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ABSTRACT

As a result of the complexity inherent in some natural systems, mathematical models
employed in ecology are often governed by a large number of variables. For instance, in the
study of population dynamics we often find multiregional models for structured populations in
which individuals are classified regarding their age and their spatial location. Dealing with such
structured populations leads to high dimensional models. Moreover, in many instances the
dynamics of the system is controlled by processes whose time scales are very different from
each other. For example, in multiregional models migration is often a fast process in comparison
to the growth of the population.

Approximate reduction techniques take advantage of the presence of different time scales in
a system to introduce approximations that allow one to transform the original system into a
simpler low dimensional system. In this way, the dynamics of the original system can be
approximated in terms of that of the reduced system. This work deals with the study of that
approximation. In particular, we work with a non-autonomous discrete time model previously
presented in the literature and obtain different bounds for the error we incur when we describe
the dynamics of the original system in terms of the reduced one.

The results are illustrated by some numerical simulations corresponding to the reduction of
a Leslie type model for a population structured in two age classes and living in a two patch
system.

Keywords: Approximate aggregation, population dynamics, time scales, non-
autonomous models.

1. INTRODUCTION

Nature offers many examples of systems with an inherent complexity. For
example, communities are systems of interacting populations. Populations themselves
have an internal structure, for individuals may have different ages or be in different
stages. These stages may correspond to size, spatial patches, genotypes, individual
activities, etc.

The study of these complex systems leads to mathematical models with a large
number of state variables whose analytical study is, in most cases, not feasible. In
order to be able to extract important information about the behavior of some of these
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complex models, one can resort to system reduction techniques. These techniques,
called “aggregation methods” transform the system under consideration into a reduced
system with a lesser number of variables, called “global variables” which can be more
easily studied.

Among aggregation techniques we can distinguish “perfect” and “approximate”
aggregation. The former transforms the complex system into a reduced system without
introducing any approximations, i.e., a set of global variables is defined as a function
of the state variables in such a way that the original system depends solely on these
global variables (Iwasa et al., 1987). Biological systems can be perfectly aggregated
only in some cases and for very particular values of the parameters involved, so
perfect aggregation has only a theoretical interest.

In general, in order to reduce the complex original system one has to resort to
approximate aggregation (see Auger and Roussarie, 1994 for a seminal paper), in
which some approximations are introduced in order to build the reduced system. In
this way, the behavior of the original system can be approximated, but not known with
exactitude, in terms of the knowledge of the behavior of the reduced system.

A property of complex systems that allows one to use approximate aggregation
techniques is the existence of two time scales, i.e., of processes whose characteristic
times are very different from each other. In addition, the fast process is required to
tend, at least in a generalized sense that depends on the context, to an equilibrium. The
main idea of these techniques is to approximate the original system by an “auxiliary”
system in which the fast dynamics has reached equilibrium and then, taking advantage
of the redundancies present in this auxiliary system, carry out its exact reduction,
obtaining an aggregated system whose dynamics allows one to approximate that of the
original system.

The presence of different time scales is common to many of the complex systems
found in nature. For example, it is usually the case that processes such as migration or
changes of activity are fast with respect to reproduction or aging. In the majority of
models found in the literature it is implicitly assumed that the fast process reaches
equilibrium very fast in comparison to the time scale corresponding to the slow
process, and therefore the fast dynamics is supposed to have a negligible impact on the
dynamics of the system. However, by using aggregation techniques we may consider
the dynamics of both the fast and the slow processes without paying a high cost in
terms of the complexity of the models we have to analyze.

Approximate aggregation techniques have been widely studied in the context of
time continuous systems with different time scales for both linear and density
dependent models (see among others Auger and Roussarie, 1994; Poggiale and Auger,
1995; Auger and Poggiale, 1996a, 1996b; Auger and Bravo de la Parra, 2000). The
discrete time case has also been thoroughly explored in linear, non-linear, non-
autonomous and stochastic contexts (Bravo de la Parra and Sanchez, 1998; Sanz and
Bravo de la Parra, 1998, 1999, 2000, 2001; Blasco et al., 2001, 2002; Bravo de la
Parra et al., 1999).

Concentrating on the discrete time case, the above-mentioned works carry out the
reduction of systems and proves that the original and the aggregated models can be
related when the separation of time scales between the two processes tends to infinity.
For example, in the linear autonomous case it has been shown (Sanz and Bravo de la
Parra, 1999) that the asymptotic growth rate of the original system tends to that of the
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aggregated system as the separation of time scales grows. Similarly, in a non-
autonomous context (Sanz and Bravo de la Parra, 2001), the variables of the original
system can be approximated in terms of those of the reduced system, and the
approximation is exact when the difference of time scales tends to infinity. However,
these works do not deal with the problem of estimating the precision of the
approximation for a given finite separation of time scales between the slow and the
fast process.

The purpose of this paper, working in the context of non-autonomous linear
models, is to derive bounds that allow one to estimate the error we make when we
study the original system in terms of the reduced one. In particular, we will work with
a very general model introduced in Sanz and Bravo de la Parra (2001). Section 2
presents this model, a non-autonomous discrete time model with two time scales, and
describes the aggregation procedure. The general method is illustrated by reducing a
Leslie type model for an age structured population living in a two patch environment.

In Section 3 we present some of the results previously obtained in the field that are
relevant to our study and define some quantities that characterize the magnitude of the
error. In Section 4 we obtain different bounds for the error. These bounds differ both
in the kind of approach to the study of the error and in the degree of complexity
involved in obtaining them.

The tightness of the different bounds for the Leslie type model introduced in
Section 2 is illustrated by some numerical simulations in Section 5. The proofs of the
results can be found in the Appendix, where the mathematically oriented reader can
find some insight into the kind of mathematical approach used to obtain each bound.

2. APPROXIMATE REDUCTION OF DISCRETE TIME NON-
AUTONOMOUS SYSTEMS WITH TWO TIME SCALES

In this work we deal with a discrete time model for non-autonomous systems with
two time scales that has been proposed in Sanz and Bravo de la Parra (2001). In this
section we introduce the basics of the model and the reduction procedure and refer to
that work for further details on the properties of the model and for illustrations of their
applicability to practical situations.

Our model contemplates a stage-structured population in which the population is
classified into stages or “groups” in terms of a certain characteristic of the life cycle,
for example age or size. Furthermore, each of these groups is divided into several
subgroups that can correspond to different spatial patches, different individual
activities or any other characteristic that could change the life cycle parameters. In this
way, we assume that the population is subdivided into ¢ populations (or groups). Each
group is subdivided into subpopulations (subgroups) in such a way that for each
/=1,2,...,q, group i has A, subgroups. Thus, the total number of subgroups is
N=N+N+-+N,

We denote by .’ the density of subpopulation / of population i at time

7n=0,1,2,..., with /=1,2,..,¢ and ;=1,2,...,/V,. In order to describe the population
of group i we will use the vector x’ =(x,x7,...,x"")eR", /=1,2,..,q. The

composition of the total population is then given by the vector
X, =(x!,x2,...,x7)" e R"where 7 denotes transposition.

no
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In the evolution of the population we consider two processes whose corresponding
characteristic time scales, and consequently their projection intervals, are very
different from each other. In order to include in our model both time scales we model
these two processes, to which we will refer to as the fast and the slow dynamics, by
two different matrices.

The projection interval of our model is that corresponding to the slow dynamics,
i.e., the time elapsed between times »~ and #+1 is the projection interval of the slow
process. For simplicity, we will denote the time span [7#+1) as A, , and suppose
that the coefficients of the model are constant during each of the intervals A . This
implies that the characteristics of the fast process are not allowed to vary with its
projection interval but only with each time step corresponding to the model, i.e., with
each projection interval associated with the slow process. This hypothesis has been
relaxed in Blasco et al. (2002) to allow the fast process to vary with its own projection
interval. We will not explore this case for it introduces several mathematical
complications.

In principle, we introduce no special assumptions regarding the characteristics of
the slow process and so, for a certain fixed projection interval, the slow dynamics will
be represented at time ~ by a non-negative projection matrix M, e R, We

consider M as divided into blocks M[/(l?), 1< 7 /< ¢, and so we have

M, () My(n) - M, (n)
M = Mz;(”) sz(”) Mz,:,(”) M
M, (7 M,(n) - M, (7)

where each block M (#) =[47](n)] (1 <r<N,, 1 <I<N,) and characterizes the rates
of transference of individuals from the subgroups of group / to the subgroups of
group i at time 7.

Regarding the fast process, the following assumptions are made:

a) The fast dynamics is an internal process for each group, i.e., there is no
transference of individuals from one group to a different one. Therefore, if we
consider a fixed projection interval, the fast dynamics of group i is represented, during
interval A , by a non-negative matrix P,(7) =[2"(#)] of dimensions AV, x N, for each
nand /=1,2,....q.

b) For each i and », matrix P,(7) has spectral radius equal to one, i.e., the modulus
of the dominant eigenvalue of P,(7)is one.

c) For each i and #, matrix P,(#) is irreducible and primitive, i.e., the power
P;(#)is a positive matrix for some positive integer .

The matrix which represents the fast dynamics for the whole population during
interval [z, 7+1) is

P, =[72 1= diag(P,(n), P,(7),.... P, (7). 2

As stated above, the projection interval of the model is that corresponding to
matrices M. We approximate the effect of the fast dynamics over the time step of the
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model, which is much longer than its own, supposing that during each interval A ,
matrix P, operates a k number of times, where 4 can be interpreted as the ratio
between the projection intervals corresponding to the slow and fast dynamics. Since
these projection intervals are very different from each other we can assume that £ is a
large integer. In this way, the fast dynamics during interval A is modelled by P and

the resulting model consists of the following system of A linear difference equations
that we denote “original system”

X, =MP'X . A3)
The primitivity of the P,(#), together with assumption (b), guarantees that for a
sufficiently high separation of time scales, the fast process during each A, approaches
an equilibrium distribution.
Let /=1,2,...,¢ and # be fixed and consider the positive vectors v,(#) and u,(7)
defined by the conditions

P.(n)V (7)) =V ,(n); u(0)P.(n)=ul(n)

Vv.(n=1;, a/(nv.(n =1, v(7)>0; u(n)>0, 4)
where 1=(1,1,...,1)". We use the notation A >0 (resp. A >0) to denote that A is a
matrix or vector of positive (resp. non-negative) elements. Therefore, v,(#) and u,(7)
are, respectively, the positive right and left eigenvectors of P,(#) associated with
eigenvalue one and verifying some normalization conditions. Note that, since P,(#) is
primitive, eigenvalue one is simple and therefore v,(») and wu,(#) are defined in a
unique way by conditions (4). Vectors v, (#) and wu,(#) can be interpreted in the
following way in terms of the fast dynamics of group i in interval A . Let us consider
a hypothetical situation in which the system would be governed by the fast process
exclusively. Suppose, moreover, that A is long enough with respect to the projection
interval corresponding to the fast process for this to reach its equilibrium conditions
during A . Then, for any “initial condition” of the system at time 7, the structure of
the population of group i at the end of A, would be defined by v,(7), meanwhile the

reproductive value (Caswell, 2001) of the individuals of that group would be
characterized by vector u (7).

Therefore, the equilibrium of the fast process in A, for each group i and for the
— —
whole population is characterized, respectively, by matrices P.(») =[/Z, (#)] and
P, = [P:;s] given by
P(z) =limP/ () = v (! () >0
P, = diag(P.(7), Pa(),..., P, (7). (5)

Let us define matrices
V, = diag(v (n),v,(#n),...,v (7))

U, = diag(u] (n),u(7),...,u, (7)) (6)
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whose interpretation is immediate bearing in mind what we pointed out about v,(7)
and u,(#).

Some of the properties of these matrices are gathered in the following lemma,
whose proof is straightforward:

Lemma 1. Matrices P, P,, V, and U, verify, for all n:
a) PP =PP,=P,P,=P,.
b) PV =P,V =V,
UV, =1;P,=VU,

n? non

c) UP,=U

System (3), consisting of A variables (microvariables) associated with the
different subgroups can be approximated by a reduced system (“aggregated system”)
of g variables (global variables), each of them associated with one group. In order to
do so, we introduce a so called “auxiliary system” which approximates the dynamics
of the general system and can be reduced without introducing any error. This auxiliary
system is defined by

X =M P, X, %

where the vector of variables for this new system is denoted by X/. The auxiliary
system can be interpreted as the microsystem when we substitute the fast process
corresponding to each interval A by the equilibrium characteristics of the fast process
in A,. In other words, we are letting 4# — oo in the expression of the microsystem,
which is equivalent to supposing that A is long enough with respect to the projection
interval of the fast process for the fast dynamics to reach equilibrium. Multiplying
both sides of (7) by matrix U _, we have

7+l

U”+1X'”+l = U”HM”l_)nX'” = U”HM”V”U”X'”

where we have used l_’,, =V U,. We define the vector of global variables by

Y, =UX| ®)
and see that (7) can be expressed as a function of the global variables exclusively. In
this way, the reduced system is defined by

=M, Y 9)

7+l ”
where matrix M, € R”“ is given by

M,=U MV,

7+l
The global variables Y, =(j/,...,7)", defined by (8), have the following
expression in terms of the variables X/ of the auxiliary system:

Vo=uw DX =d DX+ DX+ o+ u (X =129,  (10)

n

i.e.,, each J/ is a linear combination of the variables of the auxiliary system
corresponding to group i, being the coefficients of the combination the components of
vector u,(#). Moreover, these global variables are easily seen to be conservative for
the fast process.
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Recall that an approximation is made in order to build the auxiliary system in
terms of the original system, while the aggregated system is built exactly in terms of
the auxiliary one. As we show in Section 3, this is reflected in the fact that the global
variables and the variables of the auxiliary system can be known without error in terms
of each other, while the microvariables can only be known approximately in terms of
the auxiliary variables.

Reduction of a Leslie type model with fast migration

As an illustration of the above general setting, we will carry out the reduction of a
Leslie type model for a space distributed population in which migration is a fast
process in relation to demography. This particular setting will also be used in
Section 5 to test the accuracy of the different bounds that we derive for the error we
incur when aggregating.

We consider a population structured by age in two classes (groups), say juveniles
and adults, corresponding to groups. We assume that the population is distributed in
two patches (subgroups) among which they can migrate. In this way, the population is
structured in four stages, each of them corresponding to an age class and a spatial
location. The demographic and migratory processes are responsible for the
transference of individuals between the different stages and we suppose that migration
is a fast process in comparison with demography. We choose as time step for the
model, A =[# #+1), the duration of the age class of the juveniles.

Generalizations of this situation to the case where there is an arbitrary number of
age classes and spatial patches, as well as to the case where demography is fast with
respect to migration can be found in Sanz and Bravo de la Parra (2001). Charles ef al.
(1998) shows a practical application of the reduction of a Leslie type model to actual
populations.

We denote by 7 the number of individuals of age i in the /-th spatial patch at
time #~, 7 /7=1,2. Vectors x’ =(x,x”); 7/=1,2 describe the spatial allocation of
individuals in age class i thus for the whole population we have vector
X, =(x,,x)) =(x, 0,55

The transference of individuals between the different age classes is characterized
by the following matrices

F(n 0 A 0
Mll(”):{ 2 :|’ MIZ(”):|: 2 :|
0 A(n) 0 A
MZI(n){W) ¥ } Mzz(n){‘g(”) ¥ }
0 S(» 0 50

where #7(7) and S”(#) are, respectively, the fertility and survival rate for individuals

of age 7in patch / during interval A ; 7=1,2. Note that we are using the fact that the

demographic process does not make individuals change patch and so matrices M ,(#)
are diagonal. In addition, we allow the survival coefficients of the second age class to
be non-zero to account for the adults that live longer than one time step.

The matrix M, modelling demography at time # is then given by
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R 0 Em 0

Mo O Em 0BG
IS 0 S 0

0 S 0 S»

Let P,(#) be the matrix characterizing migration between the two patches for the
individuals of age class # 7=1,2 at time ». Since migration is a conservative process
for the total number of individuals, matrices P,(#) are stochastic and therefore their
dominant eigenvalue is one. We then have

=) ¢ } . {1 ALIAC) }
’ 2(”) -
a0 -4 2 =g,

where p(7z) and p,(#) denote migration rates at time » for individuals of age class 1

and 2, respectively, from patch 1 to patch 2, and ¢,(#) and ¢,(#) have the analogous
meaning for the migration from patch 2 to patch 1.

If we assume that all the migration rates are different from 0 and 1, then matrices
P (7)) and P,(#») are positive and, consequently, primitive. In this way, migration
meets the hypotheses required in Section 2 for the fast process.

If the duration of each age class is sufficiently long with respect to the projection
interval of migration, this latter process tends, for each age class i and each A , to an

equilibrium distribution among the patches given by the positive eigenvector v,(7) of
P.(7) associated with eigenvalue 1. Vectors v (#) are given by

_( 7.(7) 20 ) _ [ 7,(») 2() )
Vl(”) = 5 P Vz(”) - >
s+ q (7 p(n)+q,(n) 2,1+ q,(n)" p(n)+ g,(7)

and, since matrices P,(#) are stochastic, the left eigenvectors u,(#) associated with

eigenvalue 1 verify wu,(7) =(1,1)" =17. In this way, the matrices that define the
migration equilibria are

q,(7) g,(7)
P =v ()1 = 2m+q(n)  pD+gn| .,
' 2,(7) 2.7 T

2" +q(n)  p(n)+q.(n)
The matrix that characterizes migration for the whole population is
P, = diag(P,(#), P,(#)) while its equilibrium is determined by P, = aZag(P\(#), P.(7)).
The original system has the expression

1 1
Y x,
B 1

7+l | £ n

2 | T M”P” 21 |°
X n
x 1

7+l ”
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where £ can be interpreted as the ratio between the projection intervals of
demography and migration.

If we let migration reach equilibrium in the original system we obtain the auxiliary
system that reads

i) i
FIRE
‘X/H»l 'X/r
vy X
where
Fng(n  Fgn  FHngn  Fngn
2D +q(n)  p(D+q(n  p(n)+q,(n)  p(n)+q,(n)
Hnp(n)  F@)p@») A p(7) A p(7)
p, —| 2D+ a(n)  p+q(n)  p+q(n)  p(n)+q.(n)
S (ng(n S (g (n) S, (mq,(n) S, (mq,(n) |
2 +q(n) pn+q(n) pA+q(n)  p(n)+q,(n)
S (Hp(n) S (n)p(7) S, p,(n) S, p,(n)
LoD +q(n) p(D+q(n)  p()+q,(n)  p(n)+q,(n) ]

In order to reduce the auxiliary system we build matrices V, and U, that take the
form

7,(7)
YAGRIAC)
2 0
V, = diagty (v, () =| T4
,(77)
2,(n)+ ¢,(7)
(1)
L 2:(7) + ¢,(7) |
1 100
U =digg(u’ ,ul) = .
7n lﬂg( 1 2) |:0 O 1 1i|
The global variables 3/; 7=1,2 are definedby y, =U X/, i.e.,

y’]i :ulr(l{y”’“t{,lz)r :)‘f;” +X’:12
J/j =u27(}421’x,/722)7 =x{,21 +xf]22

so in this case they correspond to the total population in each age class.
The aggregated model is given by

Y | |
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where
g (WF (n)+ p(DF(n)  q,(nF () + p(n)F (n)
M. =U MV = 27+ q,(7) 2.7+ q,(7)
T q(nS () + p (DS g,(WS, () + p (1) S (A) |
p(7)+ g,(7) 2,(7) + q,(7)

i.e., the aggregated model is a conventional Leslie type model whose parameters are
linear combinations of the parameters defining demography, being the coefficients
dependent on the equilibrium spatial distribution for migration.

3. ASYMPTOTIC RELATIONSHIPS BETWEEN THE SYSTEMS

Returning to the general setting of Section 2, we define the following matrix
products, for each »~ and 4, which will be useful in the sequel:

M, =M,_ P _ MPMP: I =M_P, .. MPM,P;

n=1"n-1" 0702

ﬁ” ZI\_/LH ...1\_/111\_/[0

and we have the following expression for the original, auxiliary and aggregated
systems in terms of the vector of initial conditions (note that both the auxiliary and the
original system start from the same initial condition)

X, =T,X,; X,=1U'X,; Y, =LY,
where Y, = U X, . In addition, let
E =11 -1II.
For each #, let the eigenvalues of P, (i.e., the union of the eigenvalues of the

P.(7)) ordered by decreasing modulus be

1=A(n)=-=A,(n)>

A, (]2 2[4, ()

and let 0 verify the condition
o=1if sup{

2.0} =1, (11)

1>6> sep{lw(n)” if sgp{),qﬂ(n)H <1.

From this definition we see that 0 is greater than the modulus of the subdominant
eigenvalue of matrices P,.

The following proposition is taken from previous works of the authors (Sanz and
Bravo de la Parra, 1999, 2001) where it is shown that the variables (and, in the
autonomous case, the dominant eigenvalues) corresponding to the three systems under
consideration can be related in a certain way.

Proposition 2. a) For each n we have

I, =MV ILU, I,=U IV,
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and therefore the relationship between the variables corresponding to the aggregated
system and to the auxiliary system is given by

X, =MVY, Y,=UX,

n - non

b) The sequence E,, =11 , —TII' verifies, for fixed n,
E,, =0(5‘); f—> o0

where 0 is given by (11) and so X, - X = 0(5 "). Therefore, the variables X, of the

original system can be approximated by those of the aggregated system Y, and
reciprocally, in the following way

Xu = Mu—an—]Yn—l + En,/(Xo = MHV/HYH + 0(51); k— o0 (12)

Y,=UX,+UE, X =UX, +0(6); #—co.

ne o mk
¢) In the autonomous case, p(l\_/l)zp(Ml_’) and p(MP‘):p(Ml_’)+0(§"),

£ — oo, where p denotes the spectral radius.

This result shows that we can obtain the population vector of the auxiliary system
exactly in terms of that of the aggregated system and reciprocally. In addition, the
variables of the original system can be approximated knowing those of the aggregated
system, and, for fixed #, the error we make decays geometrically with 4. However,
none of the works carried out so far in the field of the approximate reduction of
systems with different time scales undertake the study of the approximation, i.e., the
magnitude of this error, for finite values of £.

We will refer to the discrepancy between the original system and the auxiliary
system as the “error” we make when carrying out the study of the original system in
terms of that of the reduced system. This error can be measured in the form

||er - Mn—lVﬂ—err—l = ||Xn _th = | Eﬂ,/(XO Eﬂ,[‘ "Xo"
where "*” denotes both a vector norm in R" and its associated matrix norm, i.e.,

||A|| = max"Ax” for A € R"*". The error is thus characterized by "E” .

=t

<|

and the rest of

the paper is basically devoted to obtaining upper bounds for this norm as functions of
7 and £.

In addition to the study of "EM

aggregated system to describe the dynamics of the original system, we will pay
attention to the relative error which, considering the original system as a perturbation
of the auxiliary system, is characterized by the quotient

e
e

, in order to study the usefulness of the

Since we are interested in the error we make when estimating the total population,
the natural norm to calculate the error is the l-norm in R”, i.e.,
"Z"=|Zl|+ +"‘+|ZN| and its associated matrix norm in R", ie., ||A||l is the

2
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maximum of the 1-norm of the columns of A. However, our work is more general and
when we use the symbol "*” we refer to any of the 1, 2 and o norms in R,

4. ERROR BOUNDS

The presentation of the results of this Section is conceived to be useful to
biologists and ecologists, and so the mathematical discussion has been kept to a
minimum. The Appendix contains, together with the proofs of the results, some of the
mathematical ideas behind the derivation of the bounds.

Let us consider the autonomous case, i.e., M, =M, P, =P for all #, in order to

En.l’

matrix associated with the aggregated system has spectral radius lower (resp. higher)
than one then so does that corresponding to the auxiliary system and, for large enough

illustrate the qualitative behavior of | . Proposition (2) guarantees that if the

£, the original system. Therefore, if p(M) <1, the population of both the auxiliary

and the original system tends to zero when #— oo and, consequently, the error "E” .

will also tend to zero. Analogously, if p(l\_/l)>1 then, for large enough £ the

population of both models tends to infinity when 7 — oo. Since we are dealing with a
multiplicative process, we expect the error we make in each time step to be amplified
in time and to tend to infinity. This qualitative behavior is confirmed by numerical
simulations. The qualitative behavior of the relative error is not so obvious and can be
seen, in some particular cases, in Section 5.

The next result provides a first error bound:

Proposition 3. Let us define

B:=sup MI’“ ¢,:=sup|M (P! —l_’)“ (13)
Then we have, for all n and £,

e, <=8 [Hﬁ] -1 (14)

’ ’ B

and so the relative error K, verifies
Cl
R, <B =20
n, k nk ||1—[,”

Proof. See Appendix.

Note that in order to obtain the previous bound, the suprema (13) must be finite.
This situation presents itself again in the subsequent results. In Lemma 8 we provide
sufficient conditions for all those suprema to be finite.

Let us illustrate an important qualitative shorthand of bound C,. For the sake of

simplicity let us consider the autonomous case: we can have a situation in which
p(MP) <1 (and therefore p(MP*) <1 for large enough #4) and however “MPH >1.

Therefore, for large enough 4, I1 (4) and IT tend to zero when # tends to infinity
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and, consequently, so does the error "E” .|l However the quantity C  tends to

infinity, therefore giving useless bounds for practical purposes. For example, it is easy
to check that this situation arises in the Leslie type model of Section 2 if we work with

>1 and 7', 7 and the survival rates are close enough
V2Rl

the 1-norm, take

to zero.
In order to obtain ('

" . we need to calculate the powers P/ for all ». The
following result gives coarser bounds C,, and C’, that can be obtained without

calculating those powers.
Proposition 4. a) For each 7 and £ we have

ya

“M”(P,f’ -P,)| <™, [P/ - f*,,” < ||M||“P P, (15)
and therefore, if we define
m=sup|M,|; v = sup”P” - 1_),,”, (16)
it follows
[E.|< coi= /3”[[1 +%y‘) —1] an
Rnx = B/‘/,/{' "H;

b) Let us assume that P,(n) is diagonalizable, for each n and each i=1,2,...,q,
in the form P(n) =Q (n)Z (7)Q (7)" where X () is a diagonal matrix. Then

2 ()| (18)

where T = g§§{||Q/,(n)||||Qi(n)‘l”} > 1. Therefore, given (11) and defining

M, - <z m |

T:=supT, (19)
we have, for all n and &
lE,.|< = (1+T—’”6“j 1 (20)
’ ’ B
Cv,]]b
nk B/‘r,b/f'_ |1—I’f

¢ C,< min{ij},Cﬁi}for all 7 and #.
d . <[P, -,

76" <y, then C', < C’, for all n.
Proof. See Appendix.

for all n. As a consequence, if k is large enough so that
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Note that the error bound C"’

.k

although better than C'*

o for large enough £,

involves diagonalizing the diagonal blocks of P, and is therefore more complicated to
obtain than C,. Bound C,

..+ is also useful qualitatively to study the decaying of the
error in terms of the subdominant eigenvalues of the matrices that characterize the fast
dynamics. Since any diagonalizable matrix can be diagonalized by an infinity of

matrices, bound C'’, will depend on the choice of the Q (7).

nk

Note that the bounds €', C'* and C' for the absolute error can be calculated

mk? nk nk
directly in terms of the data of the problem. However, in order to obtain the bounds
B B’ and B’ for the relative error, it is necessary to know

nk?
| =[m,..v,.1..v,

matrix products of the aggregated system.
We will now construct new error bounds that, as shown in Section 5, provide a

better estimation of the error than €, in many practical situations. In addition, and

unlike for the previous bounds 2, ,, B and B, we will be able to obtain bounds for

, 1.e., it is necessary to know beforehand the behavior of the

the relative error that do not require the knowledge of the dynamics of the aggregated
system.
For notational convenience, let us define matrices

C,=[¢, =M, P, 20, D =[a; =M, (P -P,)

”

and now let matrix W

nk

— [ Wﬂ, #

i ] be given by

0,k
op

ik L if ca”ﬁ #0
Wiy =9 Cog . 2D
0 ifcy =0

In the first place, let us contemplate a particular case of the general situation
defined in Section 2 for which we will obtain results that will be both sharper and
easier to obtain.

Definition 1. We will say that hypothesis (H) holds when matrices M (#) are

square and diagonal for all 7, j {l, . q} and all n.

Note that condition (H) holds in the Leslie type model of Section 2. Moreover, all
the applications that have been developed in the previous works on the field meet this
requirement (Sanchez et al., 1995; Sanz and Bravo de la Parra, 1998, 1999).

Now, given condition (H), we can simplify the calculation of matrices W ,.
Indeed we have:

Lemma 5. Let # and £ be fixed and let us assume hypothesis (H).

a) Matrix W, , can be obtained as

P —P,
® Py if ¢, #0
Woy 1= (P”)a[} . (22)

0 if ¢y =0
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In particular, matrix W, , depends only on P, and on the pattern of non-zero

n

elements of M, i.e., W, is independent of the value of the non-zero elements of M.
b) Moreover, if P! # P” then W, , does not have a “definite sign”, i.e., neither
W

nk
Proof. See Appendix.
Now, let numbers o ,,(4), ¢, (4) be defined as follows

m

o, (k)= sup(max Wk) ; 0,(4):= —il}lf(min WM) (23)

nor =W, , are non-negative matrices.

where, for a matrix A, max A, min A denote, respectively, maximum and minimum
of the entries of A. Note that, given hypothesis (H) and excluding the trivial case

P/ =P, for all », Lemma 5 guarantees that both ¢ ,(4) and o (4) are positive

numbers.
The next proposition provides a second error bound and, in the autonomous case,
a relationship between the dominant eigenvalues of the original and reduced systems.
Proposition 6. a) For all 7 and & we have

| E

8 o=max{(1+0,0) -1, 1-(1-0,00)'}. 25)

s,

mk|| — nk (24)

where

b) In the autonomous case, if we denote by A, and A the spectral radii of
matrices MP* and M respectively, we have
A, -2 < max{o ,(#.0,(H}A (26)
forall #.

Proof. See Appendix.
Note that (24) shows that &

.. 1s a bound for the relative error. Moreover, given

hypothesis (H), &, is independent of the value of the non-zero entries of the matrices

defining the slow dynamics.
As in the case of bound C' in order to obtain C it is necessary to calculate the

powers P/ for all ». The following result gives a coarser bound ij that can be more

easily obtained.
Proposition 7. a) Let v(£) be defined by

ma xM “

V(4):=sup (27

7| min®

where min” denotes the minimum of the positive entries of the corresponding matrix.
Then we have

max{o , (4,0, (M} < v(4) (28)

and consequently
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R, B, <B= max{(l +op) 1, 1-(1 —u(/c))”} . 29)
b) Moreover, if hypothesis (H) holds, bound 15’2 “. can be improved by defining
— 4
‘ P -P,
v, (£):=supi ———=— (30)
7 | min" P,

which verifies v,,(£) < V(4),and replacing vV(£) by v,,(£) in (29).
Proof. See Appendix.
Finally, the following lemma gives sufficient conditions for parameters 3, ¢,, 7,

Y, 0,,(#), o, (4), v(4) and v, (£) to be finite.

m

Lemma 8. Assume that the non-zero entries of matrices M, and P, are bounded

away from zero and infinity, i.e., there exist positive constants €, K, € and K’ such
that for all n we have

min*(M )28; min*(P,) > ¢’ (€2))

max(M,) < K; max(P,)<K’.

Then, for any value of k, the suprema of (16), (13), (27), (30) and the supremum
and infimum of (23) are finite.
Proof. See Appendix.

5. NUMERICAL SIMULATIONS

In order to illustrate the use of the bounds we have obtained, we show several
numerical simulations corresponding to the Leslie type model of Section 2. In all of
the simulations we deal with the autonomous case and we employ the 1-norm as a
measure of the approximation.

2\—/’// Figure 1. Logarithm of the error

r \ k=1 R, as a function of time for
" k=5 different values of k. The

/ parameter values are those listed
’ under (32).

logarithm of the relative error

b k=10
. 5 10 15 7 3 30 £ 1 35 0
time (n)

In the first place, and according to the discussion of Section 4, numerical
simulations corroborate that the absolute error we make tends to zero or infinity
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depending on whether p(l\_/l) <1 or p(l\_/l) >1. On the other hand, intensive numerical

simulation has shown that, irrespective of whether p(l\_/l) <1 or p(M) > 1, the relative

error always grows with time for large enough values of 7.

In order to test the accuracy of the different bounds we have obtained, let us
consider case (A) corresponding to the following set of values for the demographic
and migratory parameters

p=04; p, =05 ¢=07; ¢=03; £=03; ;=02  (32)

F=2; F=3; 85=04,; 8=06, 5=02,; $£=03

2

for which p(l\_/l) =1.3. Figure 1 shows the evolution of the relative error &, , with time

for different values of 4. Since our system is multiplicative we have chosen a
logarithmic scale for the error. Note that the relative error grows with time for large
enough #.

Figure 2 shows the relative error and the different bounds for it introduced in the
paper as a function of time when 4 =35.

We can see how Z)’2 . has an asymptotic growth rate similar to that of the real

On the contrary, the discrepancy between £  and &

» ’ . increases

relative error £ ,.

significantly with time. Note also that A, works better than £,.

nk

Figure 2. Logarithm of the error
R, and of the different error
bounds for the parameter values
defined by (32) and k= 5. R, BI,
Bla, Blb, B2, B2a stand for R,
B, B B, B and B

k> 7,k k> 7.k k"

logarithm of the relative error

o 14 20 248
time (n)

We now consider case (B), corresponding to the following set of parameters,
=5, p =045, p,=0.05; ¢,=03; ¢,=045; £ =08, £ =04 (33)

F =05, /£=2; §=05 5=06; 5=02; 5$=03

for which p(l\_/l) =1.01. The relative error, together with the different bounds, is

shown in Figure 3.
Unlike in situation (A), in case (B) B, is a more exact estimate of the error than

BZ

nk .
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ant

a0

20-

logaritm of the relative error

5 10 ] 20 25

time (n) 1

SANZ AND BRAVO DE LA PARRA

Figure 3. Logarithm of
the error R, ; and of the
different error bounds for
the parameter values
defined by (33). R, BI,
Bla, Blb, B2, B2a are
defined in Figure 2.

In the previous cases, bounds £, and B, largely over-estimate the actual error

R, . However, there are situations in which the bounds we have built provide quite
sharp estimations of R, ;. Indeed, some examples are those corresponding to the set of
parameters (34) and (35) for which we have, respectively, Figures 4 and 5:

k=5, p =045 p,=041; g, =089; ¢,=0.19; £ =027; =001 (34)

logarithm of the relative error

£ =085, /2=09; 8 =028; S =08; S =0.55; 5 =0.8;

time {n)

Figure 4. Logarithm of
the error R, , A and

n ke
B

.« for the parameter
values defined by (34).

£=5;2,=039; p,=0.54; ¢,=040;¢,=030; /7 =1; /7 =002 (35)

£ =032,/ =032;5 =001; $=0.01; S =0.1; 5 =0.1.
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Figure 5. Logarithm of
the error R, , A and

n ke
B

.« for the parameter
values defined by (35).

logarithm of the relative error

time (n)

6. CONCLUSION

Our work allows one to estimate both the absolute and the relative error we make
when carrying out the aggregation of linear non-autonomous models with two time
scales. In this way the modeler can gain some insight into the magnitude of the
approximation involved in the reduction of each model.

Each of the two main bounds obtained proves to work better than the other in some
situations. Therefore, the context will dictate which one to use in each particular case.
Moreover, both bounds can be relaxed in order to facilitate their calculation. In this
way we can simplify the computation of the bounds at the price of losing some
tightness.

As future contributions, we plan to estimate the magnitude of the discrepancy
between the original and aggregated system in two different contexts. The first is that
corresponding to non-linear models following the approach of Bravo de la Parra et al.
(1999). The second is that of the systems subjected to environmental stochasticity
(Sanz and Bravo de la Parra, 2000) where it would be interesting to obtain a
relationship between the stochastic growth rates (Tuljapurkar, 1990) of the original
and the aggregated systems.

APPENDIX

Proof of Proposition 3. Throughout the subsequent proofs we will use
repeatedly the properties of “subadditivity” and “submultiplicativity” of induced
matrix norms of which the norms 1, 2 and oo are particular cases. In this way, the
norm of a sum (product) of matrices is lower or equal than the sum (product) of the
norms of the matrices under consideration.

Let 7 and 4 be fixedand let A :=M P, and B,:=M S . Then

n okt

Hn./{ = (Au—l + Bn—l)(An—Z + Bn-z) . '(Ao + Bn)
=A_A ,--A +-- =H; +EM

n=1
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where E_, is a sum of 2” —1 summands of the form H H_, ---H, where, for each i,
H, e {A,, B,.} excluding the case H, = A, for all i. We derive an upper bound for the
norm of E_ , by bounding the norm of the sum by the sum of the norm of the
summands and, in each of the 2” —1 summands, the norm of the product H H,, ---H,

by the product of the norms of the factors. Now we use the fact that "A" < B and
"B” < ¢, and we finally obtain

o[ Jpor (oo 2
1 2 7

En.l’

gl 0)
=(B+9.) -B" =P [(HF‘ -1|=¢,,
as desired.
Proof of Proposition 4. a) It is straightforward to see
—_ —_ Va
P -P,=(P -P,). (36)

Indeed, proceeding by induction in £, the result is obvious for 4 =1 and, assuming

P -P,=(p, —13,,)# then PP, =(p P )P -P,)=(P -P.P, —f),,)k =

A+l [ — —
(P”—P,,) where we have used P,P,=P,. Now (15) follows from the

submultiplicativity of matrix norms and, as a consequence, bound (17) follows directly
from (14).

(b) Let » and i be fixed and let us suppose, without loss of generality, that the
eigenvalues of X, (») are ordered by decreasing modulus. Then

X (n) = diag(l,0,)(7),...,0,, (77)) where |oc!./.(/7)|<1 for all ;=2,...,/V,. Moreover,
since the right and left eigenvectors of P,(#) associated with 1 are v (#) and u,(7)
and u’(#)v (7) =1 then it follows l_’/(n) =v (mul(n) =Q (ndiag(l,0,...,0)Q.(7)"
and consequently, denoting the 4-th power of P (#) and o, (#) by P/(#) and a}(»)
respectively,
P! () = Pi(n) = Q (M) diag(l, (... ", ()Q, (1)
- Q. (ndiag(1,0,...,00Q,(n)™
=Q,(n)diag(0,a},(n),...,00;, (m)Q,(7)”
so that

P/ (0 P < [Q. kR |etagt0. et ... et ()]
=le.ollQ.¢ .|

where we have used the fact that if "*” is any of the 1, 2 and oo matrix norms, then the

norm of a diagonal matrix is the maximum of the modulus of the diagonal elements.
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Analogously, the norm of a block diagonal matrix is the maximum of the norms of the
diagonal blocks and so

P —p,|< “dmg(Pf(n) —Pi(n)..... P (n) —134(”))“
= max{fo, (afl@.(n” e |
< max{jQ,(llQ, ([} max{ler .0 } =2 J1,.. )

and so (18) follows. Thus, bound (20) is a straightforward consequence of (14).
Finally, for each i, "Q,(n)"”Q,.(n)"” is the condition number of Q,(#), and since the

condition number of a matrix is always greater or equal to one (Horn and Johnson,
1985, p. 336) we have 7, > 1.

(c) Obvious from the proofs of (a) and (b).
(d) The spectral radius of P, —P, is p(P” —P,,) =

lqﬂ(n)| and since p(A)< "A"

for any square matrix A and any induced matrix norm it follows |2,q+1(/1)| < “Pﬂ -P,

The result then follows directly.
Proof of Lemma 5. a) The result easily follows taking into account the block
structure of the matrices under consideration. Let us denote

S (m k)= [S/’.’(n, A’)]:z P! (n) —l_’,(n) for each ;=1,...,¢. Due to the block structure
of matrices M, P’ and P,, matrix D, =M (P —l_’”) = [a;;"] e R (resp.

C, :M”l_’” =[cjﬁ]eR‘vx‘V) can be thought of as being composed of ¢ blocks

D, (1A =[d/(n )} =M, (AP (5)~ P (1) =M, (7S (1, 4) (resp.
C,() =[&/(N]=M, (WP (n); ij=1,...,g. Analogously, matrix W,, =[u/;] can

be thought of as composed of ¢’ blocks W, = [w;.’(n, A’)], ij=1,...,q. Let
z;je{l,...,q} and 7, /e {1,...,/\/,}be fixed. Since M/./.(n):[/l/;/(n)]eR‘v"w" is
diagonal, then ¢//(7) = /I/,;"(ﬂ);;/(n) and & (m, k)= M (n)S" (k). Note that the fact
that the l_’/(n) are positive matrices implies cl’ (7)=0 if and only if 477 (7). Then, by
definition (21) we have that ¢/(z) =0 implies w//(s, #) =0. Moreover, if ¢/(7)# 0
MIS/ (R S/ h)

then A77(m#0 and w/(nmk)= CA) A
M ()P, (n) P;(n)

. Result (22) is then

proved.
b) According to the definition of W

mk?

and taking into account that matrix P, is
non-negative, it suffices to prove that neither P/ —P, nor P, — P! are non-negative
matrices. Since P!~ P, = dligg( P (7) = Pi()...., P () ~ P, () we will deal with the

diagonal blocks. Let 7=1,..., ¢ be fixed. We assume that P/ (7)> l_’/(n) and will reach
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a contradiction. Matrices P/(#) and P.(#) are primitive (therefore irreducible) and,

for both, the spectral radius is equal to one. Now we will use the following result
(Horn and Johnson, 1985, p. 509): Let A, B be non-negative irreducible square
matrices of the same size such that A > B and p(A) = p(B). Then, if A =¢"p(B) is

an eigenvalue of B then there exist 6,,...,6, € R such that B=¢’DAD™" where
D = diag(e'™,...,e""). Now we apply this theorem with A =P/(»), B= l_’,ﬂ(n) and
¢ =0 and we have as a consequence l_’/(n) =D"'P/(»#)D for a certain regular matrix
D, ie., P/(») and l_’,ﬂ(n) are similar matrices. Therefore both matrices have the same
eigenvalues and so those of P/(7) must be 1,0,0,...,0. But then, since v (7)and u,(#)
are, respectively, right and left eigenvectors of P! associated with eigenvalue 1 that
verify the normalization condition u’(#)v (7)) =1 then P/(n)=v (nul(n), ie.,
P/ (n) = l_’/(n) which is impossible by hypothesis. Therefore P/(#) is not greater than
or equal to l_’,‘(n). Applying the same theorem in the case B=P/(#), A= l_’,ﬂ(n) and
reasoning analogously we obtain that l_’,ﬂ(n) is not greater than or equal to P/(») and
the result is proved.

Proof of Proposition 6. a) We define, forall » and 4, T,, = [la”/;"]:z M P! and
then we have directly from (21) that if ¢/, #0 then tg’k =1+ ngk)(*). Let us
show that ¢/; =0=> 7" =0 and so the expression (*) will be valid for all values of o
and f. Indeed, matrix C, =M”l_’ﬂ (resp. T,, =M P/) is composed of 4° blocks
M,/,(n)l_’,-(n) (resp. M (2P} (n)); i j=1,...,4. Since matrices l_’/(n) are positive for
all /, that implies that if the element (7, /) of M,/(n)l_’,-(n) is zero then the r-th row of
M, (#7) must be zero and therefore the element (7, /) of M[/(n)P/‘f(n) is also zero. Thus

iy =0= 7' =0 as required.

Let # and 4 be fixed and let T, =[I1%] and I/ =[I1;;]. Let us fix

o,Be {1,2,...,/\/}. We can write

=3

= %‘; el Oy (L w ) (L W YA+ w)%)

I = =~ G ™ S s

where 7, , is the following set of indexes:
1,y = B By = Vs i=1, L =1

Therefore

<y a c,c,(+0,(6) =(1+0,(4) T,

/llﬁ
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=y ' -, c,0-0,0) =(1-0,#)T

/llﬁ
1e.,

M~ <+, (8) - DI,

I~ I < (1=(1=0 ()T

<max{(1+0,(A) -L1-(1-0,(4)" 1. Now (24)
follows by taking norms in the last expression and using that, for any matrix norm
induced by a monotone vector norm (of which the 1, 2 and conorms are particular
cases) (Horn and Johnson, 1985, p. 310), |A| <B= "A" < "B" (|A| denotes the matrix

whose elements are the absolute value of the elements of A).

mk rn
from where |Ha5 11

b) In the first place, the spectral radii of matrices MP and M coincide
(Proposition 2). From (*) we have, in the autonomous case, 7, = ¢, (1+n,) from

o

where it follows 2, <, (1+0,,(4)) for all (a, ), i.e., MP* <(1+0 ,,(4#))MP and

since |A|S B= A"S B" (Horn and Johnson, 1985, p. 491) we have
A, <(+0,()A, ie, A, —-A<o,(HA (**). Analogously we have
4y 2 cy(1—0, (4)) from where it follows MP* > (1 —Gm(/f))Ml_’ and then
A, 2(-0, (M)A, ie, A—A,—<0, (AHA (***). The desired result follows from (**)
and (F*¥).

Proof of Proposition 7. a) In the first place let us show that if A and B are

square matrices of the same order then |AB| < max|A|||B||1 (D). Indeed,

(aB),| =‘Z 4,8)< 3|4,

and so m?x‘(AB) ‘s max|A| mjiXZ, = max|A|||B||l as required.

5,

< max|A|z
/

B,

5,

i

Let 7 and £ be fixed. By definition (21) we have that if  and B are such that

ik
Waﬂ

¢, =0 then =0. In the case ¢, # 0 we can write

max

PP,

M, (P! —f),,)‘

7, K
%y

C{w

7,k max Mn

o

<

min*(M” P”)

IN

1

min*(M”l_’”)
maxM

min*(M”l_)”)

=

C<uh

where in the second inequality we have used (I) and, in the third one, (36) and the
submultiplicativity of the 1-matrix norm. From the last expression we have

sup max|VV,,’ k| < v(4) and, since
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sup max|W
"

nk

| =sup max{max W, ,,—minW, 1,}
"

= max{sup(max Wk) —ir:f(min WM,)} = max{O'M(/r),Gm(A')}

n

AR} SV(#). Therefore, (1+0 ,(4) -1<(1+v(#) -1 and

1-(1-0,(A) <1-(1-v(4) and so the bound (29) now follows directly from (24)
and (25).

b) Given hypothesis (H) we use (22) and, if & and B are such that ¢, #0, it
follows

then max{cr S(£),0

‘(P,f—P”) ‘ max| P”"—l_’”
of < S

‘ (P”) ‘ min* P, min* P, min* P,
op

Vs
1

PP, “Pﬁ P,
— L < —

7,k
Waﬁ

where in the second inequality we have used max A < "A"l and, in the third one, (36)
and the submultiplicativity of the l-matrix norm. Now sup max|VV”’ 4»| <v,(4) and,

reasoning similarly to the proof of (a), max{GM(A'),Gm(/r)} <0, (4) from where (29)
with v(4) replaced by v, (4) follows immediately.

Lastly, let us prove v, (4) < v(4) for all #. Let # be fixed. Reasoning as in the
proof of Lemma 5 on the block structure of matrix C, we have

&/(n) = M (WP () < max M, (7) 7, ()
forall 4 /€ {1,...,q} and 7, /€ {l,...,/\/,} . From here we have
min” C,(») < maxM (7) minl_’/(n) <maxM, minl_’/(n).
Now, since min'C = Irlli/_nmin+ C,(7) and min’ P, = m/_inminf’/-(n), it follows

min* C, < maxM  min" P,, i.e.,
— 4

. ‘P” _P,
>4

maxM1 ‘P —f’
min*(M”P,,) o

1 min* P,

and the result follows by taking the supremum in both sides.
Proof of Lemma 8. In the first place, we make use of Proposition 3 in Sanz and
Bravo de la Parra (2001). In the proof of that result the authors show that, given

conditions (31), there exist numbers &€’ and K™ such that min*(P”)Zs” and
max(f’”) <K (%)

Since for any square matrix of size / we have ||A||l < MV max A, and all norms in
R are equivalent, it follows directly from the hypotheses and (*) that the

sequences "M”, "P” and “I’H are bounded for any matrix norm. Now, from the
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l_’,, and

submultiplicativity and subadditivity of induced matrix norms, M, P, <M,

P! —l_’,, < "Pﬂ”t + l_’” and so the suprema of (16) and (13) are finite.

It is straightforward to check the validity of the following result: if A € R™ and

B e R™are non-negative and AB# 0, then min*(AB) > min*(A) min*(B). Then,
using conditions (31) and (*) we have

maxM

min*(M”I_’,,)

- K
rf < L]

88”

V3 P —_
< P+ ”P“)
1

and so the supremum (27) is finite. Finally, the supremum and infimum of (23) and the
supremum of (30) are finite since v,,(4#) < v(4) and max{GM(A'),Gm(k)} <v(4).
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