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ABSTRACT

In this work we consider a structured population with groups and subgroups of individuals.
The intra-group dynamics is assumed to be fast in comparison with the inter-group dynamics.
We study linear discrete models where the slow dynamics is represented by a single matrix and
the fast dynamics is described by means of the first k£ terms of a converging sequence of
different matrices. The number & can be interpreted as the ratio between the two time scales.

The aim of this work is to extend aggregation techniques to the case of fast changing
environments. The main idea of aggregation is to build up a new system, with lower dimension,
that summarizes the information concerning the fast process. This “aggregated” system provides
essential information on the original one. It is shown that the asymptotic behavior of the original
system can be approximated by the asymptotic behavior of the aggregated system when the ratio
between the two time scales is large enough.

We present an example of an age structured population in a patchy environment. The
migration process is assumed to be fast in comparison with the demographic process. Numerical
simulations illustrate that the asymptotic growth rate and the stable age distribution of the
population in the original and the aggregated systems are getting closer as the ratio k increases.

1. INTRODUCTION

Mathematical models employed in ecology usually involve a large number of
variables. For instance, in structured population models we may classify individuals
regarding their age, size, activity or location (Caswell, 2001), resulting in high
dimensional models which are likely to be difficult to study analytically. The only
available technique for the study of these systems is computer simulation, which
makes it impossible to evaluate the robustness of the results. Most of the simple
models, which are mathematically tractable, do not take into account essential
information about the internal structure of the population. Frequently, the simplifying
assumptions, upon which the system is based, are not adequately justified.

The so-called aggregation methods describe general complex systems that can be
studied approximately from simpler ones. The words complex and simple refer to
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large and small number of variables, respectively. The property of these systems that
allows their aggregation is the existence of two or more different time scales.

Nature offers many examples of systems where several events occur at different
time scales. It is then a common practice to consider those events occurring at the
fastest scale as being instantaneous with respect to the slower ones. Under some
natural assumptions we will be able to describe the evolution of the population
through a reduced number of variables. A subsequent issue is to determine how far the
results obtained from the reduced system are from the real ones. Let us think of a
hierarchically structured system divided into subsystems that are slowly coupled but
exhibiting a fast internal dynamics. The idea of aggregation is to choose a global
variable, sometimes also called macrovariable, for each subsystem and to build up a
reduced system for these global variables. The reduced system, or aggregated system,
must reflect both dynamics, the one corresponding to the fast time scale and the one
corresponding to the slow time scale. The slow dynamics of the general system, the
initial complex one, usually corresponds to the dynamics of the reduced system,
meanwhile the fast dynamics of the general system is reflected in the coefficients of
the reduced one in such a way that it is possible to study influences between the
different hierarchical levels.

Aggregation methods were initially applied on very different fields such as
automatic control or economy (Simon and Ando, 1961) and, later, ecology (Iwasa et
al., 1987). If the consistency between the dynamics of the variables in the original and
the aggregated system is only approximate we refer to it as approximate aggregation
(Iwasa et al., 1989).

Applications of approximate aggregation to ecology have been widely studied for
both linear and density dependent models in the context of continuous time systems
(Auger and Roussarie, 1994; Poggiale and Auger, 1995; Auger and Poggiale, 1996a,
1996b; Auger and Bravo de la Parra, 2000) and discrete systems (Sanchez et al., 1995;
Bravo de la Parra and Sanchez, 1998; Sanz and Bravo de la Parra, 1998, 1999, 2000,
2001; Bravo de la Parra et al., 1999).

In this work we develop aggregation methods for time dependent discrete systems
continuing the work initiated by Sanz and Bravo de la Parra (1998, 2001). The study
of non autonomous linear discrete systems arises in population dynamics when the
time dependence of demographic or migration parameters is considered; factors of the
external environment which affect survival, fecundity or dispersal may vary over time
(Charlesworth, 1994; Caswell, 2001).

The time dependent discrete systems treated by Sanz and Bravo de la Parra (1998,
2001) include two processes taking place at different time scales and the
environmental variation of the model parameters acts at the slow time scale, i.e. it was
considered that during a slow time unit the parameters defining the fast process do not
change. The aim of this work is to extend this framework in order to incorporate
environmental variation of the fast process at its own time scale.

The idea of introducing two time scales in a discrete model is to establish the
system time unit as the one associated with the slow process. So, in each time unit, the
slow process acts once while the fast process acts a certain number of times. It roughly
represents the ratio between the two time scales. Our model allows the fast process to
vary each time it acts along a slow time unit. The paper is divided into two parts: the
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first one is devoted to the analysis of the autonomous case and the second, to be
published in a next issue of this journal, will deal with some non-autonomous cases.

In Section 2 we introduce the original model. It is a general time dependent
discrete system including two processes that take place at different time scales. The
slow dynamics is described by means of a general non-negative matrix. For the fast
dynamics, it is necessary to make certain assumptions in order to carry out the
reduction of the system. The details of the procedure are outlined in Section 3; the
aggregated model is a reduced time dependent discrete system evolving at a slow time
scale. In Section 5 we study the relationships between the aggregated and the original
systems in the autonomous case, i.e., when the vital rates of the model are constant in
time. Section 5 is devoted to the illustration of the method by an example with two age
classes and two patches.

2. THE ORIGINAL MODEL

We deal with a linear discrete autonomous stage-structured model. Population is
classified into stages or groups in terms of any characteristic of the life cycle.
Moreover, each of these groups is divided into several subgroups that can correspond
to different spatial patches, different individual activities, etc.

We consider g groups. Let N; be the number of subgroups within group i. We
define the state variables x,”/ as the number of individuals in the j-th subgroup of the
i-th group at time ¢, i=1,...,q; j = 1,...,N; t=0,1,2,... Therefore, the population is
described by the vector

L1 LNy 21 2,N Bl 4:Ny\T N
X, = (X e X, X X, x L x, ) e R Q)

where N =N, + ... + N, (the superscript T denotes transposition).

In the evolution of the population we consider two processes whose corresponding
characteristic time scales, and consequently their projection intervals, are very
different from each other. In order to include both time scales in our model we
describe these two processes, which we call fast and slow dynamics, by means of two
different matrices.

As the projection interval of our model we choose the one corresponding to the
slow dynamics, i.e., the time elapsed between times ¢ and ¢+ 1, which we will call /;
(this is the projection interval of the slow process).

We make no special assumptions regarding the characteristics of the slow
dynamics. Thus, the slow dynamics is represented by a nonnegative projection matrix
M e RY which we consider as divided into blocks M ”, 1 <i,j<g.We then have

MY M MY
M*» M*?* .. M
M=|". . .
M M7 MY

where each block M7= [M,f"]] has dimensions N; X N; and characterizes the rates of
transference of individuals from the subgroups of group j to those of group i. More
specifically, for each m =1,2,..,N; and each /=1,2,..., N, Ml-j"” represents the rate of
transference of individuals, due to the slow process, from subgroup / of group j to
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subgroup m of group i in one time step. This is a generic model; in a particular case M
could contain mortality and reproduction values for the different stages.

Since the projection interval of the model is that of the slow process, we assume
that, during a time unit, the fast process occurs k times before the slow process (where
k is an integer that can be interpreted as the ratio between the projection intervals
corresponding to the slow and the fast dynamics). Our model allows the fast process to
act differently in each of the k& occasions. So, for a time unit, the fast process is
represented by the following product of k£ matrices:

Py PPy
A) We assume that the fast dynamics is internal for each group.
This assumption means that the fast dynamics does not produce transference of

individuals among different groups. Consequently, every matrix P; (/=1,...,k) is a
block-diagonal matrix, whose blocks we call P/ (i = 1,...,q):
P, =diag {P/,....P} ()

B) We assume that the fast dynamics conserves the number of individuals of each
group. .

This hypothesis is included in the model by assuming each block P to be a column
stochastic matrix, i.e., a matrix whose columns are probability vectors.

Therefore the proposed model will consist of the following discrete system that we
will call “microsystem” or “original system”:

Xi1 = MPy...- Pix, (3)

In a previous work (Sanchez et al., 1995), aggregation techniques have been
applied to the following model:

X1 = MPY, 4)
where the matrices corresponding to the fast dynamics are constant. In the next section
we construct a reduced system, the so-called aggregated system.

3. AGGREGATION OF THE MODEL

Aggregation consists of defining a small number of global variables, functions of
the state variables and building up a system describing their dynamics. When the
aggregated dynamics are consistent with the original dynamics in the sense that the
global variables behave identically both in the initial system and in the aggregated one,
it is called perfect aggregation (Iwasa et al., 1987). Perfect aggregation is rarely
possible and methods for approximate aggregation have been developed (Iwasa et al.,
1989). By approximate aggregation we mean the kind of aggregation where the
consistency between the dynamics of the global variables in the original and the
aggregated system is only approximate.

Approximate aggregation of the original system applies when the fast dynamics
make the frequencies of state variables in each group approach certain equilibrium
values during a time unit. A sufficient condition for the previous property to hold is
the next assumption:

C) The sequence {P}} tends, when k — oo, to a certain (necessarily stochastic)
primitive matrix P

Henceforth we suppose the three assumptions on fast dynamics (4, B and C) hold.
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To construct the aggregated system we need to make use of the following result.

Proposition 3.1

Let {Py} be a sequence of column stochastic matrices that converges to a primitive
matrix P. Let v be the right probability normed eigenvector of P associated with the
eigenvalue 1. Then

lim P, -...- B =v1’

k—oo
where 1 is the column vector of the appropriate dimension with all its entries equal
to 1.
Proof. (See Appendix).

From assumptions 4, B and C we can apply Proposition 3.1 to the blocks of the
fast dynamics. Hence it follows that, for each i = 1,...,q:

lim P/ -...- P/ =v'1" (5)
k—oo
where V' is the right probability normed eigenvector of the matrix P’ cited in
Assumption C.

Now, if we define, P' =v'1", P =diag(P',..,P?), U=diag{l,...,1} and

V=diag{v',...,»} then we have
P=1limP-.-P=VU" (6)

k—>e0
Hence the original system (3) can be considered as a perturbation of the following:
X = MP X, (7
This new system, called the “auxiliary system”, can be interpreted as the
microsystem when we substitute the fast process corresponding to each interval 7, by
the equilibrium frequencies of the fast process in /,. In other words, we are letting
k — oo in the expression of the microsystem, supposing that 7, is long enough with
respect to the projection interval of the fast process for the fast dynamics to reach
equilibrium frequencies. Note that we use capital letters when referring to variables
associated with the auxiliary system.

We will see that the aggregated system can be perfectly aggregated. In order to do
so, we define the global variables, for each time ¢, in the following way:

Y =0t d) (8)

where y; = X,’A’1 +..+ X,i’N i, i.e. y/ represents the total number of individuals in group

i at time ¢ assuming that the fast dynamics reaches its equilibrium frequencies in each
time unit.

Note that these global variables can be obtained from the variables of the auxiliary
system as follows:

v=U%, ©)
Therefore, if we premultiply equation (7) by matrix U ’, we obtain:
U™, =U"MPX, =U"MVU"X,

This is the aggregated system, which can be expressed in the following way:
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Y+l =Myt (10)

where M =U"MV. We have reduced the dimension of the model from
N=N,;+ ... +N, to g, since, in the aggregated system, each group is represented by
one single variable.

In next section we will show how this new system provides information on the
asymptotic behavior of the population represented by the microsystem.

4. RELATIONSHIPS BETWEEN THE AGGREGATED AND THE
ORIGINAL SYSTEMS

This section is devoted to the study of the relationships between the aggregated
system (10) and the original system (3) defined in Section 3.

At this stage, let us introduce some concepts and notation that will be useful in
further developments: We denote ||*|| as the l-norm in R, i.e., given
x=x"2 N e RY, then ||x]| = |x'|+|x% + ... + [x"]. If we are modelling the
dynamics of a stage-structured population and x, is the population vector at time ¢, then
the total population is given by ||x/| and the population structure is given by ﬁ:” A

system is said to be strongly ergodic (Cohen, 1979) if the population structure
asymptotically becomes fixed and this “equilibrium structure” is independent of the
initial population, i.e., a vector v exists such that for any non-negative, non-zero initial

o . X
condition xo we have lim ~7 =v.
t—o0 1

We make the following assumption on the aggregated matrix:

HI: matrix M is primitive.

Let A be the dominant eigenvalue of matrix M , r its corresponding positive right
eigenvector such that ||7|| = 1 and / its corresponding positive left eigenvector normed
in such a way that /7 = 1. Then in the long term for every initial state we have:

- the population size grows exponentially at a rate A.

- the population reaches a stable structure given by the vector 7.

- the reproductive values (Caswell, 2001) associated with each group are given
by vector /.

Relationships between the aggregated and the auxiliary systems

Theorem 4.1 (Sanchez et al., 1995) relates the projection matrices of both systems.

Theorem 4.1
Matrices MP and M verify:
1. det(Aly — MP) = AN=a det(llq —M). Therefore the non-zero eigenvalues of

matrices MP and M coincide.

2. Let r be a right eigenvector of M associated with the eigenvalue A # 0. Then
MVr #0 is a right eigenvector of M P associated with the same eigenvalue A.

3. Let | be a left eigenvector of M associated with the eigenvalue A #0. Then
Ul # 0 is a left eigenvector of M P associated with the same eigenvalue A.

We also make the following assumption:



LINEAR DISCRETE POPULATION MODELS 267

H2: matrix M is row-allowable.

A matrix is called row-allowable (Hajnal, 1976) if it has, at least, one positive
entry in each row. Note that H2 can be interpreted by saying that the slow process
verifies that for all i = 1,2,...,g and j = 1,2,...,N,, at least one allowed transition towards
subgroup j of group i exists.

Under assumptions H/ and H2 we obtain the following result:

Proposition 4.2

Let us suppose that the projection matrix of the aggregated system, M, is
primitive (HI). Let A be its dominant eigenvalue, r its corresponding positive right
eigenvector such that ||r|| = I and [ its corresponding positive left eigenvector normed
in such a way that I'r = 1. Let us suppose that matrix M, which governs the slow
dynamics in the original system, is row-allowable (H2). For the auxiliary system we
then have:

1. It is strongly ergodic.

2. The population size grows exponentially at a rate A.

3. For any initial condition X, the population structure tends to a limit vector
given by %

4. The reproductive values associated with each group are given by vector Ul
Proof. From Theorem 4.1we have:

- The non-zero eigenvalues of M and M P coincide. Hence, A is a simple and
strictly dominant eigenvalue of M P

- The right and left eigenvectors of M P associated with A are # = MVr and
I'= Ul, respectively.

Hypothesis H I says that M 1is a row-allowable matrix. Moreover,
V =diag{vi,...,v,} where v; is a positive vector for all i = 1,...,g, so it is row-allowable.
In Section 3 we defined U which is also row-allowable. Taking into account that the
product of a row-allowable matrix and a positive vector is also a positive vector, and
that » and / are positive vectors we have ' = MVr and I' = Ul are both positive vectors.

Now we make use of a theorem in Berman and Plemmons (1979, pp. 42) to deduce
that MP is an irreducible matrix. Moreover, since we know that A is a strictly
dominant eigenvalue we deduce that this matrix is primitive and, therefore, the
auxiliary system must be strongly ergodic.

Relationships between the auxiliary and the original systems
The original system may be considered as a perturbation of the auxiliary one:
MP,---P,=MP +M(P,---B - P) (11)

where the matrix P, -...- B, — P converges to zero as k tends to infinity.

Therefore, the higher the value of k, the closer the eigenvalues and eigenvectors of
MPy--P, and MP are. Thus, if k is large enough we know about the asymptotic
behavior of the original system from that of the auxiliary one and, therefore, indirectly,
from that of the aggregated one.

In other words, from the aggregated system we approximate the elements which
characterise the asymptotic behavior of the original system and the larger & is, the
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more accurate these approximations become. In the remainder of this section we study
how these approximations improve when k increases.

In a previous work dealing with system 4 it is proved that the projection matrix of
the original system converges geometrically to that of the auxiliary system (Sanchez et
al., 1995, Prop. 3.2). Under some conditions on the sequence {P;} we obtain an
analogous result:

Theorem 4.3

Let ||-|| be a norm in the space of real matrices My, and suppose a value
0< o<1 exists such that ||Pr-P|| = o(c) (fast convergence). Then another value
o < 8< 1 exists such that || M(Pj-...-P;- P)|| =o(&).

Proof. (See Appendix).

As previously stated the elements defining the asymptotic behavior of the original
system tend to those approximations given by the aggregated system as k — co. Now
we make use of some results on perturbation theory to determine the speed of
convergence of these characteristics.

Proposition 4.4

Suppose hypotheses H1 and H2 are verified, then we can conclude that, for k large
enough, the original system is strongly ergodic. Moreover, if a number 0 < o< I
exists such that ||Py— P|| = o(cl"), then another number o0 < 8 < I exists such that

1) The population size grows exponentially at a rate Ay = A + o(8);

2) The population vector reaches a stable structure given by vector

_ _MVr .
Te = WTmven +0(8);

3) The reproductive values of each group are given by vector I, = Ul + o(&).

Proof. From Proposition 3.1 we have
MP, ..., - MP
k—>o0

Proposition 4.2 establishes that matrix M P associated with the auxiliary system is
primitive. Then, for k large enough, MP;-...-P; has, at least, the same positive entries
as M P which implies that MP;-...-P; will also be primitive.

Proposition 4.2 also established that a) the asymptotic growth rate of the auxiliary

system is A; b) its asymptotic stable structure is given by vector ”%“Z”; and c) its

reproductive values are given by vector Ul.
Since, from (11), we may consider matrix MP;-...-P; as a perturbation of M P,
using (Stewart and Sun, 1990, pp. 183 and 240) we have

I"UTM(P, -...- P, — P)MVr

A=A+ +O(IM(P, ... P, — P) I
¢ U mvr (MU =P
MVr —=
= +O(M(P, -.... P, = P)Il 12
e =gy g FOUNME e B =P (12)

L, =Ul+ O M(P, -...- P, — P)l)

Now, making use of Theorem 4.3, 1), 2) and 3) follow.
Note that we have used the continuity of the dot product to deduce that:
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I"UTM(P, -...-. P — P)MVr ‘
T =0(6")
" Mvr
As shown, we can obtain essential information on the asymptotic behavior of the
original system (growth rate, stable distribution, reproductive values) through the
study of the aggregated system. Now we illustrate these results with a numerical
example on an age structured population in a patchy environment.

5. AN AGE STRUCTURED POPULATION IN A PATCHY
ENVIRONMENT

We consider a population divided into two age classes and distributed between two

spatial patches. Then, the population vector is:
b= Gl
where x,” is the number of individuals of age i that live in patch j at time 1.

We consider two processes involved in this model: a demographic one, that
determines the number of births and deaths in each time interval, and a migratory one,
that determines the transference of individuals between the two spatial patches. We
assume that migration is fast compared with demography and we choose the projection
interval of the model to be the one associated with demography. We suppose that
migration acts k times before demography does. So, denoting Az as the time step of the
migration process, we can consider that each projection interval of the demographic
process, I, = [t,t+1), is divided into k£ subintervals of the form 7,,=[t+ (/- 1)At,
t+IAY); [=1,.. .k

We suppose that migration acts once in each interval /,; and that it depends on / but
not on 7. The demographic rates are constant in time. For each patch, demography is

described by matrices:
e 0o oy I
1 g g2 T 2 b2 22

where /% is the mean number of offspring produced by an individual of age i living at
patch j (there is a single reproductive age) and s* is the survival rate for the
individuals of age i living at patch ;.

Migration between patches 1 and 2 is depicted by the matrices

1= pl 1 1—p2 2
Pﬁz[ o 1]; Pﬁz( P4k =1k
12 I-q 14} I-g;

where p/ represents the proportion of individuals of age i that migrate from patch 1 to
patch 2 during the /-th migratory period (). Analogously, g/ represents the
proportion of individuals of age i that migrate from patch 2 to patch 1 during 7, .

Matrix P; is block-diagonal because the migration process is considered internal, in
the sense that individuals do not change their age class while moving from one patch
to another. Moreover, the blocks of P; are column stochastic matrices. This is due to
the fact that the migration process is conservative of the total number of individuals.

Then, the matrices that describe the demographic and the migration processes for
the whole population are, respectively:
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o o f* o0 1-p ¢ 0 0
o o0 o f*? p l-q 0
M = ' . and P = ) 5 b [=1,...k
s 0 = 0 0 0 1-p q;
0 s"* 0o 2 0 0 i 1-qf

The complete original system reads as follows:
X+1 = MPk .. .'P]X,.

We assume that the sequence of migration matrices converge to the following
matrix:

l—p] ql 0 0
1 1
1- 0 0
p=| P q ) .
0 0 1-p q
0 0 p2 l—q2

If the intervals /,; are small in comparison to /, (i.e., if k is large), the spatial
distribution of the i-aged individuals between the patches, can be approximated by the
probability normed right Perron-Frobenius eigenvector of block i in P, i.e.:

_(d P \T
V[ (pi+qi ’ pi+qi)
To aggregate the system we denote the global variables in the following way:
Y=y

where y, represents the total number of individuals in group i at time #.

In the aggregated system we are assuming that the migration process reaches its
equilibrium frequencies within each projection interval of the original system and, so,
the spatial distribution of i-aged individuals is given by vector v,.

The aggregated system reads:

21 2, 022 2

0 e+
— — 2 g

Y41 = Myt where M = sMgl 4512 p! $21q? 4522 p?
p'+q' pi+q’

Note that we averaged over the spatial structure, so we obtain a matrix with global
fertility and survival rates for each age class. The global fertility and survival rates are
weighted means of the fertility and survival rates in each patch where the weights are
the equilibrium frequencies of the migration process.

We gave some numerical values to the parameters of the model and computed
some of its main characteristics, such as growth rate or asymptotic population
structure. We also built the aggregated system and obtained the corresponding
approximations. We were particularly interested in illustrating the accuracy of these
approximations in relation to the value of k.

First, we supposed that the proportion of i-aged individuals migrating from patch 2
to patch 1 changes in each migratory period /,; and tends, when / — oo, to 0.75:

g/ =0.75-1/(1+1)
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Figure 1 shows how the growth rate of the original system (o) converges to that of
the aggregated system (+) when & increases.

1.1 .
Figure 1. Convergence

a3 of the growth rate.

Parameter values are:
o =05, f2=2,
109 ° s''=009, s'2=0.6,
: ) s2=0.5, s = 0.1,
§1o8 © p'=0.7, q,/=075
5 1/(1+1), p*=04,
1.07+ ¢*=0.55. The symbols
employed are ‘+’ for the
growth rate given by the
aggregated system and
10 ) ) . N ‘o’ for that corresponding
%% 5 10 15 20 25 30 to the original system for
each value of £.

Secondly, we consider the case where:
g/ =0.75-1/2
for which, ¢,' tends to 0.75 much faster than in the previous case. Figure 2 shows that

we achieve good approximations even for low values of k. Theorem 4.3 provides a
theoretical explanation of this fact.

1.1

+++*gaocolCoooooo'ootoocoo.'c.
o
R ° Figure 2. Convergence
. of the growth rate.
1.09- Symbols ‘+’ and ‘0’ are
& used as in Figure 1.
‘§:1.oa
&
1.07
1.08
1.0% 5 10 1"(5 0 %5 30

Figure 3 depicts, in this latter case, the evolution of the population structure over
time. It shows that the asymptotic proportions of individuals in the different groups,
computed by use of the original system (o) become closer and closer to the ones of the
aggregated system (+) as k increases.
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Figure 3. Convergence
of the population
structure. The numerical
values are those of
Figure 1. We can see the
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6. CONCLUSIONS

The aggregation method presented here allows one to reduce a complex system
with two processes acting at different time scales to a system with a lower dimension.

The variables which govern the aggregated system summarize the information
contained in the state variables of the original system. The parameters of the
aggregated system can easily be expressed as functions of the parameters of the slow
dynamics and the equilibrium frequencies of the fast process.

The main point of interest of this technique is to obtain good approximations of the
elements governing the asymptotic behavior of the original system, such as the
asymptotic growth rate or the stable population structure, from the study of the
aggregated system. The accuracy of the approximations depends on the ratio between
the characteristic time scales of the slow and the fast processes.

Our contribution is a generalization of previous works (Sanchez et al., 1995) to the
case where fast dynamics is allowed to vary each time it occurs. To aggregate these
models we have made the parameters defining the fast process tend to some
equilibrium values, i.e., we need environmental conditions related to the fast process
that become stable in the long-term. We studied the relationships between the
aggregated and the original systems in the autonomous case, where population
parameters do not depend on time, and we analyzed a numerical example of a
multiregional age-structured model. In general, if the migration process is sufficiently
fast in comparison to the demographic process, the aggregated system gives good
approximations of the asymptotic behaviour of the microsystem, the accuracy of the
approach being dependent on the speed with which the fast process reaches its
equilibrium.

In the second part of this paper we will deal with the non-autonomous case where
both, the slow dynamics and the fast dynamics, are allowed to vary with time. In the
first place, we present a non-autonomous model with two time scales and proceed at
this reduction. Moreover, we study the relationships between the original system and
the aggregated system in two cases regarding the kind of environmental variation: in
the first one we shall assume that population is affected by a variable environment that
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tends to an equilibrium and study the relationships between the property of strong
ergodicity for the original and that property for the reduced system. In the second one,
we shall consider the case of a general temporal variation and undertake the study of
the relationships between the weak ergodicity of both systems.

APPENDIX

Proof of Proposition 3.1
Let us consider the following system:
X = Pixg
The sequence {P;} converges to a primitive matrix and each matrix is column-
allowable (it has, at least, one positive entry in each column). From (Seneta, 1981,

pp- 96) we deduce that the system is strongly ergodic. Then we have for any initial
vector xy:

lim ||ik|| =V
k—eo Yk
where |v]|=17v = 1.

Since the matrices are stochastic we have ||x;|| = ||xo|| for each £, so:

k—o k—eoo

whatever x is.
Finally, note that:

limP,-..-B=(lim P, -...-Pe/ |---1 lim P, -...- P,
kl_m k 1 (kl_m k 1€1 kl_m k 1€p)

where {ey,...,e,} are the vectors of the canonical base of R”. Now:

lim B ... B =lle Il 1.1 vile, =l 1v)y=v1".
k—oo

Proof of Theorem 4.3
Since all matrix norms are equivalent we can use any of them. We will use the

n p—
1-matrix norm, i.e., lAIll = max 2 llal-j |. We have that I M(P,-...- B —P)Il <
n 1=

IMI(P,-..-B,—P)and (P, -...- B, —P) < lI(P,-.... P, = PX)ll+ 1 P* =P 1II.

In Sanchez et al., (1995) the authors proved that if A, <y<1, where 4, is the
subdominant eigenvalue of the matrix P, P —Pli= o(yk) so we only need
demonstrate geometric convergence Il B, -...- B — PRI

Since all the matrices are block diagonal and the dimension of the i-th block is

always N; X N;, we can restrict our study to the convergence of a single block. Let O
and Q, be the i-th blocks of P and P,, respectively. We want to study the convergence

of 10, -...-Q, — 0" Il

We have that Q is primitive, so the ergodicity coefficient (Birkhoff's contraction
coefficient, see (Seneta, 1981)) of its powers verifies TB(Qk) — 0. Therefore we can
choose a number £ such that



274 BLASCO ET AL.

150" =< (13)
This happens for all blocks of P so we can choose ky such that (13) is verified by
every block. We define ¢ = I1Q,—QIl. Clearly g, = o(a*), since

B, —Pll =o(a").
Now, taking into account that ||Q|| = 1 (since P is column stochastic):

dy= 10 Q=01 < 11Q,-...-0, 00, ;... O, Il +

100, ,-...0, =0l

NQ, — QI QM- QN+ QQ,_;-...-Q — QDI

§HIQQ -0 =00 5 ODNHIQQO, 5 -...-0; — O )1 (14)
gHNQIN 11Q_, =0l 1Q 5 ll-..-11Q I+

10*(Qs - Q= Q)i

S E e A g 100 Qe e O - QT

Let x and y be probability vectors. In Seneta (1981) it is proven that, if QO is a
column stochastic matrix, then | Q(x —y)Il < 75(Q) Il x—yll. Now, if 4 and B are
both stochastic matrices:

IN

IN

1QA=B)Il < max Il Qa; ~b))]

i=1,..., P
where ag; and b; are the i-th columns of 4 and B, respectively. Then:
NOA-B)Il < 75(0) max llg; —b; Il =75(0) IA-BI

L...,p
As a product of column stochastic matrices is another column stochastic matrix,

Qg *--- 0 and Q"% are both column stochastic matrices. Then:
k k—k -
10X (Qp_y, s O = QT NS THQ Q4 or O = O TN =B,
Moreover:

k

I=k—kq +1
where £Z =max{g : [ =k—ky+1,....k}, so we have, from (14):
dy <ky-gp + Bdy_x, (15)

We can express £ in the following form: & = pky + ¢ where p is an even number and
1 < g <2k (actually ¢ can be considered as £ modulus 2k.
Then, applying (15) recursively we obtain:

di <ko(gp + &y B+ Eop B+ + &y, B” )+ B"d, (16)

We have d, < d* = max{d;: 1= 12,..2k,— 1} and p= kk;" Then:
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Pd &
—’Z = ("B d, > 0
kO

k.
so the last term of (16) is (™).

Now we focus on the first term. It can be expressed in the following way:

* * * 2 #* p—1
kO(gpk0+q+8(p—1)k0+qﬁ+8(p—2)k0+qﬁ +"'+3k0+qﬁ )
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(17)

We have, by hypothesis, &, = o(ak ). Then, using Lemma 6.1, £Z =supg; = o(ock)

izk

and this is a monotone non-increasing sequence so any subsequence 8,'(1 verifies

ezl =o(a'). Then, for simplicity we will denote n :€;<o+q and we know that

n =o(a'). Now (17) can be expressed as ko(np+np_1ﬁ+np_2ﬁ2 +-~-+n1[3"_1)

which can be split into two terms:

kO(np +np71ﬂ+"'+n§+1ﬂi_l +n/2;ﬁ? +"'+771ﬂp_1)

1-B* o 1-B°
< k + e
oMy 5 mB 1—[3)
_ ETC LY
= kO(n%“ -3 +mB W)—O(a )

k.
So we conclude: d, =o(a**). Since this is true for the i-th block, whatever i is,

_k
we deduce that B, -...- B —PXl =o(cr’™). Finally, if 8 is a number such that

_1
max{a**,A,} <6 <1, then:

IIM(Pk~...-R—F)IISIIPkn..-Pl—Pk ||+||P’<—F|| N

0
s* s* 8 ko
So it has been proven that || M(P, -...- B — P)ll= 0(5k).
Lemma 6.1
Let ay be a sequence of nonnegative numbers and 0 < y< 1. Then:
supq,
a—’,‘( > 0= 50
V" ko Y
Proof.
For all £> 0, k& exists such that, if k >k, ;—ﬁ < €. Therefore, if k > ky:
sup a; koo kHl k42
lz’f _ sup{ak’ak+k17ak+2vm} < sup{ey”, ey . &Y :sup{e,sy,syz,...} —c

14 Y 14
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