LINEAR DISCRETE POPULATION MODELS WITH
TWO TIME SCALES IN FAST CHANGING
ENVIRONMENTS II: NON-AUTONOMOUS CASE

Angel Blasco', Luis Sanz’, Pierre Auger'” and
Rafael Bravo de la Parra'

1Departamento de Matematicas, Universidad de Alcala, 28871 Alcala de Henares,
Madrid, Spain. (e.mail: angel.blasco@uah.es) (corresponding author).

2Departamento de Matematicas, E.T.S.I. Industriales, Universidad Politécnica de
Madrid, c) José Gutiérrez Abascal, 2, 28006 Madrid, Spain.

SUM.R. C.N.RS. 5558, Université Claude Bernard Lyon-1, 43 Boul. 11 Novembre
1918, 69622 Villeurbanne Cedex, France.

Contribution from the 2000 Meeting of the French Society of Theoretical Biology
Guest Edited by Jean-Pierre Mazat and Jean-Frangois Hervagault

ABSTRACT

As the result of the complexity inherent in nature, mathematical models employed in
ecology are often governed by a large number of variables. For instance, in the study of
population dynamics we often deal with models for structured populations in which individuals
are classified regarding their age, size, activity or location, and this structuring of the population
leads to high dimensional systems. In many instances, the dynamics of the system is controlled
by processes whose time scales are very different from each other. Aggregation techniques take
advantage of this situation to build a low dimensional reduced system from which behavior we
can approximate the dynamics of the complex original system.

In this work we extend aggregation techniques to the case of time dependent discrete
population models with two time scales where both the fast and the slow processes are allowed
to change at their own characteristic time scale, generalizing the results of previous studies. We
propose a non-autonomous model with two time scales, construct an aggregated model and give
relationships between the variables governing the original and the reduced systems. We also
explore how the properties of strong and weak ergodicity, regarding the capacity of the system
to forget initial conditions, of the original system can be studied in terms of the reduced system.

KEYWORDS: Approximate aggregation, population dynamics, time scales, strong
ergodicity, weak ergodicity.

1. INTRODUCTION

The present paper is a continuation of the work “Linear Discrete Population
Models with Two Time Scales and Fast Changing Environments I: Autonomous Case”
(Blasco et al., 2001).
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In Blasco ef al. (2001), in which the reader can find a detailed exposition of the
aims and scope of aggregation techniques, we developed a technique for the
aggregation of an autonomous linear discrete system involving two processes taking
place at different time scales. In such a context we obtained a lower dimensional
system that we called “aggregated” and it was shown how essential information on the
behavior of the original system could be obtained by studying the reduced system.

This second part deals with the reduction of the model proposed in the above-
mentioned work to deal with the case in which the parameters of the model are
functions of time. Previous works dealing with the aggregation of non-autonomous
discrete models (Sanz and Bravo de la Parra, 1998, 2001) choose as the time step for
the model the one corresponding to the slow process and assume that, during each of
these time steps, the fast process acts a high number of times. However, the
characteristics defining the fast process were supposed to be constant in each time step
of the model. In our work, that restriction is removed and we deal with the general
case in which the fast process can change at its own time scale, only requiring that the
fast dynamics tend to an equilibrium.

There are different approaches to the study of non-autonomous models depending
on the kind of environmental variation for the system. We will focus on two such
types of variation. In the first place, let us contemplate the case in which the
environment, though changing with time, tends to an equilibrium. Models with this
property frequently exhibit the property called strong ergodicity, i.e., the structure of
the population vector tends asymptotically to a fixed vector independent of initial
conditions (Cohen, 1979a). In the case in which there is no specific pattern of variation
for the environment, we have that under very general assumptions, the system is
weakly ergodic, i.e., the structure of the population structure, although it may not
converge, it does become independent of initial conditions.

In Section 2 we extend the aggregation method developed in Blasco et al. (2001) to
the case where the original system is non-autonomous. The aggregation procedure
consists of two stages: first we assume that the fast dynamics reach equilibrium in
each time step corresponding to the slow process; hence, we obtain an “auxiliary”
system which can be considered as an approximation of the original system. This
auxiliary system is shown to be redundant in the sense that it can be reduced to a lower
dimensional aggregated system, the dynamics of which is governed by a reduced set of
so called “global variables”.

Section 3 relates the population vector corresponding to the original system with
that corresponding to the aggregated system, showing that we can approximate the
former in terms of the latter. A brief summary of the theory of non-autonomous
systems, detailing the different kinds of environmental variation and the corresponding
behavior that those patterns of variation induce on the system is included in Section 4.

The relationships between the property of strong ergodicity for the aggregated
system and for the original system in the case of an environment tending to an
equilibrium are explored in Section 5. In Section 6, we carry out the study of the
relationships of the weak ergodicity of the original and the reduced system under very
general assumptions on the type of environmental variation.

In Section 7 the theoretical results are applied to the aggregation of a multiregional
non-autonomous model in which migration is supposed to be fast with respect to
demography. The study of the weak ergodicity of the multiregional model in terms of
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the reduced system is carried out with a simple example. Finally, some numerical
simulations have been performed to illustrate the theoretical results.

2. AGGREGATION OF A NON-AUTONOMOUS SYSTEM WITH
TWO TIME SCALES

We consider a population classified into g groups. In addition, each group
i=1,...,q is subdivided into N; subgroups. We define x,i’j as the number of individuals
in the j-th subgroup of the i-th group at time ¢. Therefore, the population is described
by the following column vector of state variables, also called microvariables,

x, = (0 x N xE x ,...,x,q’l,...,xfl’N" )y eRrRY Q)
where N = N,+--+N, (the superscript T denotes transposition).

In the evolution of the population we will consider two processes whose
corresponding characteristic time scales, and consequently their projection intervals,
are very different from each other. We will refer to them as slow and fast dynamics.

We will choose as the projection interval of our model, the one corresponding to
the slow dynamics. This means that the time elapsed between times # and 7 + 1 is the
time interval on which the slow process acts.

We will make no special assumptions regarding the characteristics of the slow
dynamics. Thus, for a certain fixed projection interval I, = [z, + 1), the slow dynamics
will be represented by a non-negative projection matrix M, € R™" which we consider
divided into blocks M,’j , 1 <ij<g. We then have

m' M MM
21 22 2
|
M? M? L MY

where each block M7 = [Mi;-"l (#)] has dimensions N; x N; and characterizes the rates of
transferring individuals from the subgroups of group j to those of group i at time 7.
More specifically, for each m = 1,2,...,N; and each /=1,2,..., N, Ml;-”l(t) represents the
rate of transferring individuals, due to the slow process, from subgroup / of group j to
subgroup m of group i at time 7.

Since the projection interval of the model is that of the slow process, we will
assume that, in each projection interval, the fast process acts k times before the slow
process does, where k is an integer that can be interpreted as the ratio between the
projection intervals corresponding to the slow and fast dynamics. Therefore, if we
denote by At the time step of the fast process, we can consider that interval /, is
divided into & subintervals of the form [, ;= [t + (/- 1) At, t + IAf); 1=1,...k.

In our model, the parameters of the fast process are allowed to change with each of
the projection intervals 7,;. We will denote by F; € RY™Mi the matrix determining the
transferring of individuals among the subgroups within group i during the time interval
1.

We make the following three assumptions on the fast process:
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A) It is internal for each group, i.e., it cannot transfer individuals between different
groups.

B) It is conservative with respect to the number of individuals.

From Hypotheses A and B we have that the fast dynamics for the whole population
during interval I, is represented by a matrix:

P, = diag(P),.... PY}. ()

where each block P[f ; is a column stochastic matrix, i.e., a matrix whose columns are
probability vectors.

C) For each ¢, the parameters of the fast dynamics during interval 7, tend to
constant values, i.e., for each ¢ and each i, the sequence {P,f ;) tends, when / — o, to a

certain (necessarily stochastic) matrix Pti. In addition we suppose matrix Pti to be
primitive.

Hypothesis C) implies that the characteristics of the fast process in each /, tend to
an equilibrium represented by matrix

P, :=lim P, = diag{P',..., P} 3)
[0

and is essential for our aggregation procedure in the sense that, as we will see,
guarantees that the fast dynamics tend to an equilibrium in each 1,.

The evolution of the population is determined by the following discrete system that
we will call “microsystem” or “original system™:

Xeyl = MtPt,k "'Pt,lxt' 4

In previous works (Sanz and Bravo de la Parra, 1998, 2001), the authors have dealt
with the reduction of the following model:

k

X =M P x, 5)
which is a particular case of (4) when the characteristics of the fast dynamics are
constant within each /,, i.e., F,;, =---=F, =P,

In order to carry out the aggregation of model (4) we will approximate it by a so
called “auxiliary system” that is susceptible to being perfectly aggregated, i.e., of
being reduced to a simpler system without the need to make any approximation. To do
so we will make use of the following proposition, extracted from Blasco et al. (2001).

Proposition 1

Let {4)} be a sequence of column stochastic matrices that converges to a primitive
matrix A. Let v be the right probability normed eigenvector of A associated with
eigenvalue 1. Then

lim A, --- A, =v1"

[—o0

where 1= (1,1,...,1)". Therefore, for any initial condition, a population whose
dynamics is controlled by the sequence {A;} will asymptotically reach an equilibrium
distribution of the individuals among the stages given by vector v.

Let us now consider, for each ¢ and i, the probability normed eigenvector v,i of P

associated with eigenvalue 1. From Proposition 1 vector v,i can be interpreted in terms
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of the fast dynamics of group i in interval /, in the following way: Let us consider a
hypothetical situation in which the system is governed by the fast process exclusively.
Suppose, moreover, that /, is long enough with respect to the projection interval
corresponding to the fast process for this to reach its equilibrium conditions during 7,.
Then, for any “initial condition” of the system at time ¢, the structure of the population

of group i at the end of /, would be defined by v,i.
We define matrices

Vi=diaglvy,...vi); U= diag{ly, 1y, )

from which we immediately have

BV, =V,. ©)
Let us introduce the so called “auxiliary system”
X = Mt[_)tXt (7
where
Bi=lim BBy ®)

Making use of Proposition 1 on each block we have P. = V.U r

The auxiliary system can therefore be interpreted as the limit of the original system
when k — oo, i.e., as the original system under the assumption that the interval 7, is
long enough with respect to the projection interval of fast process for this to reach its
equilibrium. Notice the use of capital letters to denote the variables associated with the
auxiliary system.

We will show that the auxiliary system can be perfectly aggregated. In order to do
so, we define the vector of global variables

1
Yo =pse 1) 9
where
y;' :X;Fl +...+X;'»Nf’
ie., yf represents the total number of individuals in group i at time # assuming that the

fast dynamics reaches its equilibrium frequencies in each interval /.. Note that these
global variables can be obtained from the variables of the auxiliary system by

y, =U"X,. (10)
Premultiplying by U’ on both sides of (7) we obtain
U'X,, =U"M,PX,=U"MVU"X,,
which can be expressed as follows:
Yier =My, (1
where we have denoted
M, =U"M\V,.
In the aggregated system, each group is represented by one single variable.
Therefore, we have reduced the dimension of the model from N=N; + - + N, to g. In
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the next sections we will see how this new simpler system provides information on the
dynamics of the population represented in the original system.
The following lemma, which is a straightforward consequence of the definition of

M, and the fact of vectors v,i and 1, being positive for all / and 7, allows us to relate

the structure of matrices M, and M, .

Lemma 2

For all t, M, is a non-negative matrix in which the element of row i and column j
is non-zero if and only if matrix M,’j is not zero.

Note from this last result that the pattern of non-zero elements in M, coincides

with the pattern of non-zero blocks M,’j for the slow dynamics.

3. RELATIONSHIP BETWEEN MICROVARIABLES AND
GLOBAL VARIABLES
Recall the original system (4)
Xeyl = MtPt,k "'Pt,lxta
and the auxiliary system (7)
X = Mt[_)tXta
where P, is

BE=limp, R =VU"

k—>o0
The variables of the auxiliary system can be obtained through the knowledge of the
global variables. Indeed,
X, = Mz[_)th—lf_)t—l "'M1f_)1X0 = MtVzUTMz—1Vz—1UT "'M1V1UTX0
= MthIWt—l "'MIYO =M\Vy, .
The next proposition shows that, for fixed 7, the state variables x, corresponding to the
original system can be approximated by vector M,Vy,,. In addition, if the convergence

of matrices P, to P, is “geometric”, then the distance between the approximation and
x; decays also geometrically.

(12)

Proposition 3
a) Given any initial condition xy and any fixed value for t, the solutions of the
original and the aggregated systems verify
lim x, =M, V,y,_,

k—oo
b) Moreover, let us assume that 0 < o <1 exists such that, for all t
F,-F= o(aX); k — oo, Then, 8 exists with o <8< 1 such that, for any initial
condition xy and any fixed value of t, the solutions of the original and the aggregated
verify
X, =MVy, | +0(85); k—oo.
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Proof

Let us first prove b). By (12) all we have to show is that § exists with a<d<1
such that

x, = X, +0(6%) (13)

for all 7 and any initial condition x.

In the proof we will make use of the following theorem, proved by the authors in
Blasco et al. (2001):
Theorem I

Let {O4} be a sequence of column stochastic matrices that converge to a primitive
matrix Q and let

0 = lim 0.0, O
k—>o0
Let us suppose that 0 < <1 exists such that Qy— Q= o(cf). Then & exists
verifying < §< 1 such that Q, ---Q, - Q = o(8%).
We will proceed by induction. We have that
X, =MB P ixg = M (B +0(8")xg = M;Bxy +0(8") = X, +0(5),

where we have applied Proposition (8) and Theorem I in the second equality. Now
assume (13) holds at time . Then we have

N =X, I = IM,B, - PByx,— M,PX, |

t+1

< MrB,k "'Pr,lxr - MtB,k "'Pt,er I+
I Mth,k "'Pz,IXz - MzﬁtXt I
< UM B, Pl =X, I+

WM, Il IR, P =Bl I1X, 1l = o(8")

as we required. In the last equality we have used the induction hypothesis and
Theorem 1.

The proof of a) is absolutely analogous to that of b) making 6= 1 and applying
(8).m

So far we have explored the relationships between the original and the aggregated
systems for a given value of time. Now we will deal with some relationships between
the asymptotic behavior of both systems. We begin by reviewing some general facts
about non-autonomous linear discrete systems in Section 4.

4. SOME TOPICS ON NON-AUTONOMOUS LINEAR DISCRETE

SYSTEMS
Let us consider the following system
zm1 = Az, (14)
where 4, € R¥. If we define H, = A,14,,-A4,4, then
z;= Hzy

In the sequel we will denote by || * || the 1-norm in R", i.e., given z= (z', 2%, ... 2"
then | z||=|z'|+ |2 |+ .. +|2"].
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If we are modelling the dynamics of a stage-structured population, z, is the
population vector at time #, the total population is given by || z, || and the population
structure is z, / || z, ||.

In general, the asymptotic behavior of the population structure depends on both the
pattern of environmental variation, given by the sequence {4, ¢t=0,1,2,...}, and the
initial condition z,. However, under some conditions on the matrices 4, the population
structure becomes, asymptotically, independent of the initial conditions. This
“forgetting of the past” is called ergodicity.

In deterministic models we can find two kinds of ergodicity (Cohen, 1979a):

1. Strong ergodicity. In a strongly ergodic system, the population structure
becomes asymptotically fixed and this “equilibrium structure” is independent of the
initial population, i.e., there exists a vector v such that for any non-negative, non-zero

initial condition z, we have lim ”Z—’” =v.
=00 %1

2. Weak ergodicity. In a weakly ergodic system, two populations with different
initial conditions have structures that will become more and more alike, although
neither of them will necessarily converge. In other words, for any non-zero initial
conditions zy and zy'

. b4 z,'
tl;n:ﬂllm—mll =0. (15)

Note that strong ergodicity implies weak ergodicity.

Returning to the study of the system (14), we distinguish different patterns of
environmental variation:

1. Constant environment. In this case 4, = A for all ¢, so the system becomes
autonomous. These kind of systems exhibit strong ergodicity if and only if matrix 4 is
primitive. The aggregation of model (5) when M, and P, are constant with time, has
been dealt with in Sanchez et al. (1995).

2. Cyclical variation. In these systems there exists a positive integer 7 such that
A=A, for all ¢, i.e., the environment changes periodically with a period 7. The
classical approach (Skellam, 1967; Caswell, 2001) consists of considering products of
matrices of length 7, which renders the system autonomous. The system cannot be
expected to be strongly ergodic, but under very general assumptions there is weak
ergodicity (Sanz and Bravo de la Parra, 2001).

3.“Stabilizing environment”. Frequently, the sequence of environmental matrices
{4,} tends, when 7 — oo, to a fixed matrix 4 which can be interpreted as the matrix of
vital rates for the population when the environment has reached equilibrium. Under
very general conditions, these kind of systems behave asymptotically similarly to
autonomous systems with projection matrix 4, and therefore strong ergodicity holds if
and only if 4 is primitive. Note that, in Section 2, we assumed that the fast process in
each time step of the slow process follows this pattern of variation. The reduction of
the model (5) and the relationships between the original and the aggregated systems in
the cases of cyclical variation and vital rates tending to an equilibrium, has been
addressed in Sanz and Bravo de la Parra (1998).

4. General variation. Even in the case where there is not a particular pattern of
environmental variation, given some assumptions on the set of possible environmental
matrices the system is weakly ergodic. The relationships between the weak ergodicity
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of system (5) and its corresponding reduced system can be found in Sanz and Bravo de
la Parra (2001).

In Blasco et al. (2001) the authors explored the relationships between the
asymptotic behavior of the aggregated system (11) and the original system (4),
assuming a constant environment, i.e., the projection matrices M,P,;---P, are the same
for all 7. The next section is devoted to studying these relationships in the case of an
environment that tends to an equilibrium when ¢ — oo. Furthermore, Section 6 explores
the relationships between the weak ergodicity of the original system and that of the
aggregated system when environment does not have a particular kind of temporal
variation.

Before proceeding, let us introduce some concepts that will be useful in subsequent
discussions. A non-negative matrix is said to be row (column) allowable if it has, at
least, one positive entry in each row (column) (Hajnal, 1976). Some properties of these
matrices are: a) the product of a row-allowable matrix by a positive vector is another
positive vector, b) the product of a column-allowable matrix by a non-zero vector is
another non-zero vector, c¢) the product of two row (column) allowable matrices is
another row (column) allowable matrix. A non-negative matrix is said to be allowable
if it is both row and column allowable. The incidence matrix of a non-negative matrix
A is a matrix of the same dimension of 4 containing one/zero in each position where 4
has a non-zero/zero element. We will write 4 ~ B to denote that 4 and B have the same
incidence matrix and write 4 > 0 (4 > 0) to denote that 4 is positive (non-negative).

5. STRONG ERGODICITY IN AN ENVIRONMENT TENDING TO
STABILIZATION
The original system described in Section 2 is:
Xer1 = MiPyPrix,

We shall study the relationships between the aggregated system and the original
system under the hypothesis that the environment tends to stabilization. In Sanz and
Bravo de la Parra (1998) the authors present a summary on the study of strong
ergodicity for general non-autonomous systems. There we find the following result

that gives very general sufficient conditions for the system to be strongly ergodic and
to have a fixed asymptotic growth rate:

Theorem 4

Let A, t > 0 be a sequence of square non-negative and column allowable matrices
that converge to a primitive matrix A with dominant eigenvalue A and associated
probability normed eigenvector v. Then, for all initial conditions zy > 0, zy # 0 we have
that || z, || # 0 for all t and:

. Z; _
a) lim 5 =7
t—o0 1
b) lim 2t = 4
iz, —
t—o0 1

The requirement 4, column allowable for all ¢, is a sufficient condition for the
population not to become extinct in a finite time. Proposition 1, in Section 2, can be
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deduced from Theorem 4, taking into account that every column stochastic matrix is
column allowable.

Coming back to our model with two time scales, we introduce the assumption that
the population lives under environmental conditions that tend to an equilibrium.

HI. The sequence {M,} tends, when t — oo, to a certain matrix M. Moreover, for
each , the sequences {P,;} and {P,} converge, when t — oo, to certain matrices that we
will denote P, and P.,, respectively.

Matrices M and P.. ,,...,P.., can be interpreted as the vital rates for the slow and fast
process respectively, when the environment has reached equilibrium.

Let us recall the aggregated system

Vs =My,

From HI we have that the sequence {P;} tends, when ¢ — o, to a certain matrix
P... Hence, from (6) and due to the continuity of the eigenvectors on the entries of the
matrix, it follows that the sequence {V;} converges when ¢ — o to certain matrix V
verifying

PV=r
and the projection matrices of the aggregated system A_/I, =U TM,V,, tend to matrix
M=U"MV.

In the remaining part of this section, we will show that certain sufficient conditions
for the strong ergodicity of the aggregated system are also sufficient for the ergodicity
of the original system.

The following assumptions guarantee that the aggregated system meets the
requirements of Theorem 4.

H2. Matrices M, are column allowable.

Using Lemma 2 we have that hypothesis H2 is equivalent to the following
condition: for each group j, there exists i such that M,’j # 0, that is, the slow dynamics
allows, at every instant, the transition from any group j to at least another group
(possibly also group j).

H3. M is primitive, i.e., there exists an integer h such that (M )" is a positive
matrix. Let A be the dominant eigenvalue of M, r its corresponding positive right
eigenvector such that || r || = 1 and let | be its corresponding positive left eigenvector
normed in such a way that I'r = 1.

We have then, that under hypotheses H1, H2, and H3, the aggregated system (11)
verifies that, for each initial condition y, # 0:

a) lim = =r

t
i.e., the aggregated system is strongly ergodic and the asymptotic population structure
is given by vector 7.

oyl
b) }an}o Iy, I =2

i.e., the aggregated system has an asymptotic growth rate given by A.
Now we state two assumptions that, we will see, guarantee the strong ergodicity of
the original system.
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H4. The convergence of the products MiP, P, to MP_,---P_. | is uniform in k.

Hypothesis H/ guarantees that, for each k, the products M,P,;--P,, tend, when
t — oo, to matrices MP, ,--P.,. In H4 we assume that the convergence of these
products when ¢ — oo takes place with a similar speed for all values of .

H5: Mis row-allowable.

This assumption can be interpreted by saying that, when the environment has
reached equilibrium, the slow process verifies that, for any i = 1,2,....¢ and
j=1,.2,...,N;, there exists at least one allowed transition towards subgroup j of group i.

Now we obtain the following result:

Proposition 5

Under assumptions HI-H)5, the original system is strongly ergodic. For any initial
condition xy > 0, xy # 0 we have that || x, || # 0 for all t and:
1. The population size grows exponentially at a rate A, given by

e
Il;m =

A

where A, — A.
k—>o0

2. The population structure (x,) /|| x, || converges to a stable structure given by a

vector ry that verifies r, — .
k— oo

Proof
(See Appendix.) &

6. GENERAL ENVIRONMENTAL VARIATION AND WEAK
ERGODICITY

Let us consider again the generic non-autonomous system (14). As it was
mentioned in Section 4, in the case in which the environment changes with time in a
general fashion, see for example (Quinn, 1981), it is not possible to expect that the
population grows exponentially or that population structure converges to a certain
vector. However, under quite general circumstances, the system exhibits weak
ergodicity, i.e., meets (15). In other words, the population structure “forgets its past”
in the sense that two different initial populations, subjected to the same sequence of
environmental variation, have structures that become more and more alike (even
though they do not necessarily converge).

When this property holds, the population structure for sufficiently high times will
be determined by the recent history of vital rates. The importance of weak ergodicity
lies in the fact that, in the absence of some kind of ergodic result, the explanation of
population structure at a given time would require an explanation of the initial
population, i.e., we would need to know its prior age structures indefinitely into the
past (Cohen, 1979a). The rest of this paper is devoted to establishing relationships
between the property of weak ergodicity for the original system and for the aggregated
system.

In our approach, and in other works in the field of population dynamics (Ldépez,
1961; Golubitsky et al., 1975; Kim and Sykes, 1976; Cohen, 1979a) weak ergodicity
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has to do with the capacity of the system to become independent of conditions at
time 0. Most of the mathematical approaches to weak ergodicity (Hajnal, 1976;
Cohen, 1979b; Seneta, 1981) are slightly different in the sense that in them weak
ergodicity means the capacity of the system to become independent of the conditions
of the system at any time and not only of initial conditions.

Most of the mathematical theory involved in the study of weak ergodicity can be
found in Seneta (1981). In order to study the weak ergodicity of a system, it is
customary to use a mathematical tool called “projective distance” (Golubitsky et al.,
1975; Seneta, 1981). This is a pseudometric that measures the distance between
positive vectors attending to their relative composition, i.e., it is independent of their
size and only depends on the structure of the vectors under consideration. Related to
the projective distance is the “ergodicity coefficient” of a non-negative matrix, that
loosely speaking measures the capacity of the matrices to act contractively in this
metric.

In order to study the ergodicity of a system using the projective distance and the
ergodicity coefficient as a tool, it is usual to slightly modify the definition of (15). In
particular, the attention is restricted to system (14) when the A4, are allowable matrices.
We adopt as a definition of weak ergodicity the following one (Cohen, 1979b; Seneta,
1981):

Definition 6

Let A, be a sequence of NxN allowable matrices. The products H, =[htij] are
weakly ergodic or, equivalently, system (14) is weakly ergodic, when there exists a
sequence of NxN positive matrices of rank one S, = [s,ij] such that

h
lim -+ =1foralli,j=12,...,N. (16)
1o 5

It is straightforward to check that condition (16), which can be paraphrased saying
that, asymptotically, the columns of H, become positive and proportional, implies (15).
Note that a necessary condition for the weak ergodicity of system (14) to hold is that
the products H, become positive for big enough 7.

Conditions on matrices 4, which are both necessary and sufficient for weak
ergodicity to hold are not known.

The following theorem gives very general sufficient conditions for weak ergodicity
which hold in many practical situations for populations and, moreover, are very easily
checked in practice.

Theorem 7.
Assume primitive matrices B and C exist such that for all t
B<4,<C
(in the sequel condition (E)). Then system (14) is weakly ergodic.

Proof
(See Appendix). &
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Note that, in particular, condition (E) implies that all matrices 4, are primitive. In
addition, if condition (E) is met, then system (14) is weakly ergodic for any pattern of
variation in the environment for which the resulting projection matrices belong to the
set {4y, A,...}, 1.e., any system z,,; = Rz, with R, € {4, A»,...} will be weakly ergodic.

Let us now consider the particular case in which the number of different possible
environments for the population is finite, i.e., the case in which matrices 4, belong to a
finite set {£ ',Ez,...,E"} (this is the most common case in practice). Then it is clear that
matrices A, will always be bounded above by a primitive matrix. Moreover, the
condition B < 4, with B primitive, will depend only on the incidence matrices of the £,
i.e., will depend only on the pattern of non-zero elements of these matrices and not on
their specific values. Precisely, condition (£) will be met if and only if
min{i(E"),...,i(E°)} is a primitive matrix, where min{A4,...,4,} is a matrix whose

1 P
e i b

We will adopt the notation min'(4) and max (4) to denote, respectively, the
smallest positive element and the largest element of 4. Now we introduce two
hypotheses on our system:

H6. The non-zero entries of matrices M, and P, are bounded away from zero and
infinity, i.e., there exist positive constants a, a’, b and b’ such that for all t and k we
have

elements in position (i,j) is min{a a

min'(M,) > a; min'(Py) > @’
max(M;) < b; max(Px) < b’

Notice that H6 is always met if there is only a finite number of different
environments.

H7. For each t, M, is row-allowable.

This means that, in each interval I, the slow process verifies that, for any
i=12,.,9 and j=1,2,...N, there exists at least one allowed transition towards
subgroup j of group i.

The following result allows one to study the weak ergodicity of the original system
in terms of the aggregated system.

Proposition 8
Let us assume that H6 and H7 hold. If the aggregated system meets condition (E),
i.e., there exist primitive matrvices B and C such that
B< M, <C

holds for all t, then the original system is weakly ergodic for big enough k.

Proof

(See Appendix) B

The next section is devoted to illustrating the results obtained in previous
Sections 3 and 6 on a multiregional age-structured model. An illustration of similar
results to those obtained in Section 5, can be found in Section 5 of Blasco et al.
(2001).
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7. ANON-AUTONOMOUS MULTIREGIONAL MODEL

In this section we will illustrate the aggregation procedure proposed in Section 2
through the reduction of a multiregional non-autonomous model with fast migration.
Moreover, we will show through numerical simulations the results on weak ergodicity
obtained in the preceding section for the case of a “general pattern” of temporal
variation. In particular, we will illustrate numerically how the weak ergodicity of the
original system can be guaranteed from very simple considerations on the aggregated
system.

We consider a population divided into two age classes, young and adult
individuals, and distributed between two geographical patches. The population vector
is

X, = (x,l’l,x,l’z,xtz’l,xtz’z)T
where x,i’j is the number of individuals of age i that live in patch j at time .

The dynamics of the population is governed by two processes, demography and
migration, whose associated vital rates depend on the environmental conditions, that
we will suppose are changing with time. We assume that migration is fast compared
with demography and choose the projection interval /, of the model to be the one
associated with demography. We make the natural assumption that newborn
individuals live in their parents patch. In this way, demography in each [/, is
characterized by a matrix

ftl,l 0 fZZ,I 0
0 le’z 0 flz,z
s,l’] 0 slz’l 0

12 2,2
0 s 0 s

M, = 17

where ]‘,i’j and sf’j represent, respectively, the fertility rate and the survival
probability of an individual of age i living in patch j at time 7.

We suppose that in each time interval 7, migration acts k times before demography
does, where £k is a big integer that can be considered as the ratio between the projection
intervals of demography and migration. Therefore, if we denote by At the time step of
the fast process, we can consider each time interval [, = [z,#+1) divided into k
subintervals (migration periods) of the form [,; =[+(I-D)Att+IAr); [ = 1,...,k. We will
denote by P,; € R™* the matrix that defines migration in interval /). In this way, the
set of matrices characterizing migration during interval /, is

l—le,l qtl,l 0 0
1 1
b Pu Mm@y 00 | (18)
nl 0 0 l—ptz,] qil ’ T
0 0 pzl l—qtz’,

where pf’ ; represents the probability of an i-aged individual living in patch 1 at the /-th

migration period of interval /,, to migrate to patch 2. Analogously, qf’ ; represents the
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probability of an i-aged individual living in patch 2 at the /-th migration period of time
t, to migrate to patch 1.

Then our multiregional model (original system with the nomenclature of Section 2)
reads

X1 = MPye-Ppx,. (19)

In order to aggregate the system, we assume that, for each ¢, the sequence {P,;}
converges when k& — oo to a certain matrix P,

1-p, 4 0 0
po| P 1ma 0 0
t 2 2 'y
0 0 1-p7 g
0 0 p l-gq

with the parameters p,l, ptz,q,1 and q,2 belonging to interval (0,1).
Following the aggregation procedure in Section 2, we have that the vectors v,l and
v,2 that define the equilibrium proportions of migration in each interval /, are given by

q[ ql
|| pi+al | o pial
t 1 ’ vt 2
Pt P
Pi+a; pi+ar

We define the global variables yf (i=1,2) as the total population with age i, i.e.,

. 11 1,2, 2. .21 2,2
V=X EXT Yy =X X,

and then the aggregated system reads

1 1
Ye+1 Vi

where
1.1 1 1,2 1 2.1 .
fMa+ £l a1l
— 1 1 2 2
M = P +a; P +4q;
- 1,1 1 1,2 1 2,1 2 22 2
4 SI ql +s! pl Sl ql +Sf pr
1 1 2 2
P tq; prtq;

Let us now illustrate how we can study the weak ergodicity of system (19) through
the study of system (20). For the sake of simplicity of exposition, let us consider a
model with two possible environmental conditions that we denote 1 and 2. In
accordance with this consideration let 4’ be the projection matrix which defines

demography in environment i and B,i; /=1,2,.., the sequence of matrices which
characterizes migration in environment i (i = 1,2). These matrices have the form
Moo o o

o fMe 0 20
s'ay 0 sPG) 0

0 s 0 s

A=
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1-pli)  q/G) 0 0
gi_| PO 1-gi) 0 0
: 0 0 1-pi® ¢iG)
0 0 pi  1-¢i ()

where the meaning of the vital rates is clear from (17) and (18).
Therefore, the matrices M,P,---P,; of vital rates for our multiregional system (19)
take values in the set {£ ',Ez}, where

E'=A'B---B'; E* =A’B; ---B|
In accordance with the discussion above, assume that the sequences {B,l} and {B,Z}

converge to matrices B,l and B,2 given by

1-p'0)  4'G) 0 0
1,. _ 1,.
si_| PO 1-d0 02. 20 i1
0 0 1-p()  ¢°@)
0 0 PG 1-4°3)

with the parameters p'(i), p*(i), ¢'(i) and ¢*(i) belonging to interval (0,1). Then, the
matrix E' associated with the aggregated system in environment i is
O D2 oOp @ e’ O+ Dp? 0)
E'= 11 pll(i)+q]]2(i) 1 2.1 p;(i)+q222(i) 2 ; 1=1,2
s (g (D+s " (O)p () s @g* D+s2(Hp* () | >
p(ir+q' () PA(i)+q* (i)

so matrices M, in (20) belong to the set { E',E? }.

If the conditions of Proposition 8 hold, then for any pattern of environmental
variation, i.e., for any specific choice of environment in each interval [, the
multiregional system (19) is weakly ergodic. In other words, any two different
populations subjected to the same sequence of environmental conditions will
asymptotically have a common structure.

According to Section 6, since the number of different environmental conditions is
finite, in order to guarantee that the hypothesis of Proposition 8 is met, we only need
to pay attention to the incidence matrices of 4, and 4,. We consider, for example, the
case

+ 0 + O 0 0 + O
_ 00 0 +| 0 0 0 +
(A7) = ;A7) =

+ 0 + 0 00 + O

0O+ 0 O 0O+ 0 O

where + denotes a non-zero element. Then, Lemma 2 guarantees that the incidence
matrices of E' and E? are

= + ) -, 0 +
i(E°) = JI(ET) =
+ + + +
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and therefore the aggregated system verifies condition (E) and is weakly ergodic.
Since matrices i(4') and i(4%) meet conditions H6 and H7, we can assure that the
multiregional model (19) is weakly ergodic.

In order to illustrate this result, we will consider a deterministic sequence of
environments in which there is not a particular pattern of variation. More in particular,
we will consider a temporal variation without any cyclic pattern nor a tendency to
equilibrium. Notice that in any of these two cases the problem becomes trivial and
weak ergodicity follows almost directly (Section 4). In order to meet our requirements,
we generate a sequence of environments using the equation

Gn1=4¢,(1- ). (21
The projection matrix for the original system corresponding to time ¢, was generated
according to the following criteria:

{El if ¢, €(0,0.5)
= t

= cr=12,...
E*if ¢, €[0.5,1)

Given an initial value ¢y € (0,1), equation (21) yields a chaotic sequence of
numbers in the real interval (0,1) and, therefore, the pattern of environmental variation
satisfies the above conditions, i.e., it does not exhibit any cyclic pattern nor a tendency
to equilibrium.

In our simulation we have assigned an initial value ¢, =0.1. In addition we have
given acceptable numerical values to the vital rates associated with each environment:

02 0 15 0 0 0 0
. |0 0 0 05 , [0 0 0 2
A = ; AT =
09 0 08 0 0 0 03 0
0 06 0 O 0 04 0 0
05 05 0 0 04 03 0 0
. 105 05 0 0 , |06 07 0 0
Bi=lo 0 06 00-2f %0 o 04 09-2f [FLEE
0 0 04 0.1+2L, 0 0 06 o.1+2i,

With these vital rates, the matrices associated with each environment in the
aggregated system are

s 0.1 1'1923-52— 0 1.4
1075 05538 10.1333 0.12

Proposition 3 claims that the population vector at a given time ¢ can be
approximated through that of the aggregated system. Figure 1 shows the evolution of
both systems, for £ = 6. Note that the discrepancy between the approximations and the
real values obtained on the original system are insignificant for ¢ < 60.
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Figure 1. Evolution of the solutions of the original and the aggregated systems as ¢ grows. The
symbols employed are ‘+’ for the population numbers given by the aggregated system and ‘o’

for those given by the original system with k= 6.
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(+) systems when k grows.
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Figure 3. Convergence of the population structure for different initial conditions. Zij represents
the proportion of i-aged individuals living in patch j. This behavior is due to the weak ergodicity
of the original system, predicted through the analysis of the aggregated one.

Figure 2 compares the population vector at time 7 =50 for values of & growing
from 4 to 10 and shows how the approximation given by the aggregated system for the
population vector at a fixed time ¢, is sharper the higher & is. As one can see the
differences between the vectors obtained through both the original and the aggregated
systems become negligible for k& close to 10.

In order to show the weak ergodicity in the original system, we have run the model
for fifty different initial conditions and for the first twenty time steps. Figure 3 shows
the structure of the population for all those initial conditions. We can see that, for
small values of ¢, there are differences in the population structures corresponding to
different initial conditions, but for higher values of # population structure becomes
independent of initial conditions.

8. CONCLUSION

Aggregation methods allow one to reduce, under certain conditions, the dimension
of a system of difference equations involving two time scales. In population models
(Sanz and Bravo de la Parra, 1998, 2001), these scales correspond to two different
processes affecting the evolution of the population.

So far aggregation techniques had been applied to autonomous and non-
autonomous systems under the simplifying assumption that the vital rates associated
with the fast dynamics remain constant in each time interval of the slow dynamics.
This work, together with Blasco ez al. (2001), is a generalization of those methods in
the sense that we allow the fast process to vary with its own time scale. Blasco ef al.
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(2001) deals with the autonomous case while this work explores the case in which the
environment varies with time.

We aggregate a very general system with two time scales and show that we can
obtain good approximations to the population vector of the original system through the
knowledge of that of the reduced model. Moreover, the capacity of the original system
to become independent of initial conditions can be studied in terms of the aggregated
system.

As a future contribution, it would be interesting to study whether this work can be
generalized by taking into account more general behaviors in the fast process; in this
way, one might be able to obtain an aggregated system even if the fast process does
not reach an equilibrium in each projection interval of the model and only shows some
kind of long term independence with respect to initial conditions. Analogously, the
authors would like to generalize the aggregation procedure to cover the case of
stochastically varying environments, continuing the work of Sanz and Bravo de la
Parra (2000).

APPENDIX

Proof of Proposition 5

In the first place we will prove that the auxiliary System (7) is strongly ergodic.
We know that the sequence {V,} converges to a certain matrix V. Then it follows that
P=VU" - P=VU" and, so, we have M,P, — MP .

1) Let us prove that MP is primitive. Using Theorem 4.1. in Blasco et al. (2001)
the non-zero eigenvalues of MP = MVU r including multiplicities, are those of M .
Therefore, since M is primitive by hypothesis, A is simple and the strictly dominant
eigenvalue for MP . Moreover, from the same theorem we obtain that MV and Ul are
dominant eigenvectors for MP . Since M is row allowable, U and ¥ are allowable and
r and [ are positive, it follows that MVr and Ul are both positive. Now we apply the
following theorem (Berman and Plemmons, 1979, page 42); A non-negative square
matrix 4 is irreducible if and only if the spectral radius of 4 is simple and is associated
with positive right and left eigenvectors. Therefore, matrix MP is irreducible and
moreover, since A is strictly dominant, it is primitive.

2) Now, let us prove that M,P, is column-allowable for all 7. Let ¢ be fixed and
recall that

P, =diag(P',B*,...B")
where the diagonal blocks 13,i verify F,l = v,llT > (0. Now, matrix M, P, has the form
MR MPE? - MR
A A

M,F, =

t

VIE MPER o MR
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Hypothesis H2 together with Lemma 2 implies that, for each j=1,...,¢ and each ¢,
i = i(j,¢) exists such that M” # 0 and, since the P’ are positive matrices, then M’ P’
has at least a positive row, which proves that M, P, is column-allowable.

Therefore Theorem 4 guarantees that the auxiliary system is strongly ergodic: the
asymptotic stable structure of the population is

X, MVr
lim =,
sl X, 1 I MVrI

meanwhile the asymptotic growth rate of the total population size is:

o 1 X 1
e 11X, I

Let us now prove that the original system satisfies the hypotheses of Theorem 4.
For each k& we have

M PBy = MP.,~P..

Then we need to prove that the matrices M,F,; --- F,; are column-allowable for
each ¢, and that matrix MP, --- B is primitive.

If a sequence of matrices {A4;} converges to a matrix A4, then for large enough
values of k, the positive entries of 4; will be, at least, those of 4. Hence, if 4 is
column-allowable, for large enough values of &, A; will be too. The same can be said
regarding irreducibility and primitivity that cause these properties to depend
exclusively on the pattern of positive entries of the matrix (*).

We know that, for all ¢, M,P,, By o M,P. and that matrices M,P, are

oo

column-allowable and so it follows that matrices M,F,; --- F,; are column-allowable

for all ¢.
Due to the uniform convergence of the products M,F,---F, given by

Assumption H4, we have that:
lim MP,, ; --- P, = lim im M,F, , ---F,| =

k—>o0 k—>oc0t—>o0

lim im M.P., ---P,, =1lim M,P, = MP.
t*t,k 1,1 ot

t—>o0 k—>o0 t—>o0

Above we saw that matrix MP is primitive. Using (*) we have that MPE, - P,

is primitive, so we conclude that the original system satisfies the hypotheses of
Theorem 4 and is strongly ergodic.
Finally, let A; be the dominant eigenvalue of MP, - P,

o

| and ry its corresponding

positive right eigenvector such that || 7, ||; = 1. Due to the continuity of the eigenvalues
and eigenvectors on the entries of the matrix we have
. . MVr
limA, =4, limrp=——
k—oo k—oo I MVrll

and so the desired result follows.
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Proof of Theorem 7

Definition 6 corresponds to Seneta’s definition of a weakly ergodic product
(Seneta, 1981) in the case where the first matrix in the product is 49. As shown in this
reference, a characterization of weak ergodicity can be stated in terms of the
contraction coefficient in the following way: Let 4, be a sequence of allowable
matrices (which in our case for the 4, are primitive). System (14) is weakly ergodic if
and only if lim 7z(A4,A,_;---Ay)=0.

t—oo

Since matrix B is primitive there exists a positive integer 4 such that B" > 0.
Therefore, from condition (E) we have 0 <B" < ApiniApipoAp < C" for all p. Let
a=min B" >0 and b =max C". Therefore we have 0 < allT§A1,+h_1Ap+h_2~-Ap < 117
(*). From (Seneta, 1981, pp. 84) we have that, for any positive matrix
A=[a;]>0, T5(A)= 1;)?(2)) where @(A) = lnjnknl;l:—f]’j Therefore we have that, for
all p, ¢ (Ap+h_1Ap+h_2~--Ap)z(a/b)z. So, for all p, we obtain Ta(4pip-14pn2Ap) <
1 — (a/b) = 6, say. Moreover, decomposing the previous products into factors with 4
matrices in each, using 7z(4B) < 75(4)75(B) for any two matrices, and taking into

account that 73(4) < 1, we obtain 0 < lim 75(A4,4,_;...Ay) < lim 5[ﬂ =0 ([*] denotes
t—>o0 t—>o0

integer part) that we wanted to show.

Proof of Proposition 8

The proof will follow the following scheme. We will prove that given condition
(E) on the aggregated system and H7, there exists an integer m such that any product
of m consecutive matrices in the original system is positive. In addition to using H6 we
will show that the non-zero elements of the matrices of the original system are
bounded away from zero and infinity. Then the result will follow using the same
reasoning as that of Theorem 7.

For notational convenience let us denote P(k) = P4...P;).

It is straightforward to check the validity of the following result: if 4 € R* and
Be R™ are non-negative and AB # 0, then min'(4B)>min’(4)min’(B) and
max(AB) < rmax(4)max(B). So, if matrices 4 and B belong to a set T for which there
exist positive constants @ and b such that min'(4) > a and max(4) < b for 4 € T then
min‘(4B) > a* and max(4) < rb’, for all 4,B € T. Then, as a consequence of H6 we
have, for fixed &, the non-zero elements of matrices M,P,...P,; are bounded away
from zero and infinity, i.e., there exist positive constants & and  such that for all ¢,
min'(MP,(k)) > o and max(MP,(k)) < B(1).

Now, let us denote, for each p > 0 and each ¢ > p the following matrix products:

I, ,(k)y=M,_\F,_(k)...M, P, (k)M ,P,(k);

IT 1P_y...M, P MP;

1 —
Lp p+ltp pp

m,,=M_,..M, M,

Note that the products TT, ~and IT

Indeed,

tp .,p can be related by IT, ,= MtV,ﬁ,,pUT (**).
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Merﬁt,pUT = MerJWt—l "'MpUT = MthUTMt—IVz—l "'UTMprUT
= Mt[_)tMt—lf_)z—l Mtf_)z = lTt+1,p ’

where we have used P = V.U T

Since matrix B is primitive there exists a positive integer 4 such that B" > 0.
Therefore, from condition (E) on the aggregated system we have, for all p, that the

product ﬁp+h,p is positive. Now, we will prove that, for all p, IT,,,., ,(k)>0 for k
big enough (2). Indeed, from (**) above, we have IT' ., ,= MPHVpHﬁpH’pUT.

Since the M, and the V, are row allowable, so is their product. Therefore

Mp+,Vp+,ﬁp+,’p >0 and since U” is allowable then IT . 41,,>0. The desired result

(2) now follows taking into account Lemma 9.
Since I1 .. ,(k)>0 for all p and for k big enough, we obtain, setting m=h + 1

and using the bounds (1), that for fixed k, o117 < I, k)< N’”_lﬁ’”llT, and
therefore we are in the same situation as in (*) in the proof of Theorem 7, with a = "

and b=N"'B". Using the same reasoning as we did there we obtain
lim 7(IT, ( (k)) = 0 and therefore the original system is weakly ergodic.
[—oo

Lemma 9

There exists a positive integer kg such that for all k > ky we have P.~P,;--P,; (and
therefore M,P, ~ M,P,;--P, ) for all t.

Proof

Let i be fixed. From Proposition 1, we have lim P/, ---P/, =v/1" =P’ >0 and,
k—oo ’

therefore, for k greater than a certain k(i) the product Ptfk -»-P,fl is positive. Since

matrix P' =v'17is also positive then the result follows for £ > max {ko(1),...,ko(q)}. B
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