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Abstract

This work presents a specific stock-effort dynamic model. The stock corresponds to two fish populations growing

and moving between two fishing zones, on which they are harvested by two different fleets. The effort represents the

number of fishing vessels of the two fleets which operate on the two fishing zones. The bioeconomical model is a set of

four ordinary differential equations governing the stocks and the fishing efforts in the two fishing areas. Fish migration,

as well as vessels displacements, between the two zones are assumed to take place at a faster time scale than the

variation of the stocks and the changes of fleets sizes, respectively. The vessels movements between the two fishing areas

are assumed to be stock dependent, i.e. the larger the stock density is in a zone the more vessels tends to remain in it.

The global fish stock and the total number of vessels keep constant at the fast time scale. This property enables, via

aggregation methods, the reduction of the system dimension in order to proceed to its qualitative analysis. Under some

assumptions, we obtain either a stable equilibrium or a stable limit cycle which involves large cyclic variations of the

total fish stock and fishing effort. Finally, we introduce a control parameter to maintain the system at a sustainable

equilibrium and thus avoiding the important fluctuations founded otherwise.
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Keywords: Population dynamics; Stock-effort model; Time scales; Aggregation methods; Control

1. Introduction

The overfishing of marine resources leads inex-

orably to the extinction of fish stocks and indir-

ectly to harmful consequences for the coastal

states economies. See, for example, Millischer et

al. (1999) where the study of the evolution of

Brittany’s industrial fleets shows an important

decrease of their overall fishing power in the

eighties for saithe, cod, haddock and whiting in

the West of Scotland area. Regarding the sardine

stock of the Atlantic southern coast of Morocco,
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Belvéze (1984) reviews important variations of the
overall fish catch from 1940 to 1983; data exhibit,

for the different fisheries, almost cyclic fluctua-

tions with large and increasing amplitudes from 90

to 310 kt. An important point related to over-

fishing is the evolution of the fishing efficiency of

fleets to find the fish stocks and to reach rapidly

the abundant fishing areas (Gascuel et al., 1993).

Another important issue involved in fisheries
management is the differentiation of fishing zones

of a coastal state. There is the artisan fishery which

operates on 3 miles from the coast, the coastal

fishery between 3 and 12 miles and the high sea

fishery beyond 12 miles. The adjacent coastal

state, who is the owner of the resource evolving

in his Exclusive Economical Zone, is responsible

for the management of the global fishery which is
shared by the above mentioned different types

fisheries. So, in order to control the situation, it is

important to have a good knowledge of the

global evolution of the resource and of the activity

related to its exploitation. The fishery manage-

ment authorities must deal with the possible fish-

ery conflicts resulting for instance from the

simultaneous exploitation of two fishing zones.
Theoretically, each kind of fleet operates in its

zone according to its own fishery characteristics.

In practice, the fish stock does not remain in a

given area and frequently moves between two

adjacent zones. Consequently, the fishing vessels

do not hesitate to cross the fuzzy boundary

between two adjacent zones in order to increase

their catch.
Many mathematical models have been devel-

oped to describe the dynamics of fisheries (Allen

and Mc Glade, 1986; Quinn and Deriso, 1999;

Haddon, 2001). The simplest models assume a

logistic equation for the stock with a term of catch

which is proportional to the actual stock and to a

constant fishing effort, which corresponds for

example to the number of vessels involved in the
fishery (Schaefer, 1954; Beddington and May,

1977; Rotenberg, 1987). The next step is to add

an equation for the fishing effort leading to Lotka-

Volterra types of fishery models (Schaefer, 1954;

Allen and Mc Glade, 1986). In these prey�/

predator models, the number of vessels decreases

at a constant rate while increases due to increasing

fish catch. Such simple models predict persistence
of the fishery, corresponding to stabilization at a

constant level of fish stock and number of vessels

involved in the fishery. Many other aspects have

been added in fishery models such as the age

structure and the growth of the fish populations

and effects of fluctuations (Beddington and May,

1977). External factors such as food, predators,

light and habitat can also be considered
in more complete models, (Mackinson, 2000) for

herring shoals using a fuzzy expert system. More

complex models explore the stability of marine

ecosystems impacted by a fishery (Vasconcellos et

al., 1997).

The inclusion of economic factors in fishery

models is a very important topic which is aimed to

assesing fishery management and its economic
consequences. The inclusion of economic factors

in fichery models usually entails dealing with

control theory (see the books by Cohen, 1987;

Clark, 1990, and the works of Clarke and Munro,

1991, and Raı̈ssi, 2001). Another approach con-

siders as a new variable the price of the catch unit

which depends on the actual amount of fish

available on the market and on the costs. The
article by Allen and Mc Glade (1986) shows a nice

model describing the dynamics of a fish popula-

tion with three age classes exploited by a fleet

whose number of vessels can vary as a result of the

variation of prices, the expected revenue of vessels

and the costs of the haddock fishery. An explicit

equation is incorporated in the model to describe

the variation of the price of the catch unit. This
model is able to predict cyclic variation of the fish

population, price, number of vessels and catch.

The extension to multispecies and multifleet spa-

tial models is a very important goal of fishery

models. However, such complete models incorpor-

ating many details are generally impossible to

study analytically and only numerical simulations

can be carried out.
This paper is situated in this general context and

illustrates a fishery management model. We study

fishing activity on two different spatial zones

connected by migrations. In a previous work,

Mchich et al. (2000) build a simple bioeconomical

model which describes the stock-effort dynamic in

a fishery with two adjacent zones, considering the
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migration rates of the fishing vessels to be

constant. However, modern vessels can estimate

the amount of fish present on a zone by various

techniques (Gascuel et al., 1993), and, thus, when

the catch is not large enough in a fishing area, they

can rapidly leave this zone. Consequently, it is

important to assume stock dependent vessels

migration rates. The present model is aimed to

study the effects of stock dependent decisions of

vessels movements on the global dynamics of the

fish stock and the fishing fleet size. We propose a

model that takes into account spatial effects by

distiguishing two fishing areas connected by fast

stock dependent migrations of fishing vessels.

Indeed, it is possible to think that very efficient

fishing vessels, able to reach rapidly the most

abundant areas, can lead to the extinction of the

fish stock. The aim of this article is to study the

effects of the efficiency of fishing vessels on the

global dynamics of a fishery. Does it lead to

extinction? Can the fishery be persistent? Does it

induce large cyclic variations of the total fish stock

and fishing vessels?

In Section 2 we present the model which consist

in a system of four ordinary differential equations

governing the two local fishing stocks and the

number of vessels on each fishing area. The model

includes two time scales, a fast one associated to

quick movements between the fishing zones in

comparison to a slow one corresponding to the

growth of the fish population and the variation of

the total number of vessels involved in the fishery.

In Section 3 we proceed to analyse the model.

Here we take advantage of the two time scales to

reduce the dimension of the complete model

by use of aggregation methods (see the review

article on aggregation techniques by Auger and

Bravo de la Parra, 2000). The aggregated model

describes the dynamics of the total number of

vessels and stocks and has the advantage

that it is possible to perform its complete qualita-

tive analysis. Section 4 develops a discussion of the

results obtained in Section 3, and Section 5

introduces a control parameter in the model which

enables the stabilization of the system avoiding

the dangereous fluctuations that appear in some

cases.

2. Mathematical model

We consider a model which describes the

dynamics of two fish populations of densities x1

and x2 located at two different fishing zones, and

exploited by two fishing fleets represented by their

fishing efforts E1 and E2. To simplify, we may

assume that all fishing vessels are identical and,

consequently, the fishing efforts Ei(t) on each area

i can be measured by the number of vessels present

on this zone at time t .
We assume that population x1, situated in the

first zone, is harvested by fleet E1, while popula-

tion x2, situated in the second zone, is harvested by

fleet E2.

We suppose that two processes occur at two

different time scales. At the fast time scale, the

total stock and the total number of vessels are

constant. Thus, the fast part of the model only

describes the displacement of fish and vessels

between the two zones. The fact that migration is

conservative yields that vessels and fish leaving a

zone get into the other one.

At the slow time scale, the total fish stock and

the number of vessels are not constant, the

evolution of the stock and the effort in

each of the two zones is represented by the

stock-effort Schaefer model, also called

Graham-Schaefer model (Schaefer, 1954). Regard-

ing the fish stock, the slow part of the

model describes, for each specific zone, the

growth of the fish population according to the

logistic model and its decrease due to the

fishing effort. Concerning the effort, the number

of vessels of the fishery increases or decreases if the

revenue of the fishery is positive or negative,

respectively. The revenue is the difference between

the income and the cost. We assume constant

prices for the caught and costs units on

both fishing areas. This is a simplifying assump-

tion as prices could depend on the abundance

of fish available on the market at time t (Allen

and Mc Glade, 1986; Clark, 1990). We would

like to investigate this process in a future con-

tribution.

According to previous assumptions, the com-

plete system reads as follows:
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ẋ1�R(kx2�k?x1)�
�

r1x1

�
1�

x1

K1

�
�q1E1x1

�

ẋ2�R(k?x1�kx2)�
�

r2x2

�
1�

x2

K2

�
�q2E2x2

�

Ė1�R?[m(x2)E2�m?(x1)E1]�E1(p1q1x1�c1)
Ė2�R?[m?(x1)E1�m(x2)E2]�E2(p2q2x2�c2)

8>>>>>>><
>>>>>>>:

(2:1)

Parameters ri and Ki (i�/1, 2) represent, respec-
tively, the intrinsic growth rate and carrying

capacity of the stock in zone i . The catchability

coefficient of the fleet on zone i (i�/1, 2) is qi . The

catchability coefficient is supposed to be constant

and, for simplicity of calculations, we also assume

qi �/1, i�/1, 2. Parameters pi and ci (i�/1, 2) are

the price of the catch unit and the cost of the

fishing effort unit, respectively, in zone i and are
assumed to be constant.

The constant coefficients k and k ? represent the

fish per capita migration rates from zone 2 to zone

1 and from zone 1 to zone 2, respectively. The

corresponding migration coefficients for the fish-

ing vessels, m ?(x1) and m (x2), depend on the fish

stock in the particular zone. We assume that:

m?(x1)�
1

ax1 � a0

and m(x2)�
1

bx2 � b0

(2:2)

When xi increases, then m (xi) decreases. We can

explain these rates of migration by the fact that the

aim of the fleets owners is to increase their

revenues. So, the fishing vessels try to operate in

the most abundant zone. Consequently, the ten-

dency of each fleet to leave a zone must increase
when the stock decreases. We assume, without loss

of generality and for simplicity of calculations,

that a0�/b0 This can be justified by the fact that

when the stock (x1 or x2) is very small, then the

rate of migration should be the same in both

directions.

Since the fishing fleets are located in a border

band of a small size the vessels of a fleet are
assumed to move quickly between the two fishing

zones and to operate on both of them in order to

increase their revenue. Similarly, fish migrations

between the two fishing zones are suppose to be

fast. Thus, the motion of vessels and fish corre-

sponds to a fast time scale, what is reflected in Eq.

(2.1) by parameters R and R ?. The second term of
each of the four equations of Eq. (2.1) is composed

of two parts: the fast part which describes migra-

tions and the slow part which stands for growth

terms. This translates the fact that migrations are

assumed to be fast in comparison with the growth

processes. The fast parts include the dimensionless

large (R �/1 and R ?�/1) positive parameters R

and R ? which are different but can be assumed to
be equal by changing appropiately the migration

parameters k and k ?. So, henceforth we further

assume that R ?�/R .

In a previous work, Mchich et al. (2000), the

authors studied the case of constant vessel migra-

tion rates, m and m ? being stock independent.

Under some conditions, the qualitative behaviour

of the model is summarized in the following two
cases:

�/ The fish exploitation is not sustainable: the
total fishing effort tends to zero and the fishing

stock stabilizes at its carrying capacity.

�/ There is a durable fish exploitation at fixed

globally stable fish stock and vessels number.

In this work, we investigate the effects of stock

dependent vessel migration rates.

If we set o�
1

R
; and t�

t

o
; then Eq. (2.1) can be

rewritten in the following form:

dx1

dt
�(kx2�k?x1)�o

�
r1x1

�
1�

x1

K1

�
�E1x1

�

dx2

dt
�(k?x1�kx2)�o

�
r2x2

�
1�

x2

K2

�
�E2x2

�

dE1

dt
�(m(x2)E2�m?(x1)E1)�oE1(p1x1�c1)

dE2

dt
�(m?(x1)E1�m(x2)E2)�oE2(p2x2�c2)

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(2:3)

where t represents the fast time scale with respect

to t . Eq. (2.3) is now in the form that allows its

reduction by means of the so-called aggregation

methods.
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3. Results

From the complete Eq. (2.3), we apply aggrega-

tion methods (Auger and Bravo de la Parra, 2000)

to obtain a reduced system: a two dimensional

system of ordinary differential equations govern-

ing the total fish stock x(t)�/x1(t)�/x2(t) and the

total fishing effort E (t)�/E1(t)�/E2(t) at the slow

time scale.
The sufficient conditions for a system to be

perfectly as well as approximately aggregated have

been investigated in the frame of general popula-

tion models by Iwasa et al. (1987), Iwasa et al.

(1989) and Levin and Pacala (1997). Some aggre-

gation methods permit to reduce a system with a

large number of variables involving different time

scales into an aggregated system with a few global
variables. The method is based on perturbation

technics and on the application of an adequate

version of the Center Manifold Theorem (Feni-

chel, 1971): see Poggiale (1994), Auger and Rous-

sarie (1994) and Auger and Poggiale (1996),

Michalski et al. (1997). The aggregation of the

complete model consists in supposing that the fast

dynamics has attained a stable equilibrium and in
substituting this fast equilibrium into the equa-

tions of the complete model. The first step to

achieve aggregation is to neglect the small terms of

the order of o in Eq. (2.3) and to look for the

existence of stable equilibria for its fast part.

3.1. Fast equilibria

We notice that x(t) and E (t ), the global

variables, are constants of motion of the fast

process: migration. Fast equilibria are the solu-

tions of the following system:

0�kx2�k?x1

0�k?x1�kx2

0�m(x2)E2�m?(x1)E1

0�m?(x1)E1�m(x2)E2

8>><
>>:

(3:1)

and a simple calculation leads to the following

result:

(x+
1; x+

2;E+
1 ;E+

2 )�(n+1x; n+2x; h+
1(x)E; h+

2(x)E) (3:2)

where:

n+1�
k

k � k?

n+2�
k?

k � k?

h+
1(x)�

an+1x � a0

(an+1 � bn+2)x � 2a0

h+
2(x)�

bn+2x � a0

(an+1 � bn+2)x � 2a0

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(3:3)

The constants n1� and n2� represent the fast

equilibrium proportions of stock on each patch,

whereas h1�(x ) and h2�(x ) admit the same inter-
pretation for the fishing effort. As we see there is a

fast equilibrium for each pair of values of the

global variables x and E . These equilibria are

easily proved to be stable for the fast dynamics.

3.2. The aggregated system

Coming back to the complete initial Eq. (2.3),
we substitute the fast equilibria (Eq. (3.2)) and add

the two fish stock and the two fishing effort

equations. The state variables are replaced in

terms of the fast equilibria as follows:

x1�n+1x; x2�n+2x; E1�h+
1(x)E;

E2�h2�(x)E:

After some algebra, one obtains the following

system of two equations governing the total fish

stock and fishing effort variables at the slow time

scale, that we call the aggregated model:

ẋ(t)�rx

�
1�

x

K

�
�q(x)Ex

Ė(t)�E(p(x)x�c(x))

8><
>: (3:4)

where

r�r1n
+
1�r2n

+
2

K�
r

r1

K1

(n+1)2 �
r2

K2

(n+2)2

q(x)�n+1h
+
1(x)�n+2h

+
2(x)

p(x)�p1n
+
1h

+
1(x)�p2n

+
2h

+
2(x)

c(x)�c1h
+
1(x)�c2h

+
2(x)

8>>>>>>>><
>>>>>>>>:

(3:5)

The dynamics of Eq. (3.4) is a good approxima-

tion of the real dynamics of the global variables in
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the complete Eq. (3.2) if Eq. (3.4) is structurally
stable, which is the case, and o is small enough,

which is assumed.

Eq. (3.4) has nearly the same form as the slow

parts of the complete system, but with parameters

depending on global stock x and the appearance

of a term of catchability q (x ) in its first equation.

3.3. Asymptotic behavior

The Ė�0 nullclines are two straight lines: E�/0

and x�/x*. The constant x* is the unique positive

solution of the equation p (x )x�/c (x )�/0:

x+�
(�a0(p1n

+
1 � p2n

+
2) � c1an

+
1 � c2bn

+
2) �

ffiffiffiffiffi
D+

p
2(ap1n

+2

1 � bp2n
+2

2 )

�0 (3:6)

where:

D+�(a0(p1n
+
1�p2n

+
2)�ac1n

+
1�bc2n

+
2)2

�4a0(c1�c2)(ap1n
+2

1 �bp2n
+2

2 )

�0 (3:7)

The ẋ�0 nullclines are x�/0 and r(1�x=K)�
q(x)E�0: The latter could be explicitly expressed

as:

E�
r

�
1 �

x

K

�
(t1x � 2a0)

(t2x � a0)
(3:8)

where t1�an+1�bn+2 and t2�an+
2

1 �bn+
2

2 :/
Eq. (3.4) has three equilibrium points: (0, 0), (K ,

0) and ðx+;
r

q(x+)
(1�x+=K)Þ; where x* is given by

Eq. (3.6). This last equilibrium belongs to the

positive quadrant provided that x*B/K .

When 2t2Bt1; the nontrivial ẋ�0 nullcline Eq.

(3.8) has a maximum value in the positive quad-

rant, Ê; and we denote x̂ the corresponding fish
stock value.

The Jacobian matrix J(x , E ) reads:

J(x;E)� r�
2rx

K
�q(x)E�q?(x)xE �q(x)x

E(p?(x)x�p(x)�c?(x)) p(x)x�c(x)

2
4

3
5

(3:9)

In the Appendix A, the stability properties of

these equilibrium points are shown. The origin (0,

0) is always a saddle point. According to para-

meters values, we obtain the next five cases:

�/ If 2t2�t1 and x*�/K then (x*, E*) does not

belong to the positive quadrant and (K , 0) is a

stable node, see Fig. 1.

�/ If 2t2�t1 and x*B/K then (x*, E*) belongs to

the positive quadrant and is globally asympto-

tically stable while (K , 0) is a saddle, see Fig. 2.
�/ If 2t2Bt1 and x*�/K then (x*, E*) does not

belong to the positive quadrant and (K , 0) is a

stable node, see Fig. 3.

�/ If 2t2Bt1 and x̂Bx+BK then (x*, E*)

belongs to the positive quadrant and is globally

asymptotically stable while (K , 0) is a saddle,

see Fig. 4.

�/ If 2t2Bt1 and x+B x̂BK then (x*, E*)
belongs to the positive quadrant and is un-

stable. (K , 0) is a stable node, see Fig. 5. In this

case, there exists a limit cycle.

Fig. 6 shows a suitable Poincaré�/Bendixson

box, see Arrowsmith and Place (1992). A trajec-

tory starting from an initial point A (which should

be chosen with x �/K and E�Ê) is turning

around the unstable positive nontrivial equili-

brium (x*, E*) and enters into the box at a point

B. Any trajectory reaching the segment AB at a

point M is entering into the box because the two

Fig. 1. Nullclines in the case 2t2�t1 and x*�/K . (x*, E *)

does not belong to the positive quadrant and (K , 0) is a stable

node.
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components of its velocity are oriented towards

the interior of the box. Any trajectory that enters

the box cannot tend to the unique interior

equilibrium (x*, E*) which is unstable. Conse-

quently, by use of the Poincaré�/Bendixson theo-

rem, this proves the existence of a limit cycle

within the domain delimited by this box.

4. Discussion of results

Three cases will be discussed:

(1) Fig. 7 illustrates the case of fleets disappear-

ence what entails the stabilization of the fish

stock in its carrying capacity. From the point of

view of the fishery, this case is not interesting

because it does not allow a sustainable fishery

exploitation.

(2) Fig. 8 presents the case where there is a

positive equilibrium which is stable. In this case, in

the long term, the total fishing effort approaches a

constant equilibrium value E* as well as the

biomass of the fish stock tends to a constant size

Fig. 2. Nullclines in the case 2t2�t1 and x*B/K . (x*, E*)

belongs to the positive quadrant and is globally asymptotically

stable while (K , 0) is a saddle.

Fig. 3. Nullclines in the case 2t2Bt1 and x*�/K . (x*, E*)

does not belong to the positive quadrant and (K , 0) is a stable

node.

Fig. 4. Nullclines in ths case 2t2Bt1 and x̂Bx+BK: (x*, E *)

belongs to the positive quadrant and is globally asymptotically

stable while (K , 0) is a stable node.

Fig. 5. Nullclines in the case 2t2Bt1 and x+Bx̂BK : (x*, E*)

belongs to the positive quadrant and is unstable. (K , 0) is a

stable node.
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x*B/K . This situation enables a permanent and

durable fishery activity.
(3) An example of the case where the dynamics

lead to stable limit cycle is shown in Fig. 9. In this

case, the total fishing effort as well as the total fish

stock are, in the long term, varying periodically.

Fig. 10 shows the time variations of the total fish

stock and of the total fishing effort with respect to

time. These cyclical variations correspond to a

Fig. 6. Poincaré�/Bendixson box. Any trajectory entering the

box is trapped in this box, in which the unique equilibrium is

unstable.

Fig. 7. Phase portrait in the case when the fishery is not

sustainable. Parameters have been chosen as a�/0.2; b�/0.1;

a0�/1; p1�/0.025; p2�/0.02; c1�/0.02; c2�/0.015; K�/1; r�/

0.5; v1�/0.416667 and v2�/0.583333.

Fig. 8. Phase portrait in the case of a sustainable fishery.

Parameters have been chosen as a�/0.2; b�/0.1; a0�/1; p1�/

0.015; p2�/0.025; c1�/0.01; c2�/0.02; K�/1000; r�/0.5; v1�/

0.75 and v2�/0.25.

Fig. 9. Phase portrait in the case of stable limit cycle.

Parameters have been chosen as a�/0.4; b�/0.2; a0�/0.01;

p1�/0.15; p2�/0.25; c1�/0.01; c2�/0.02; K�/40; r�/0.5; v1�/

0.416667 and v2�/0.583333.

Fig. 10. Time variations of the total fish stock and fishing fleet

in the case of the stable limit cycle (same parameters as in Fig.

9).
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long time period because they correspond to the
dynamics of the aggregated model which approxi-

mately describes the dynamics of the system at the

slow time scale.

The third case is interesting and new with

respect to our previous study, (Mchich et al.,

2000) in which no limit cycle occurred. In the

present model, the limit cycle is the result of the

stock dependence of the vessels migration rates. It
is assumed that vessels leave rapidly the fishing

zone with decreasing fish stock density because the

catch income becomes too low. As a consequence,

although the fish stock decreases a lot, it cannot go

to extinction because, since the fishing fleets also

decrease drastically, the fish stock can recover.

Then, the fishery revenue increases and new vessels

participate to the fishery, so starting a new cycle.
Belvéze (1984) has reported that the total

sardine catch in the southern Moroccan sea has

shown important fluctuations during the period of

1940�/1983. The present study suggests that these

fluctuations need not necessarily lead to extinction

but could stabilize in a periodic variation merging

periods of low and high fishery activity. This cyclic

process of overexploiting periods followed by
periods of recovering of the fishery activity should

be a direct consequence of the efficiency of the

fishery vessels. The model also suggests that the

total process would be a long term process. The

reason is that two types of processes are involved

in the dynamics, fast ones associated with deci-

sions of vessels to rapidly increase their captures

and slow ones related to the demography of the
fish population and the variations of the invest-

ment in the fleets.

5. Introduction of a control variable

As shown in the previous section, according to

parameters values, the dynamics can lead to a

stable equilibrium or to a stable limit cycle. From
the point of view of a sustainable fishery, it is

better to avoid important variations of the total

fish stock and fishing effort as shown in Fig. 8. If

the total stock density becomes too small for some

period of stable cycle, environmental fluctuations

could lead to the extinction of the stock. Also, if

the number of fishing vessels decreases to a very
small number that could practically represent the

stop of the fishing activity. Thus, the case of a

stable equilibrium is saver because it would main-

tain the stock and fishing effort close to a constant

good level.

It appears therefore useful to introduce a con-

trol parameter in the model. This control para-

meter, which we call u , is a real constant, such
that: 0B/u B/1. A simple way for a coastal state to

control its fishery is to limit the technical capacities

of fishing vessels, i.e. by restricting vessels to use

certain fishing techniques and, consequently to

limit the catch of fleets. Such a decrease of vessels

technical capacities could correspond to a decrease

of catchability. At first, in our model, the catch-

abilities were set equal to 1. Now, we add u as a
catchability term which is the same for the both

fishing fleets. This can be done by multiplying the

catch terms Eixi by the parameter u in all

equations of the Eq. (2.3), what yields the follow-

ing system:

dx1

dt
�(kx2�k?x1)�o

�
r1x1

�
1�

x1

K1

�
�uE1x1

�

dx2

dt
�(k?x1�kx2)�o

�
r2x2

�
1�

x2

K2

�
�uE2x2

�

d(E1)

dt
�(m(x2)E2�m?(x1)E1)�oE1(p1ux1�c1)

d(E2)

dt
�(m?(x1)E1�m(x2)E2)�oE2(p2ux2�c2)

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(5:1)

In that case, the aggregated system is:

ẋ(t)�rx

�
1�

x

K

�
�q(x)uEx

Ė(t)�E(p(x)ux�c(x))

8><
>: (5:2)

The study of this system is straightforward.
The Jacobian matrix J (x*, E*) becomes:

J(x+;E+)�

�
rx+

K
�uq?(x+)x+E+ �uq(x+)x+

E+(up?(x+)x+�up(x+)�c?(x+)) 0

2
4

3
5

(5:3)
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with the trace:

trJ(x+;E+)��
rx+

K
�u

a0(2t2 � t1)

(t1x+ � 2a0)2
x+E+ (5:4)

In the case 2t2Bt1; in order to have trJ (x*,

E*)B/0, what assures the existence of a stable

equilibrium (x*, E*), it is necessary to maintain
the control parameter under a certain threshold

value:

0BuB
r(t1x+ � 2a0)2

KE+a0(t1 � 2t2)
(5:5)

Thus, when T �r(t1x+�2a0)2=KE+a0(t1�2t2)

is larger than 1, the equilibrium (x*, E*) is always

stable without control. On the other hand, when

T B/1 it is necessary to control the system by

setting the parameter u as in Eq. (5.5).

6. Conclusion

In this contribution, we generalized a previous

work(Mchich et al., 2000), where the authors build

a similar dynamical model but in the simplest case

of stock independent vessels migration rates. Two
different cases are distinguished: extinction of the

fishery and coexistence of the fish stock and the

fishing fleet at a constant stable equilibrium.

In the present work, we investigate the effects of

stock dependent vessels migration rates. Apart

from the two above mentioned cases, extinction

and coexistence, it appears a new case with a stable

limit cycle. This model shows that different
strategies for fishing at a fast time scale can have

important consequences on the global evolution of

the fishery in the long term. However, this new

situation can lead to risk of extinction and we

show that it is possible to avoid this risk by

controlling the fishing efforts. A future work

would consist on using time dependent control

variables, and also to use stock dependent prices
and costs.

Moroccan coast is 3500 km long with several

important fishing zones. Fishing vessels can move

from north to south to exploit different fish species

and also they can operate either on coastal or high

sea fisheries. So, another situation worth to be

considered is that of a spatial network of several
zones connected by migrations. In the case of fast

migrations, the aggregated model give us good

qualitative informations about the dynamics of the

total fish stock and fleet size in the long term.

Acknowledgements

This work has been partially supported by

Proyecto de Investigaciûn PB98-0702 (Spanish
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Appendix A

The Jacobian matrix J (x , E ) reads:

J(x;E)� r�
2rx

K
�q(x)E�q?(x)xE �q(x)x

E(p?(x)x�p(x)�c?(x)) p(x)x�c(x)

2
4

3
5

(7:1)

(a) At the point (0, 0), the Jacobian matrix:

J(0; 0)�
r 0

0 �
c1 � c2

2

2
4

3
5 (7:2)

has two real eigenvalues with opposite signs and

thus (0, 0) is a saddle point.
(b) At the point (K , 0), the Jacobian matrix:

J(K ; 0)�
�r �q(K)K
0 p(K)K�c(K)

� �
(7:3)

has two real eigenvalues, one is negative l1��r

and l2�p(K)K�c(K): Two cases appear:

�/ if x*B/K , then l2�0 and (K , 0) is a saddle

point.

�/ if x*�/K , then l2B0 and (K , 0) is a stable

node.
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(c) At the point ðx+;
r

q(x+)
ð1�x+

K
ÞÞ; the Jacobian

matrix J(x*, E*) becomes:

J(x+;E+)

� �
rx+

K
�q?(x+)x+E+ �q(x+)x+

(E+(p?(x+)x+�p(x+)�c?(x+)) 0

2
4

3
5 (7:4)

where

detJ(x+;E+)

�
q(x+)x+E+

(t1x+ � 2a0)2

� (t1(ap1n
+2

1 �bp2n
+2

2 )x+2�2a0

ffiffiffiffiffi
D+

p
�a0t1(c1�c2))

c0

and D+ is given by Eq. (3.7).

On the other hand, we have:

trJ(x+;E+)��
rx+

K
�

a0(2t2 � t1)

(t1x+ � 2a0)2
x+E+ (7:5)

It is straightforward to see that trJ(x*, E*)B/0

whenever 2t2�t1; what yields the asymptotic

stability of (x*, E*).

When 2t2Bt1; two different cases happen:

�/ /x+� x̂; then trJ (x*, E*)B/0 and thus (x*, E*)
is asymptotically stable.

�/ /x+B x̂; then trJ (x*, E*)�/0 and thus (x*, E*)

is unstable.

This can be proved by showing that the trace

can be rewritten as:

trJ(x+;E+)�rx+

� (t1t2(x+)2 � 2a0t1x+ � a0(2a0 � 2Kt2 � Kt1))

K(t1x+ � 2a0)(t2x+ � a0)

(7:6)

and then that its sign changes when x* is smaller

or larger than x̂:/
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