking place at the individual level, 
such as migration, changes of activity, etc., see [I]. The so-called a ggregation techniques have 
been developed to reduce the dimension of such models without losing the relevant information 
corresponding to the various processes. The “aggregated system” is a reduced model that takes 
into account the effects of both the fast and the slow dynamics and evolves at the time scale 
corresponding to the slow process. The fast dynamics is reflected in the coefficients of this reduced 
model allowing us to carry out the study of the interaction between the different processes through 
the analysis of the aggregated model. 

Aggregation techniques were first applied to economical models [2] and later to ecology [3,4] 
in a general context, without requiring the presence of different time scales. More recently, they 
have been studied in the context of systems of ordinary differential equations [5-S] and partial 
differential equations [9]. These techniques have also been extended to deal with time discrete 
systems in both autonomous [lo-131 and nonautonomous cases [14,15]. 

The literature in population dynamics contemplates two sources of stochasticity: environmen- 
tal [16] and demographic [17]. The former has to do with the uncertainty induced in the vital 
rates by random environmental variations. Demographic stochasticity refers to the variability 
in a population arising from random differences among individuals in survival and reproduction. 
In this latter case, the number of offspring produced by an individual in each time interval is a 
discrete random variable (binomial, Poisson, etc.) with parameters depending on the individual’s 
stage. In this approach, any-population (but in some degenerated cases) has a chance to even- 
tually become extinct even if its mean number grows indefinitely. Models that take into account 
demographic stochasticity are particularly useful to study the problem of extinction of small 
populations. Indeed, it is in the context of small populations where the effect of demographic 
stochasticity is really relevant [18]. 

The reduction of systems for populations subjected to environmental stochasticity has been 
addressed in [19]. On the contrary, there are no works concerning the reduction of systems with 
different time scales and subjected to demographic stochasticity. In this work, we undertake the 
reduction of one such model. 

The mathematical tool to study structured populations subjected to demographic stochasticity 
and evolving in discrete time is the multitype Galton-Watson branching process [20,21] that 
describes the dynamics of a population in which the offspring produced by each individual in a 
time step (or generation) is a random variable whose distribution depends on the current stage 
of the individual. In spite of their simplicity, this kind of model has frequently been used in 

practical applications [22,23]. 

This work addresses the approximate reduction of a multiregional model for a spatially dis- 
tributed population that is governed by two processes, growth and migration, which are supposed 
to have different characteristic times. 

In the first place, we present a multitype Galton-Watson model for a spatially distributed 
population. The population is supposed to be unstructured by age and the individuals are 
distributed among a set of N spatial patches. Its dynamics is controlled by two processes, both 
of which are subjected to demographic stochasticity: a birth-death process that models the growth 
of the population in each one of the patches and, on the other hand, a Markov chain that models 
migration among patches. We assume, as is the case in many practical biological situations 
[1,7,9], that the growth of the population is slow in comparison with migration, which results in 
the projection interval of the birth-death process bein, 0 much larger than that of migration. We 
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build a global multitype Galton-Watson process with N types and time step corresponding to 
the projection interval of the birth-death process, that incorporates the effect of both dynamics. 

The Markov chain modelling migration is referred to the characteristic time of this process. 
In order to approximate the effect of migration over the projection interval of the birth-death 
process, which is much longer that the characteristic time of migration, we assume that in each 
time step of the model, migration acts a large number Ic of times. Here Ic can be interpreted 
as the ratio of the characteristic times for the growth of the population and for migration. In 
this way, the model that takes into account the joint effect of growth and migration referred to 
the characteristic time of the former consists of a Galton-Watson process in which in each time 
step, there are Ic iterations of the migration process followed by one iteration of the birth-death 

process. 
By making use of the existence of different time scales, we can approximate the resulting model, 

governed by N variables, by a unitype process for the total size of the population. In order to do 
so, we first approximate the original system by one in which migration has reached equilibrium in 
each time step and, next, we reduce the resulting system. Due to the approximation introduced 
to reduce the model, one cannot expect to be able to describe exactly the dynamics of the original 
system in terms of that of the reduced one. However, we show that we can obtain both qualitative 
and quantitative information about the behavior of the original process through the study of this 
simple aggregated model given the separation of time scales between the birth-death process and 
the migration process is sufficiently high. In particular, the behavior of the expected value of 
the population vector can be approximated in terms of that corresponding to the aggregated 
system. Moreover, the original system is shown to be supercritical (subcritical) if and only if the 
aggregated system is supercritical (subcritical) and the probability of ultimate extinction for the 
original system can be approximated by that corresponding to the aggregated system. In this 
way, the problem of extinction in the original multiregional model can be studied through the 
study of the simpler reduced unitype model. 

2. ORGANIZATION OF THE WORK AND MAIN RESULTS 

The paper is organized as follows. Section 3 presents a multitype Galton-Watson process 
(g.w.p.) with N types for the spatially distributed population according to the comments made 
in the last section. In the first place, we separately introduce the Galton-Watson processes 
corresponding to the birth-death process and to migration through their probability generating 
functions (p.g.f.). Each of these p.g.f.s is referred to the projection interval of the corresponding 
process. 

As described in the introduction, we formulate a multitype g.w.p. that takes into account the 
effect of both dynamics and is referred to the characteristic time of the birth-death process. 
This model can be interpreted as the composition of Ic iterations of the migration process and 
one iteration of the birth-death process. Lemma 1 characterizes mathematically the composition 
of multitype g.w.p.s and allows us to build the p.g.f. of the resulting model. In Section 4, we 
approximate the original system by an auxiliary system in which the Markov chain modeling 
migration reaches its equilibrium distribution in each time step of the model. Let w denote the 
vector corresponding to that spatial distribution among the patches. By defining a new variable 
corresponding to the total population, the auxiliary system is reduced to obtain a unitype g.w.p. 
Proposition 1 allows us to construct the p.g.f. of this reduced system, which is a weighted sum of 
the p.g.f.s corresponding to the birth-death processes in the different patches, being the weights 
the components of vector w. Moreover, this result gives the growth rate X of the mean population 
size for the reduced process in terms of vector w and the growth rates mii, i = 1,. . . , N of the 
mean population size for the birth-death process in the different patches. 

The behaviors of the original multiregional model and the reduced model are compared in 
Section 5. Proposition 3 states that the expected growth rate & of the population size for 
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the global process can be obtained as a perturbation of X, i.e., as a perturbation of the expected 
growth rate for the reduced model. Moreover, the dominant eigenvectors of the matrix of expected 
values for the global system are obtained as a perturbation of certain vectors only depending on u 
and the mii. These perturbations are characterized asympto&cally when k, that measures the 
separation of time scales between the growth process and migration, tends to infinity. The size 
of this perturbation is related to the modulus of the subdominant eigenvalue ~2 of the matrix 
of expected values for migration, in such a way that the faster migration reaches its equilibrium 
distribution (i.e., the lower ]p~p] is), the smaller the perturbation is. As a direct consequence of 
Proposition 3, we can approximate the asymptotic behavior of the mean population vector in 
terms of the mii, w, and ~2. 

Proposition 5 shows that the probability of extinction in finite time in the global process can be 
obtained as a perturbation of the corresponding probability of extinction in the reduced system. 

Theorem 1, that constitutes our main result, deals with the comparison of the probabilities 
of ultimate extinction in the global process and in the reduced process. For a sufficiently high 
separation of time scales, the global system is subcritical (supercritical) if and only if the aggre- 
gated process is subcritical (supercritical). Besides, in the supercritical case, the probability of 
ultimate extinction for the global process converges to that of the aggregated system. In this way, 
Theorem 1 guarantees that if the reduced process is subcritical, then so is the global process for 
big enough k and the probabilities of ultimate extinction for both process are one. Analogously, 
if the reduced process is supercritical (and so the probability of ultimate extinction is lower than 
one), then so is the global process for big enough k, and the probabilities of ultimate extinction 
of the latter can be approximated by that of the former. 

An estimation of the accuracy of the approximations above, i.e., of the error we incur in when 
studying the global system in terms of the reduced one, has been carried out through computer 
simulations. These show the dependence of the error on the separation of time scales k and 
on ]~2]. Moreover, they show that this error is small even for moderate values of k and so our 
reduction technique can be useful in the study of real biological populations. 

3. A GALTON-WATSON PROCESS FOR A 
SPATIALLY DISTRIBUTED POPULATION 

We consider an unstructured population distributed among N spatial patches and evolving in 
discrete time. The number of individuals living in patch i at time t is denoted by xi, i = 1, . . . , N; 
t=0,1,2 )‘... Therefore, the population at a given time t is described by vector 

Xt = (X;,...,5;V)T, (I) 

where T denotes transposition. 
We assume that the evolution of the population is governed by two processes: a birth-death 

process and a migration process. The former determines the number of offspring produced by 
each individual in each time interval. Here we use the term offspring in the sense of [17], i.e., an 
individual who survives a time interval is considered as part of its offspring in the next interval. 
On the other hand, migration determines the transference of individuals among the patches. Note 
that this process does not produce changes in the population size, but only in the distribution of 
the individuals among the patches. 

Each of these processes is considered to be subjected to demographic stochasticity and, conse- 
quently, will be modelled by means of a multitype g.w.p. We assume that the characteristic time 
scale corresponding to migration is very short compared to that of the birth-death process. We 
will sometimes refer to these processes as fast and slow dynamics, respectively. 

The projection interval of our model, i.e., the time elapsed between times t and t + 1, will be 
that corresponding to the birth-death process. For notational convenience, we will denote the 
time span [t, t + 1) as A,. 
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3.1. Probability Generating Function of the Birth-Death Process 

The birth-death process determines the number of net offspring produced by each individual 
in each time interval. 

We assume the following. 

(Hl) An individual can produce offspring only in its current patch. 
(H2) In each patch, the probability of having no descendence is lower than one and there is only 

a finite number of possible values for the offspring production. 

Let us initially assume that the system is exclusively controlled by the birth-death process, i.e., 
there is no migration, and let ht = (hj , . . . , hF)T denote the population vector for such a system 
at time t. 

Throughout this work, let Zl;ldenote the set of m-dimensional vectors whose components are 
nonnegative integers and let ej be the jth canonical vector of R”. Unless stated otherwise, all 
vectors in this work are considered as column vectors. In addition, we will use the notation sa := 
qs;2 .,.,sz for any pair of vectors s = (sr,. . . , s,)~ E R” and (Y = (ar,cq, . . . ,cx,)~ E “I;“. 
We will denote the probability of an individual living in patch j to produce an offspring cy after 
one time step by pi(~), i.e., 

$~(cY) = pr (ht+i = cr ( ht = ej) , j = l,...,N. 

The probability generating function (p.g.f.) which characterizes the birth-death process is an 
N-dimensional function Gs(s) = (G&(s), . . . , G~(s))~, where 

G’,(s) = CP$ (a)~~, j = l,...,N, 
c1 

and the summation is extended to the (finite) set of possible values of (Y. 
We will denote by M EIR NxN the matrix of expected values associated to the birth-death 

process. Taking into account that each individual can produce offspring only in its current patch, 
we have that M = diag(mii, . . . , TLNN), where 

mjj = E (hi+, 1 ht = eJ) = $$(I), 

being 1 =(l,. . . , l)T. Note that, according to Hypothesis H2, mjj > 0, (j = 1,. . . , N). 

3.2. Probability Generating Function of Migration 

Migration determines the transference of individuals among the patches and is conservative of 
the total population size. Since migration is supposed to be subjected to demographic stochastic- 
ity, it is modeled through a Markov chain which, from the point of view of branching processes, is 
a singular g.w.p., i.e., a process with a linear p.g.f. For the sake of coherence with previous works 
in the field of aggregation in a deterministic context [12], we will denote by P = (pij) E IRNX N the 
matrix of transition probabilities associated to the migration process, pi, being the probability 
of an individual in patch j to migrate to patch i. This notation has already been used in the 
context of population dynamics [17]. 

Let us assume the system is controlled by migration exclusively, and let wt = (w,‘, . . . , w?)~ 
denote the population vector at time t. Then, given an initial population consisting of a single 
individual in patch j (j = 1, . . . , IV), the probability of obtaining a population CY after a migration 
period is 

p’,(a) = pr (wt+i = a 1 wt = ej) = 
ifa=eiforsomei=l,...,N, 

otherwise. 
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The corresponding p.g.f. is GF(s) = (G;(s), . . . , G$(s))~, where 

G$(s) = ~p’,(c~)s” = ep’, (ei) Si = eP,jSi, j=l,...,N, 
a i=l i=l 

and therefore, GF(s) = PTs. The matrix of expected values corresponding to migration is P, 
since 

E (Wi+l 1 Wt = ej) = $$(I) = pij, i,j = l)...) N. 

Analogously, the probability that an individual initially in patch j is in patch i after k periods 
of migration is given by the corresponding entry of the matrix Pk, i.e., 

pr (wt+k = ei 1 wt = ej) = (Pk)ij, 

and, as a consequence, given an initial population consisting of a single individual in patch j, the 
probability of obtaining a population CY after k periods of migration is 

PjF,k(a)=pr(wt+k=a 1 wt=e3) = 
(‘“)ij) ‘) 

ifcr=eZ forsomei=l,...,N, 
o otherwise, 

j = l,...,N. 

Hence, the p.g.f. corresponding to k periods of migration is GF,~(s) = (Gb,k(~), . . , G~,(s))~, 
where 

G&(s) = ~P&F:,,(+~ = eplF.k (ei) si = 2 (Pk)ij si, j=l,...,iv, 
a i=l i=l 

and therefore, 
GF,k(~) = (Pk)T s. 

As above, differentiating these functions, we have 
(2) 

E (w:+,, 1 wt = ej) = %(I) = (Ph.), ) i,j = 1,“‘) iv, 
2 

so the matrix of expected values for k iterations of migration is Pk. 

3.3. Probability Generating Function of the Global Process 

As we stated before, we choose the projection interval of the birth-death process as the time 
step A, of the model. Therefore, we need to approximate the effect of migration over a period 
much longer than its corresponding projection interval. We will assume that during each A,, 
migration operates a number k of times before the birth-death process acts. In this way, k can 
be interpreted as the ratio between the projection intervals corresponding to the growth of the 
population and to migration. Since these projection intervals are supposed to be very different 
from each other, k is a big number which, in addition, we assume to be an integer. 

In order to determine the p.g.f. of this “global” model that takes into account growth and migra- 
tion, we will study the “composition” of Galton-Watson processes. Let us consider a population 
governed by two different g.w.p.s, xt and yt characterized by p.g.f.s Gx and Gy, respectively. 
We assume that in each time step of the model, the population is first subjected to an iteration 
of process xt followed by an iteration of process yt. Therefore, we can think of the population 
as governed by a g.w.p., zt(with offspring production Z) which can be interpreted as the “com- 
position” of xt and yt. The mathematical description of process zt in the unitype case has been 
addressed in [21, p. 211. The following lemma is a straightforward generalization of that result 
to deal with the multitype case. 

LEMMA 1. Under the assumptions above, we have the following. 
1. The p.g.f. of process zt verifies Gz= GxoGy. 
2. Let the matrices of expected values for the processes xt and yt be Ax and Ay , respectively. 

Then the matrix AZ of expected values for the process zt is AZ= AyAx. 
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PROOF. The p.g.f. Gz(s) = (G;(s),. . ,Gg(s)) T of a process zt has components given by 
G;(s) = E[sZ 1 p arent type j], where Z is a random variable determining the offspring pro- 
duction of a single individual. These expectations can be written as 

G~(~)=~E[s~IX=a]P(X=uIparenttypej), 
cy 

being E[sZ 1 X = a] E E[sg’ . . . s$ / Xr = ~1,. . . , X, = a,]. Here, Zi represents the offspring 
of type i produced in a given time step and is defined as the sum of independent random variables 
2, = qlll + . . . + yl’al + . . . + qrn” + . . . + y,“‘““’ . Each y,“‘” (1 = 1,. . . , cq) is a realization 
of the random variable Yj, which represents the number of type i offspring produced by an 
individual of type j after an iteration of process yt. Consequently, for each i and j, there are cr~j 
realizations {Yi”, 1 = 1, . . . , a?}, corresponding to the CY~ individuals of type j produced by xt. 
These realizations are independent and have a common probability distribution given by that 
of Yii. Therefore, 

. . ~,~f~‘+...+y,~,~“‘+.,,+y,;~,l+..,+y,::’~,,, 1 
= G$ @)“I . . . Gym (S)a”, . 

As a consequence, we have 

G$ (s) = c (G& (s))“’ ... (Gy (s))*“’ P(X = cy 1 parent type j) 
a1,...,a,,> 

= E [GY @Ix 1 parent type j 1 = G$ (GY (s)) , 

as we wanted to prove. Part 2 follows easily by differentiating in Gz= GxoGy. I 

Therefore, the global model proposed above is a multitype branching process xc, xl,. . . , that 
can be considered as the composition of k iterations of migration followed by one iteration of the 
birth-death process. Consequently, its p.g.f. is given by 

G(s) = G~,lc 0 G.s(s). (3) 

Now, using (2), we have 

Ws) = (Pk)T Gs(s), 

i.e., Gk(s) = (G:(s), . . . ,G[(s))~, where 

(4) 

CL(s) = 2 G;(s) (Pk)zi . 
i=l 

(5) 

Hence, we have 

i.e., CL(s) can also be expressed asGi(s) = C, pi(cr)s”, where pi(~) is the probability of an 
individual in patch j to produce an offspring CY after an iteration of the global process and has 
the form 

pj,(a) = pr (xt+r = (Y 1 xt = ej) = f$iiu, (Pk)ij. 
i=l 

(6) 

From Lemma 1, we have that the matrix of expected values of the global process is MP”. 
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4. AGGREGATION OF THE GLOBAL MODEL 

In this section, we will obtain a simple unitype Galton-Watson branching process which we will 
refer to as “aggregated process” that reflects, in a certain way, the effects of both the birth-death 
process and migration. In this way, we extend the work presented in [12] which deals with the 
reduction of deterministic linear models in which there are two time scales involved. 

When the reduction of a system to a simpler one can be done in such a way that the dynamics 
of the complex system can be known exactly in terms of the dynamics of the simpler system, 
the reduction process is called perfect aggregation [3,24]. Biological systems can be perfectly 
aggregated only in some cases and for very particular values of the parameters involved, so 
perfect aggregation has only a theoretical interest. In particular, a multitype g.w.p. can be 
perfectly reduced to a unitype g.w.p. only if all the types have the same offspring distribution. 

Therefore, in the general case, it is necessary to resort to approximate aggregation [4], in which 
some approximations need to be introduced to build the reduced system. 

The aim of this section is to apply these approximate aggregation techniques to the original 
model (4). In order to do so, it is necessary that the Markov chain corresponding to migration 
approaches an equilibrium in each time step of the model, in the sense that the probability 
distribution of the individuals among the patches tends to fixed values. This requirement is met 
with the following hypothesis. 

(H3) P is primitive, i.e., there exists a positive integer h such that Ph is a positive matrix. 

Under this assumption, migration will tend to a stationary distribution given by v, where v 
is the right probability normed Perron-Frobenius eigenvector of P, i.e., v is the unique positive 
vector verifying Pv = v and lTv = 1 [25]. Note that this equilibrium distribution is independent 
of the initial state, so migration is a strongly ergodic process [26]. 

REMARK 1. Vector v may be interpreted in terms of the behavior of the migration process. 
Consider the hypothetical situation in which the system was governed by the migration process 
exclusively, and assume that A, is long enough with respect to the projection interval correspond- 
ing to migration for this to reach its equilibrium distribution during A,. Then, for a population 
consisting of one individual in patch j at time t, we have that, at the end of A,, the probability 
of that individual to live in patch i will be vi (note that vi is independent of j). 

In the sequel, we will refer to this situation of equilibrium for migration as “equilibrium mi- 
gration process”. We can think of it as the result of applying an infinity of times the migration 
process on the population. Its p.g.f. is given by GF(s) = limk,, GF,~(s). 

On the other hand, since P is a primitive column-stochastic matrix [25], we have that limk_+m 
P” = vlT I P, and therefore, taking limits on (2), we have 

GF(s) = PTs, 

i.e., Gp(s) = (Gb(s) , . . . ,G~(s))~, where 

for all values of j. 
Reasoning as in the previous 

equilibrium migration process is 

4.1. Auxiliary Model 

G%(s) = FmaG$,,(s) = vTs, 
+ 

section, we deduce that the matrix of expected values of the 
P. 

In order to obtain the aggregated model, we will first introduce a so-called auxiliary system, 
which can be thought of as the original model when the migration process reaches equilibrium in 
each time step of the model, i.e., it can be seen as the composition of the equilibrium migration 
process and the birth-death process. 
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Let xi = (2L1,...,Zt ‘N)T be the population vector associated 
Lernma 1, we obtain its probability generating function 
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to the auxiliary model. Using 

G’(s) = GP o Gs(s) = PTGs(s), (7) 

i.e., G’(s) = (G”(s), . . . ,G’N(~))T, where 

G/j(s) = vTGs(s)= 5 G"s(s)q, j = l,...,N. 
i=l 

(8) 

Note that G/j(s) is independent of j, and therefore, we can write 

G’ (s) = (G' (s) , . . . , G'(s))~ , 

where 
G’(s) = G’j(s), j = l,...,N. 

We have G’(s) = Cap’(~)sa, where p’(a) = pr(x:+, = CY 1 xi = d) is the probability of 
an individual (whatever its patch) to produce an offspring CY after an iteration of the auxiliary 
process. From (S), we obtain 

(9) 
i=l 

Again, using Lemma 1, we deduce that the matrix of expected values associated to the auxiliary 
process is Mp. 

REMARK 2. Since all the component functions of G’(s) are identical, the information provided 
by the auxiliary model is redundant. In this way, for any t, the distribution of xi does not depend 
on the spatial distribution of the original population. As we will see, a consequence of this is 
that the auxiliary model can be perfectly aggregated. 

4.2. Aggregated Model 

The aggregated model is a unitype Galton-Watson branching process for the total size of a 
population in the auxiliary process or, in other words, for the total size of the population of the 
global model under the assumption that migration reaches its equilibrium distribution in each 
time step. 

The variables associated to this model have the form 

yt = lT$ z.z xi’ + . . . + x:‘tN, (10) 

and its p.g.f. is a scalar function C?(S) = CEcj$l) s’, where P(l) = pr(yt+r = 1 1 yt = 1) and, ac- 
cording to the assumptions of the model, there is only a finite number of nonzero coefficients p(l). 

The following proposition allows us to obtain the p.g.f. and the asymptotic growth rate of the 
mean population size for the aggregated model. 

PROPOSITION 1. The p.g.f. of the aggregated process is given by 

G(s) = G’ (s> S, !‘1J!, S) = 2 WiGi (s, S, CC’!, S) . 
i=l 

Moreover, the asymptotic growth rate of the mean population size for the aggregated system is 
X = lTMv. 
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PROOF. The p.g.f. of the aggregated process is 

G(s) = gp(l)s’ = 2 pr (vt+r = 1 1 gt = 1) 2 
l=l l=l 

cm N 

c (z pr xGt+l=l C(x:=e”) 51, Ii = 

l=l i=l 
I 1 

j=l 

where we have used that yt = xi1 + . . . + xiN. The distribution of xitl conditioned to (xi = eJ) 
does not depend on j, so we have 

G(s) =gpr 5~:;~ =1 
l=l ( i=l I ) XL = e3 1 s , 

for any value of j (*‘). On the other hand, the event (CL, x:+1 = I) can be expressed 
union of the events (x:+~ = a), where (Y = ((~1,. . . ,a~) and cq +. . . + QN = 1, i.e., 

(11) 

as the 

= c pr (xi+1 = (al,. . . ,aN)T 1 Xi = e”) , 

where we have used that the previous events are mutually exclusive. Coming back to (ll), we 

can write 

=c c pr (x:+1 = (al,. . . ,a~)~ / xi =ei)sl 

= c pr (XL+1 = (al,. . . ,a~)~ 1 xi = e”) sal+.“+aN 

= c pr (x:+~ = CY 1 xi = ej) sal . . . saN = c p’((y)sal . . . s”N = G’ 
0 a 

, 

as we wanted to prove. 
Let us now show that the asymptotic growth rate X of the mean population size is lTMv. We 

have, by definition, X = E[Y~+~ ) yt = 11. Reasoning as in (*‘), we obtain X = E[z&, f.. .+cc$~ 1 

xi = ej] = C~lE[z~+l 1 XL = ej] for any value of j. For each i, j = 1,. . , N, we have 

-W:+i 1 xi = ej] = (Mp )ij = (Mv)~ and then, X = CL1(Mv)i = lTMv. I 
REMARK 3. Notice that X is a weighted mean of the growth rates associated to the different 
patches being the weights the equilibrium probabilities for migration given by vector v. 

5. RELATIONSHIPS BETWEEN THE GLOBAL MODEL 
AND THE AGGREGATED MODEL 

In the previous section, we have constructed a unitype process from a multitype branching 
process with N types. Now we explore the relationships between both models and, in particular, 
the way to obtain information about the original global model through the study of this new 
aggregated system. 
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We will proceed as follows. The behavior of the auxiliary process is deduced from that of the 
aggregated process with exactitude, and then the characteristics of the global process are studied 
considering it as a perturbation of the auxiliary process. 

The following proposition summarizes the spectral characteristics of the matrix Mp associated 
to the expected values of the auxiliary process. 

PROPOSITION 2. The only nonzero eigenvalue of MP is X = lTMv. It is associated to positive 
right and left eigenvectors r = Mv and 1 = 1, respectively. 

PROOF. The rank of this matrix is clearly 1, because Mp = MvlT, where Mv > 0, so it has 
a unique nonzero eigenvalue. Now, (MP)r =(MvlT)(Mv) =(Mv)(lTMv) = I-X and lT(Mi?) 
= lT(MvlT) = (lTMv)lT = XIT. I 

Therefore, the asymptotic growth rate of the mean population for the auxiliary model coincides 
with that of the aggregated model. 

Let the eigenvalues of P, ordered by decreasing modulus, be 

(recall that P is primitive, and therefore, 1 is a strictly dominant eigenvalue). 

LEMMA 2. Let y be any number such that 1~21 < y < 1. Then we have P” = P +o(y”); k --f cm. 

PROOF. Since P is column-stochastic, it has a strictly dominant eigenvalue 1 which is associated 
to positive right and left eigenvectors, v and 1, respectively. Let us consider a Jordan canonical 
decomposition of P, 

P = (v I V)diag(l,H) $ , 
( ) 

where V and U are appropriate matrices and H corresponds to Jordan blocks associated to 
eigenvalues p2, . . . , pN (of modulus strictly less than y). Therefore, taking into account that 
P = vlT, we have 

P” = p + (v I V) diag (0, H”) , 

SO 

y = (v I V) diag 0 
( ;(5)^) (3 

and taking limits k -+ co, the desired result follows. I 

In order to obtain the asymptotic behavior of the mean population for the global model, we 
will make use of perturbation theory to relate the dominant spectral elements of matrices Mp 
and MP”. 

In the sequel, we will say that a given property holds “for big enough k” when there exists an 
integer IcO such that the property holds for k 2 ko. 

PROPOSITION 3. For big enough k, matrix MP” has a simple and strictly dominant eigenvalue & 
that can be expressed in the form 

Xk = lTMv + o (yk) 

Besides, associated to &, there are right and left eigenvectors rk and I,+, respectively, that can 
be written in the form 

rk = Mv i- 0 (rk) , II, = 1 + 0 (rk) . 

PROOF. Let X be a simple and strictly dominant eigenvalue of a matrix A with associated right 
and left eigenvectors x, and XI, respectively. Let A = A + E be a perturbation of matrix A. 
In Chapter V of [27], it is shown that A has a simple and strictly dominant eigenvalue in the 
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form i = X + O((lEl\). M oreover, there exist right and left eigenvectors 2,. and 5&, respectively, 
associated to x such that 

6 = xv + O(llEll), 21 = w + O( IIEII). 

Let A = Mp. Then, from Proposition 2, its dominant eigenvalue is X = lTMv, which has 
associated eigenvectors r = Mv and 1 = 1. Matrix MP” can be considered as a perturbation 
of MP. Then E = M(Pk-I?) and, from Lemma 2, we have llE[l = o(y”) and the result follows. I 

As a consequence of this result, the asymptotic behavior of the mean population vector for the 
global process given an initial population x0 is characterized by 

lim E(xt) = Grk = 
t-a (x,)t l:rk 

&Mv + o (7’). 

Let us now focus on the relationships between the probability of extinction in finite time for 
the different systems. Given an initial population consisting of a single individual in patch j 
(j = l,... , N), the probability to be extinct at time t in the global process is defined as qi(t) := 
pr(xt = 0 1 x0 = ej). Analogously, the corresponding probabilities for the auxiliary and the 
aggregated models are defined as q’(t) := pr(x:= 0 I xb= d) (independent of j) and Q(t) := 
pr(yt = 0 I 90 = I), respectively. From (lo), it is clear that yt = 0 if and only if xi = 0, and so 

4’(t) = Q(t), (12) 

for all t. 
In order to relate *i(t) a&l q’(t), we will make use of the following result, which will be also 

used to relate the probabilities of ultimate extinction for the three systems. 

PROPOSITION 4. Given an initial population consisting of a single individual in patch j, we have 
the following for any vector Aa ~2’:. 

1. &cl) = p’(a) + o(y”). 
2. Go = G’(s) -t o(y”) uniformly in 0 5 s 5 1. 
3. For a fixed time t, pr(x, = cx I x0 = ej) = pr(x: = (1: I xb = ej) + o(yk). 

PROOF. 

(1) 
(2) 

(3) 

A direct consequence of (6), (9), and Lemma 2, taking into account that (P), = oi. 

Let II * 11 denote any matrix norm in IRNX N and also its associated vector norm in RN. 
Gs(s) is a continuous function in RN so its norm is bounded in the compact set 0 2 s 5 1 
by, say, K. Then from (4) and (7), we have 

11% (~1 - G’ (s)II 
yk = 

I 

and the result follows by taking limits and using Lemma 2. 
We denote by Gt,k(s), the p.g.f. of the process at time t. Using (2), we have 

(t) 
(&k(S) = Gk o *. . 0 Gk(s) = Gk 0 . . . (t-1) o Gk [G’(s) + o (r”)] . 
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Since Gk is differentiable in any point, we have, applying Taylor’s theorem around G’(s), that 

G/c [G’(s) + 0 (r’)] = Gk [G’(s)] + Jk Cc> 0 (yk) , 

c being a point in the segment joining G’(s) and G’(S) +o(y”) and Jk(c) the Jacobian matrix of 
Gk evaluated in c. Since Gk is a C” function in RN, f Its derivatives are bounded in any compact 
set, so o(~~)J~(c) = o(-yk). Now 

Gt,k (S) = GI, 0 ??’ o GI, o [G’(s) + o (y”)] = GI, o ‘fT2’ 0 G,, 0 [Gk [G'(s)] + 0 (r”)] . 

But, from (2), we have Gk[G’(s)] + o(yk) = G’[G’(s)] f o(Yk) f o(Y”) = G’ O G’(s) +o(‘Yk)~ so 

(t-2) 
'&,k(S) = Gk 0 . ‘. 0 GI, 0 [G' 0 G'(s) + o (-y”)] , 

and iterating this reasoning, we obtain 

c&k(S) = G/o... (t) o G’(s) + o (yk) = G;(s) + o (yk) , 

forallO<sIl. 
Finally, we have that pr(xt = (Y ( xc = ej) and pr(x: = h ( x6 = d) are the coefficients 

corresponding to sa in Gi,k(~) and G:(s), respectively. The result follows taking into account 
that two polynomials which coincide in an infinite set must have the same coefficients. I 

The next proposition relates the probabilities of extinction in the global and aggregated models. 

PROPOSITION 5. Given an initial population consisting of a single individual in patch j (j = 
1 . . , N), and any t fixed, we have q:(t) = t&t) + o(y”); k -+ co. 

lkoo~. Straightforward from Proposition 4 (Part 3) in the case (Y = 0 and the fact that q’(t) 
= q(t). I 

Given an initial population that consists of a single individual in patch j, the probabilities of 
ultimate extinction for the three processes are, respectively, 

Taking limits in (12), it follows that q’ = Q. 
Let us recall that a multitype process is said to be positively regular if its matrix of expected 

values is primitive. Besides, it is subcritical, critical, or supercritical depending on the asymptotic 
growth rate of the mean population being, respectively, less, equal, or greater than one. In critical 
and subcritical positively regular processes, the probability of ultimate extinction for an initial 
population of any type is always one. In a supercritical process, this probability is strictly lower 
than one. 

The next theorem, which constitutes the main result of this work, relates the probabilities of 
ultimate extinction for the original and aggregated systems. 

THEOREM 1. 
(1) The global process is positively regular for k big enough. 
(2) The original system is subcritical (supercritical) for k big enough if and only if the aggre- 

gated process is subcritical (supercritical). 
(3) Moreover, in the supercritical case, 
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(1) 

(2) 
(3) 

Let 

Since P is primitive, it follows Pk > 0 for k big enough. Since rnii > 0 for all i, we have 
that M is row-allowable, i.e., M has at least a nonzero element in each one of its rows [25]. 
It is easy to check that if A is row-allowable and a is a positive vector, then AZ is also 
positive as long as the product is defined. Consequently, MP” is positive and, therefore, 
primitive. 
It is an immediate consequence of Propositions 1 and 3. 
Since q = q’, we only need to show limk,, q: = q’. Let us define the vectors of prob- 
abilities of extinction for the auxiliary and original systems q’ = (q’, q’, . . , q’)T and 

qk = (q:,&-* , qF)T and we will show limk+03 qk = q’. 

T be the subset of RN given by T = [0, 1) x [0, 1) x .. . x [0, 1) and let 7 denote the 
adherence of T. Since T is a compact set and qk E T for any value of k, then the sequence qk 
must have, at least, one accumulation point a E T. Let q4(,+) = q, be a subsequence of the qk 
that converges to a, i.e., lim,,, q, = a. 

Now we will use a well-known theorem (28, p. 411 which states that, for a supercritical process, 
the vector q of probabilities of ultimate extinction for the different types, verifies 0 < q < 1 and 
G(q) = q. Moreover, the unique solutions of this equation in the unit cube 0 5 q 5 1 are q 
and 1 (*2). 
We know that both the original and the aggregated processes are supercritical for big enough m. 

Then we have that q, < 1 and q, = G,(q,). 

Applying Proposition 4, it follows qm = G’(q,) + o(ym) which is verified uniformly in 
0 5 q, 5 1. Hence, a = lim,,, q, = lim,,, G’(q,) and, since G’ is a continuous function, 
a = G'(a), so a is a fixed point for the transformation defined by G’. As stated before (*2) the 
only fixed points of G’ in T are q’ and 1; we will show that a # 1. 

In the following, let ]( * ]( denote the oo-norm in RN and assume a = 1. We know that q, = 
limt_oo qm(t), so a = lim,,,limt+ooqm(t) = 1, i.e., VE > 0, 3 ma E N such that for all 
m >_ mc, 3tc(m) E N, such that, for t 2 to, ]]l -q,(t)]] < E. On the other hand, qm(t) = 

Gt,,(0) = G, o A”’ . . o Gm(0) so, given any E > 0, we can find numbers m 2 me(s) and t 2 to(m) 
such that (]I - Gt,,(O)(( < E (*3). 

We know that the Jacobian matrix of G , t m evaluated at s = 1 is Ah = (MP”)t. Hence, for 
any s 2 0, s # 0, we have the Taylor expansion Gt,m(l - s) = 1 - Afs + o~,~(]]s]]), where we 
have used that, since Gt,m is a p.g.f., then G t,m(l) = 1. Taking norms in this expression, we 
have 

Ill - G,m(l - s)ll = \lAfns - wnll4I)~~ 
L 1 ljAfns[j - Ilot,m(ll~II)II ( (13) 

Let us now study the terms ]]Ahs]] and ]]o~,~(]]s]])]]. 

(a) Matrix A, can be decomposed as follows: A, = MPm = MP + M(P” - P). From 
Lemma 2, we know that the term M(P” - P) tends to zero when m --+ co. 

Besides, since M is row-allowable and P is positive, we have that MP is a positive 
matrix (and, therefore, primitive). Since the aggregated process is supercritical, so is the 
auxiliary system (Proposition 2) and so the dominant eigenvalue of Ml? is X > 1. Now, 
from Lemma 3 (see the appendix), there exists a number tl E N such that, if t > tl, then 
]](MP)“s]]~ > 3]]s]loo for any vector s > 0, s # 0. 

In the remainder of the proof, let r 1 tl be fixed. Matrix A& can be expressed 
as AL = (MP)’ + B,,, where B,,, is a sum of terms that have the common factor 
M(Pm - P). Clearly, for a fixed r, we have B,,,, --‘m-oo 0, so there exists a number 
ml(r) E W such that, if m 2 ml, (]B,,,]], < 1. As aconsequence, 
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/jA;sll, = /( (MP)% + B ~mSllm 2 II (MF)’ s/la - IIBdll~ 

> 3 IISII, - ll4l, = 2 ll%J 7 

for any m > ml and any s > 0, s # 0. 
(b) We focus on the term o,,~ (I/s/j). From Lemma 4 (see the appendix), we have that 

there exist m*(T) E N and 6(7) > 0 such that, if m 2 m2 and ljslj < 6, s # 0, then 

ObT,rn (Ilsll)ll)/(ll4l) < 1, i.e., IloT,m(llsII)II < MI. 
Now let m 2 max{ml,m2} and llsll < 6. Then, as a consequence of (a) and (b), we hate 

that Ill-G,,,(l -s)l/ > ll~ll(*~). Let us define s = 1 - Gt,,(O). From (*3), if m 2 mo(6) 
and t > to(m), we have ljsll < 6 so, choosing m = max{mo,mi,mz} and replacing s in (*4), 

we get Ill-G,,,(G,,(O))lI > Ill-G,,(O)l. Recall that G,,,(G,,(O)) =G+t,m(0) and that 
G,,(O) = q,(t), so it follows 111 - qm(r + t)ll > l/l - q,(t) II and, hence, there exists at least 
one value for i = l,... , N such that q&(7 + t) < q&(t). At this point, we have reached a 
contradiction because qL(t) must be a monotone nondecreasing function of t. Therefore, we 
deduce that a # 1 as we wanted to prove and, hence, the sequence qk has a unique accumulation 
point given by a = q’, i.e., lim&.+, qk= q’. I 

REMARK 4. When the aggregated system is critical, the previous results do not allow one to 
decide the character (super/sub/critical) of the original process. 

In order to illustrate the utility of our aggregation procedure to study the multiregional model, 
let us make the simplifying assumption that each individual can produce zero, one, or two offspring 
in each time step. We denote by p!!(n) the probability of an individual living in patch j = 1,. . . , N 
to produce n = 0, 1,2 offspring (necessarily in patch j) after one iteration of the birth-death 

process and define, ps(n) :=, (pi(n), . . . ,~$(n))~. The p.g.f. of this process is then given by 

G;(s) = &(O) + p$(l)sj +&(2)s; (j = 1,. . . , N) and the original system (5) has the p.g.f. 

G3,(s) = 5 (P:(O) +&(I)si + &(2)s:) (P”),j , j = l,...,N. 
a=1 

Our reduction procedure renders the aggregated system with p.g.f. and growth rate of the 
mean population given by 

where 

G(s) = co + ClS + c2s2, 

x = f wi (&1)+2p3s(2)) = 1 + (c2 - co) 1 
i=l 

C, = 2 Wi_??k(?L) = VTpS (n). 
i=l 

Consequently, we have that the aggregated process (and, for k big enough, also the global 
process) is subcritical if CO > cz and supercritical if CO < ~2. In the latter case, the probability 
of ultimate extinction Q for the aggregated system is the unique solution of G:(q) = q in the 
interval [0, 1) which is easily seen to be 

Now, we know that the probabilities of ultimate extinction for the original system can be approx- 
imated by Q. Note that calculating this probability directly from the expression of the original 
system would imply dealing with a system of N second-order polynomial equations. 
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On the other hand, note that the preceding expressions allow one to study in a very simple 
way the interactions between the birth-death process and migration in relevant parameters of 
the model such as X or 4. In this way, we can study how changes in these processes affect the 
behavior of the population. 

We have performed some simulations to experimentally estimate the error generated when ap- 
proximating the growth rate of the original system by means of the aggregated system. Lemma 2 
and Proposition 3 suggest the existence of a relationship between the accuracy of the approxima- 
tions provided by the aggregated system and the quantities \,~zl (the modulus of the subdominant 
eigenvalue of P) and k (i.e., the number that characterizes the separation between the time scales 
of the birth-death process and migration). 

For k = 5, we have assigned to Ipzl different values ranging from 0 to 1. In addition, for each 
selection of 1~21 in that range, we have randomly generated 50 examples of original systems, all 
of them having one single age class and two patches. For each of these instances, we have built 
the corresponding aggregated system and we have compared the growth rate of both systems by 
computing the relative error 

IXk - x’ 100%. 
AI, 

Figure la represents the maximum relative error obtained in each sample, i.e., for each value 
of I/J(Lz~. This plot suggests that the resulting relative error in the approximation of xk increases 
when the value of J/.QJ grows. As one can see, for Ipzl = 0.9, the maximum relative error is 
about 45%; however, in 88% of the instances that error was less than 5% and the mean error was 
about 3.8%. 

We have repeated the same computations for k = 15 and k = 25. The results are shown in 
Figures lb and lc, respectively. Note that for k = 25, the maximum relative error in the worst 
case (l,uzl = 0.9) has been drastically reduced to roughly 5%. 
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Figure 1. Maximum relative errors obtained in the approximation of the characteris- 
tics of the original system by means of the aggregated system. For JpzI taking values: 
0.1,0.2, . ,0.9, the maximum was computed over samples of 50 randomly generated 
systems. Figures la-lc compare the growth rate of the aggregated system with that 
of the original system for different values of k. Figures Id-lf do the same regarding 
the probability of extinction. 
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Analogous computations on the probability of ultimate extinction yield similar results (see 
Figures Id-lf), but now the quality of the approximations decreases moderately. Figure If shows 
that, with k = 25, the maximum relative error obtained was about 25%. However, again in the 
90% of the instances, this error was less than 5%. 

These results show numerically that 

(a) the accuracy of the approximations depends directly on the value of k and inversely on 
the modulus of the subdominant value of matrix P; 

(b) except for very high values of ]pz], the magnitude of the error we incur does not exceed 
10% and so our reduction technique may be useful to study real biological populations. 

6. CONCLUSION 

The aggregation method that we present allows us to simplify the treatment of a significant type 
of complex stochastic models. We start from a complex setting corresponding to a population 
distributed among N spatial patches and subjected to demographic stochasticity. The evolution 
of the population is controlled by two processes, a birth-death process and a migration process, 
which take place at different time scales. This situation is modelled by means of a global process 
resulting from the composition, in a certain sense, of two multitype Galton-Watson branching 
processes. From this global model, we derive a simpler aggregated model corresponding to a 
unitype branching process for the total population that approximates the behavior of the global 
one. 

It is shown that we can obtain essential information about the asymptotic behavior of the 
global model through the study of the aggregated one. In fact, we show that the greater the 
difference between the time scales corresponding to the two processes involved, the closer some 
characteristics such as asymptotic growth rate of the mean population size and probability of 
extinction are for both models. 

In further works, we aim to generalize this technique to the study of more complex models 
such as age or size-structured multiregional models. Moreover, it would be interesting to relate 
characteristics of the global and reduced models such as the second-order moments or, in the 
subcritical case, the distribution of population size conditioned to nonextinction. 

In addition, our attention is now focused on the development of reduction techniques for some 
kinds of branching processes that yield more realistic models. In particular, we think of density- 
dependent models [29] and multitype branching processes in random environments (MBPRE) [30]. 
This latter kind takes into account the effects of both environmental and demographic stochas- 
ticity. 

APPENDIX 

LEMMA 3. Let A be a primitive matrix with dominant eigenvalue X > 1. For any M > 0, there 
exists to(M) E N such that, if t 2 to, then llAtslloo > Mllsllm for any vector s > 0, s # 0. 
PROOF. Let m(t) = mini,j(At)i,. Since A is primitive and X > 1, then m(t) +t+oo -too. 
In particular, there exists to E N such that, if t 2 t 0, then m(t) > M. Now, since s 2 0, 
IlAt~lloo L Il~WT141, = 4th 2 m(t)llsllce > Mll~llm. I 
LEMMA 4. Let us define o~,~([[sII) as in (13). Given a fixed t E N, there exists ma(t) E N such 
that 

sup 
Il%,m(llSII)II 

llsll 
--+S-+Q 0. 

mrwl 

PROOF. Let A = {s : 0 < s 5 1) and let t E N be fixed. From Taylor’s theorem, o~,~(]]s]]) = 

(o&(]]s]]), . . . ,~~~(llsII))~, where ~&(ljsll) = sTHk,,s, Hk,, being the Hessian matrix of Gk,t 
evaluated in a certain point of the segment joining 1 and 1 - s (therefore, belonging to A). Hence, 
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~&(~js~~)~ = Is~H~,~sI 5 I(H$l)lls(12(*‘), for each j = 1,. . . , N. The entries of Hk., are the 

second derivatives of CL.,. We will show that, for any 1, r = 1,. . . , N, 

TsG,, m,t ( ) _!?x (s), 

r 1 s -m’c*3 dS,dSl 

uniformly in s E A. Indeed, we have, for r # 1, 

and Proposition 4 guarantees that this sum tends to zero when m + co, so the convergence of 
the second derivatives is uniform in s E A. Notice that the result also stands for 1 = T. 

On the other hand, Gi’ is C” in RN and A is a compact set, so its second derivatives are 
bounded in A. Using this and the uniform convergence above, it follows that, for m big enough, 
the second-order derivatives of G”,,, are bounded in A uniformly in m, i.e., there exist values 
ma(t) E N and C, > 0 such that, if m 2 mo, then 

forallr,L,j=l,..., NandsEA. 
Finally, coming back to (*3), ‘f 1 m 2 w(t), we have that l~,,(llsll)l I llH~,tllllsl12 I Gllsl12 

and, hence, 

sup 
~d,,(ll~ll~( < c ,I I( 

m2mo 
/(s,, - t s -s--r0 0, 

for every j, from where the result follows. 

REFERENCES 

1. 

2. 
3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

P. Auger, Dynamics and Thermodynamics in Hierarchically Organized Systems, Applications in Physics, 
Biology and Economics, Pergamon, Oxford, (1989). 
H.A. Simon and A. Ando, Aggregation of variables in dynamic systems, Econometrica 29, 111-135 (1961). 
Y. Iwasa, V. Andreasen and S.A. Levin, Aggregation in model ecosystems I. Perfect aggregation, Ecol. 
Modelling 3’7, 287-302 (1987). 
Y. Iwasa, S.A. Levin and V. Andreasen, Aggregation in model ecosystems II. Approximate aggregation, 
IMA, Journal of Mathematics Applied in Medicine and BioEogy 6, l-23 (1989). 
P. Auger and R. Roussarie, Complex ecological models with simple dynamics: From individuals to popula- 
tions, Acta Biotheoretica 42, 111-136 (1994). 
P. Auger and J.C. Poggiale, Emergence of population growth models: Fast migration and slow growth, 
Jouzal of Theoretical Biology 182, 99-108 (1996). 
P. Auger and J.C. Poggiale, Aggregation and emergence in systems of ordinary differential equations, Mathl. 
Comput. Modelling 27 (4), 1-21 (1998). . 
P. Auger and R. Bravo de la Parra, Methods of aggregation of variables in population dynamics, C.R. Acad. 
Sci. Paris, Life Sciences 323, 665-674 (2000). 
R. Bravo delaParra, 0. Arino, E. SBnchez and P. Auger, A model for an age-structured population with 
two time scales, Mathl. Cornput. Modelling 31 (4/5), 17-26 (2000). 
R. Bravo de la Parra and E. SBnchez, Aggregation methods in population dynamics discrete models, Mathl. 
Comput. Modelling 27 (4), 23-39 (1998). 
R. Bravo delaparra, E. SBnchez, 0. Arino and P. Auger, A discrete model with density dependent fast 
migration, Math. Biosc. 157, 91-109 (1999). 
L. Sanz and R. Bravo delaparra, Variables aggregation in a time discrete linear model, Math. Biosc. 157, 
111-146 (1999). 



Multiregional Birth-Death Models 65 

13. A. Blasco, L. Sanz, P. Auger and R. Bravo delaparra, Linear discrete population models with two time 
scales in fast changing environments I: Autonomous case, Acta Biotheoretica 49 (4), 261-276 (2001). 

14. L. Sanz and R. Bravo de la Parra, Variables aggregation in time varying discrete systems, Acta Biotheoretica 
46 (3), 273-297 (1998). 

15. L. Sanz and R. Bravo delaparra, Time scales in a nonautonomous linear discrete model, Mathematical 
Models and Methods in Applied Sciences 11 (7), 1-33 (2001). 

16. S. Tuljapurkar, Population dynamics in variable environments, In Lecture Notes in Bio,mathematics, (Edited 
by S. Levin), Springer-Verlag, Berlin, (1990). 

17. H. &swell, Matrix Population Models, Second Edition, Sinauer Associates, Sunderland, (2001). 
18. K.E. Holsinger, Demography and extinction in small populations, In Genetics, Demography and the Viability 

of Frugmented Populations, (Edited by A. Young and G. Clarke), pp. 55-74, Cambridge University Press, 
Cambridge, (2000). 

19. L. Sanz and R. Bravo de laParra, Time scales in stochastic multiregional models, Nonlinear Analysis: Real 
World Applications 1, 89-122 (2000). 

20. C.J. Mode, Multitype branching processes, In Modern Analytic and Computational Methods in Science and 
Mathematics, (Edited by R. Bellman), American Elsevier, New York, (1971). 

21. P. Jagers, Branching Processes with Biological Applications, John Wiley & Sons, London, (1975). 
22. H. Caswell, M. Fujiwara and S. Brault, Declining survival probability threatens the North Atlantic right 

whale, Proc. Nutl. Acad. Sci. USA 96, 3308-3313 (1999). 
23. S. Legendre, J. Clobert, A.P. Moller and G. Sorci, Demographic stochasticity and social mating system 

in the process of extinction of small populations: The case of passerines introduced to New Zealand, The 
American Nutwulist 153, 449-463 (1999). 

24. T.C. Gard, Aggregation in stochastic ecosystem models, Ecol. Modelling 44, 153-164 (1988). 
25. E. Seneta, Nonnegative Matrices and Markov Chains, Springer Verlag, New York, (1981). 
26. J.E. Cohen, Ergodic theorems in demography, Bzllletin of the American Mathematical Society N.S. 1, 

275-295 (1979). 
27. G.W. Stewart and J.I-G. Sun, Matrix Perturbation Theory, Academic Press, (1990). 
28. T.E. Harris, The Theory of Branching Processes, Dover, New York, (1963). 
29. G.L. Block and L.J.S. Allen, Population extinction and quasi-stationary behavior in stochastic density-depen- 

dent structured models, Bull. Math. Bio. 62, 199-228 (2000). 
30. J.D. Biggins, H. Cohn and 0. Nerman, Multi-type branching in varying environment, Stoc. Proc. Appl. 83, 

357-400 (1999). 


