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In this work we extend approximate aggregation methods in time discrete linear models
to the case of time varying environments. Approximate aggregation consists of describing
some features of the dynamics of a general system involving many coupled variables in
terms of the dynamics of a reduced system with a few “global” variables.

We present a time varying discrete model in which we distinguish two processes with
different time scales. By defining the global variables as appropriate linear combinations
of the state variables, we transform the system into a reduced one. The variables cor-
responding to the original and reduced systems can be related, therefore allowing one
the study of the former in terms of the latter. The property of weak ergodicity, which
has to do with the capacity of a system to become asymptotically independent of initial
conditions, is explored for the original and reduced systems.

The general method is also applied to aggregate a time-dependent multiregional
model which appears in the field of population dynamics in two different cases: Fast
migration with respect to demography and fast demography with respect to migration.

Keywords: Approximate aggregation, population dynamics, time scales, weak ergodicity,
multiregional models

1. Introduction

In order to study ecological systems, one has to decide the level of complexity and

detail one should incorporate into the model so as to optimize the study. Indeed

any model is a compromise between generality and simplicity on the one hand
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and realism on the other. Models which include many biological details in their

specification become complicated, and their analytical study is often non-viable.

On the other hand, very simple models, although analytically tractable, often do

not justify the assumptions needed to obtain such simplicity.

Nature offers many examples of systems with an inherent complexity. For exam-

ple, communities are sets of interacting populations. Populations themselves have

an internal structure, for individuals may have different ages or be in different

stages. These stages may correspond to size, spatial patches, genotypes, individual

activities, etc.

Aggregation methods study the relationships between a large class of complex

systems, in which many variables are involved, and their corresponding reduced

or aggregated systems, governed by a few variables. The basic aim of aggregation

techniques is to allow one to rigorously construct, starting from a complex system,

a simpler model which summarizes some characteristics of its dynamics, therefore

simplifying their analytical study. The essential property of complex systems that

allows their aggregation is the existence of two time scales. This allows one to think

of a hierarchically organized system with a division into subsystems, in such a way

that these subsystems are weakly coupled through the slow process and yet exhibit

strong internal dynamics corresponding to the fast process.

In many of the complex systems found in nature, it is possible to distinguish

several processes which take place with different time scales. For example, it is

usually the case that processes that take place at the individual behavioral level,

as migrations or changes of activity, are fast with respect to those regarding the

population level, as reproduction or aging.1 In the majority of models found in the

literature, it is implicitly assumed that the fast process reaches equilibrium very fast

in comparison to the time scale corresponding to the slow process, and therefore the

fast dynamics is supposed to have a negligible impact on the dynamics of the system.

However, by using aggregation techniques we may consider the dynamics of both the

fast and the slow processes without paying a high cost in terms of the complexity of

the models we have to analyze. The idea of aggregation is to choose some (usually

one) global variable for each subsystem and to build a reduced system for those

global variables. The aggregated system reflects in a certain way both the slow and

the fast dynamics of the original system. The dynamics of the aggregated system

usually corresponds to the dynamics of the original system, while the fast dynamics

of the original system is reflected in the coefficients of the reduced one in such a

way that it is possible to study the influences between different hierarchical levels.

Aggregation techniques have been widely studied in the context of time con-

tinuous systems with different time scales for both linear and density dependent

models.2–5,29

Aggregation techniques have also been extended to deal with autonomous time

discrete systems in both linear and nonlinear cases, under the hypothesis that the

fast process is conservative of the total number of individuals (for example migra-

tion). The complex models proposed can be classified into two groups; one in which
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the time step of the model corresponds to the characteristic time of the fast process

(see Refs. 6–8) and another in which the characteristic time of the slow dynamics

is the time unit for the model (see Refs. 9 and 33). In previous works, the au-

thors have extended the latter to deal with linear systems in which the fast process

can have a general nature,35 and also to treat systems subjected to environmental

stochasticity.36 In Refs. 12–14, the theoretical results are applied to a practical case

regarding the study of an arborescent river network.

Non-autonomous models are important to deal with the changes in the vital

rates through time as a result of environmental variation. Depending on the pattern

of environmental variation we can distinguish, among others, the following types:

Periodic variation, environment in process of stabilization, and general temporal

variation. In the case of general temporal variation, it is interesting to study the

presence or absence of weak ergodicity in the system. Weak ergodicity (see Refs. 10

and 17 for its biological significance and Ref. 37 for a mathematical discussion) has

to do with the capacity of the structure of the population vector of the system to

become independent of the initial conditions.

Aggregation methods in the non-autonomous linear case have been considered

by the authors in Ref. 34 under the hypothesis that the fast dynamics is con-

servative of the total number of individuals. A time varying model is proposed

and aggregated, and the relationships between the original and aggregated models

are explored for the cases of periodic environmental variation, and environment in

process of stabilization.

The aim of this work is to extend variables aggregation techniques in the non-

autonomous case in two directions. In the first case we will propose and aggregate

a time varying system with two time scales in which both the fast and the slow

dynamics may correspond to any two biological processes. In particular, the fast

dynamics does not need to be conservative of the total number of individuals. This

allows one to aggregate systems in which, as it is the case in some situations found

in the literature,25,26 the role of the fast process is played by demography. In the

second case, we will obtain relationships between the weak ergodicity of the original

and aggregated systems.

Section 2 proposes a linear time discrete model with varying coefficients which

distinguishes time scales and gives a criterium to build the aggregated system. As

we mentioned above, both the fast and the slow processes can be any biological

processes. We just require that the fast process tends to an equilibrium in a certain

sense that will be specified. The aggregated system is shown to have a structure

that can easily be related to that of the slow dynamics. In fact, the entries of the

matrix that represents the aggregated system are obtained as a linear combination

of the ones that correspond to the slow dynamics, the coefficients of the combination

being functions of the equilibrium distribution of the fast dynamics. In Sec. 2.3, we

obtain relationships between the state variables and the global variables in terms

of the separation of time scales between the slow and the fast processes. In Sec. 2.4,

where readers interested mainly in applications may focus their attention, is devoted
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to illustrate our general technique studying, through variables aggregation, some

multiregional models in which we can consider that migration and demography

take place with different time scales. We deal with two different situations; in the

first one we consider migration to be fast with respect to demography, while in the

second one we consider that the contrary happens.

Section 3 motivates and introduces the concept of weak ergodicity and its eco-

logical significance. Some mathematical concepts and results useful in the study of

weak ergodicity are presented, for the interested reader, in the appendix.

In Sec. 4, we explore the relationships between the weak ergodicity of the original

and aggregated systems. We show that under wide conditions, if the separation be-

tween the time scales of the slow and fast dynamics is sufficiently high, very general

sufficient conditions for weak ergodicity are simultaneously met for both systems.

The results can be sharpened in some usual cases regarding the incidence matrices

of the systems. Finally, the results are applied to the study of weak ergodicity for

the multiregional model introduced in Sec. 2.4.

2. A Discrete Model with Different Time Scales

As it has been mentioned above, the microsystem and the aggregation procedure

we propose have already been considered by the authors in Ref. 34 for the case in

which the fast process is conservative of the total number of individuals in each

subsystem.

2.1. Original system

We suppose a stage-structured population in which the population is classified into

stages or groups in terms of any characteristic of the life cycle. Moreover, each

of these groups is divided into several subgroups that can correspond to different

spatial patches, different individual activities or any other characteristic that could

change the life cycle parameters. The model is therefore general in the sense that

we do not state in detail the nature of the population or the subpopulations.

We consider the population being subdivided into q populations (or groups).

Each group is subdivided into subpopulations (subgroups) in such a way that for

each i = 1, 2, . . . , q, group i has Ni subgroups. Therefore, the total number of

subgroups is N = N1 +N2 + · · ·+Nq.

We will denote xijn the density of subpopulation j of population i at time n, with

i = 1, 2, . . . , q and j = 1, 2, . . . , Ni. In order to describe the population of group i

we will use vector xin = (xi1n , x
i2
n , . . . , x

iNi
n ) ∈ RNi , i = 1, 2, . . . , q. The composition

of the total population is then given by vector Xn = (x1
n,x

2
n, . . . ,x

q
n)

T ∈ RN where

“T” denotes transposition.

In the evolution of the population we will consider two processes whose corre-

sponding characteristic time scales, and consequently their projection intervals, are

very different from each other. In order to include in our model both time scales
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we will model these two processes, to which we will refer as the fast and the slow

dynamics, by two different matrices.

We will choose as the projection interval of our model, that corresponding to

the slow dynamics, i.e. the time elapsed between times n and n+1 is the projection

interval of the slow process. For simplicity, we will denote the time span [n, n+ 1)

as ∆n, and suppose that the coefficients of the model are constant during each

of the intervals ∆n. Notice that this hypothesis implies that the characteristics of

the fast process are not allowed to vary with each projection interval associated to

this process. They can only vary with each time step corresponding to the model,

i.e. with each projection interval associated to the slow process.

In principle, we will make no special assumptions regarding the characteristics of

the slow dynamics. Thus, for a certain fixed projection interval, the slow dynamics

will be represented at time n by a non-negative projection matrix Mn ∈ RN×N ,

which in this context is usually referred to as Leftkovitch matrix,24 and which we

consider divided into blocks Mij(n), 1 ≤ i, j ≤ q. We have then

Mn =


M11(n) M12(n) · · · M1q(n)

M21(n) M22(n) · · · M2q(n)

...
...

. . .
...

Mq1(n) Mq2(n) · · · Mqq(n)

 , (2.1)

where each block Mij(n) = [Mml
ij (n)] has dimensions Ni×Nj and characterizes the

rates of transference of individuals from the subgroups of group j to the subgroups

of group i at time n. More specifically, for each m = 1, 2, . . . , Ni and each l =

1, 2, . . . , Nj, M
ml
ij (n) represents the rate of transference due to the slow process of

individuals from subgroup l of group j to subgroup m of group i, at time n.

As far as the behavior of the fast dynamics is concerned, the following

assumptions are made:

(a) the fast dynamics is an internal process for each group, i.e. there is no trans-

ference of individuals from one group to another group. Therefore, if we consider

a fixed projection interval, the fast dynamics of group i will be represented,

during interval ∆n, by a non-negative matrix Pi(n) of dimensions Ni ×Ni for

each i = 1, . . . , q and n = 1, 2, . . . .

(b) For each i and n, matrix Pi(n) has spectral radius equal to one.

(c) For each i and n, matrix Pi(n) is irreducible and primitive.

We will come back to the justification and interpretation of these hypotheses

later on.

The matrix which represents the fast dynamics for the whole population during

interval [n, n+ 1) is

Pn = diag(P1(n),P2(n), . . . ,Pq(n)) . (2.2)
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As stated above, the projection interval of the model is that corresponding to

matrices Mn. Therefore we need to approximate the effect of the fast dynamics

over a time interval much longer than its own. In order to do so we will suppose

that during each interval ∆n, matrix Pn has operated k times, where k is a large

enough integer that can be interpreted as the ratio between the projection intervals

corresponding to the slow and fast dynamics. Therefore, the fast dynamics during

interval ∆n will be modeled by Pk
n and the proposed model will consist of the fol-

lowing system ofN linear difference equations that we will denote as “microsystem”

or “original system”:

Xn+1 = MnP
k
nXn . (2.3)

Hypothesis (b), by which the spectral radius of the Pi(n) is one, has a clear

biological justification. Indeed, if the spectral radius of any Pi(n) were smaller or

greater than one then, if the separation between the two time scales is large enough,

the fast process in group i during interval ∆n would lead the total population of

this group to zero or infinity, respectively, before the slow process has time to act.

Therefore, the dynamics of the system during ∆n would be controlled by the fast

process and the distinction of two processes in the modeling of the system would

be unnecessary.

The primitivity of the Pi(n), together with assumption (b), guarantees that for

a separation of the two time scales sufficiently high, the fast process during each ∆n

approaches an equilibrium distribution. The use of primitive matrices is a common

feature in the modeling of most biological processes.10,11

In Ref. 34 the authors propose a model very similar to that considered here

but in which the fast process is conservative for the total number of individuals

in each of the groups, as it is the case with processes like migration or changes of

activity. In that work, matrices Pi(n) are supposed to be stochastic and primitive,

and trivially verify hypotheses (b) and (c). In this way, the model here presented

can be considered a generalization of the above-mentioned to take into account fast

processes of a general kind.

Let i = 1, . . . , q and n be fixed and consider the positive vectors defined by

Pi(n)vi(n) = vi(n) , uT
i (n)Pi(n) = uT

i (n)

1Tvi(n) = 1 , uT
i (n)vi(n) = 1 , vi(n) > 0 , ui(n) > 0 ,

(2.4)

where 1 = (1, 1, . . . , 1)T. Therefore, vi(n) and ui(n) are, respectively, the positive

right and left eigenvectors of Pi(n) associated to eigenvalue one and verifying some

normalization conditions. Notice that, since Pi(n) is primitive, eigenvalue one is

simple and therefore vi(n) and ui(n) are defined in a unique way by conditions (2.4).

Vectors vi(n) and ui(n) can be interpreted in the following way in terms of the

fast dynamics of group i in interval ∆n. Let us consider a hypothetical situation in

which the system were governed by the fast process exclusively. Suppose, moreover,

that ∆n is long enough with respect to the projection interval corresponding to the
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fast process for this to reach its equilibrium conditions during ∆n. Then, for any

“initial condition” of the system at time n, the structure of the population of group

i at the end of ∆n would be defined by vi(n), meanwhile the reproductive value10

of the individuals of that group would be characterized by ui(n).

Therefore, for each n, the matrices that characterize the fast process equilibrium

in each ∆n for each group i and for the whole population would be P̄i(n) and P̄n

respectively, where

P̄i(n) = limk→∞Pk
i (n) = vi(n)uT

i (n) > 0

P̄n = diag(P̄1(n), P̄2(n), . . . , P̄q(n)) .
(2.5)

We define matrices

Vn = diag(v1(n),v2(n), . . . ,vq(n))

Un = diag(uT
1 (n),uT

2 y(n), . . . ,uT
q (n)) ,

(2.6)

whose interpretation is immediate bearing in mind what we pointed out about vi(n)

and ui(n).

Some of the properties of these matrices are gathered in the following lemma,

whose proof is straightforward:

Lemma 1. Matrices Pn, P̄n, Vn and Un verify, for all n:

(a) P̄nPn = PnP̄n = P̄nP̄n,

(b) PnVn = P̄nVn = Vn,

(c) UnP̄n = Un, UnVn = Iq, P̄n = VnUn.

Let us introduce some concepts and notation which will be useful in the subse-

quent developments. A non-negative matrix A is said to be column allowable (row

allowable) if it has at least a nonzero element in each of its columns (rows). A is

said to be allowable if it is both column and row allowable. The product of row

(column) allowable matrices is row (column) allowable. Notice that an irreducible

matrix is allowable. It is easy to prove that if A is row (column) allowable and B

is a positive matrix, then AB > 0 (BA > 0) as long as the product is defined.

The incidence matrix of a non-negative matrix A will be denoted by i(A), and

we will write A ∼ B to denote that A and B have the same incidence matrix.

Lemma 2. The incidence matrices of P̄n, Vn and Un are the same for all n,

i.e. for all n and n′ we have P̄n ∼ P̄n′ , Vn ∼ Vn′ and Un ∼ Un′ . Besides,

those incidence matrices are independent of the incidence matrix of the Pn and are

allowable for all n.

Proof. Trivial from the definition of these matrices and the fact that the P̄i(n),

vi(n) and ui(n) are positive.
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2.2. Aggregated model

In this section we will approximate the microsystem (2.3), consisting of N variables

(microvariables) associated to the different subgroups, by an aggregated system (or

macrosystem) of q variables (global variables), each of them associated to one group.

In general it is not possible to perfectly aggregate22 the microsystem, i.e. it is

not possible to define a set of global variables as functions of the microvariables

Yn = fn(Xn) in such a way that the microsystem depends solely on these global

variables. Biological systems can be perfectly aggregated only in some cases and for

very particular values of the parameters involved, so perfect aggregation has only

a theoretical interest.

As a general technique, in order to aggregate the microsystem we will resort

to approximate aggregation. For this we will consider an auxiliary system which

approximates the dynamics of the general system and that is susceptible of being

perfectly aggregated. This auxiliary system is defined by

Xn+1 = MnP̄nXn , (2.7)

and can be interpreted as the microsystem when we substitute the fast process cor-

responding to each interval ∆n by the equilibrium characteristics of the fast process

in ∆n. In other words, we are letting k →∞ in the expression of the microsystem,

supposing that ∆n is long enough with respect to the projection interval of the

fast process for the fast dynamics to reach equilibrium. Since limk→∞Pk
n = P̄n

and MnP
k
n = MnP̄n + Mn(P

k
n − P̄n), we can consider matrix MnP

k
n as being a

perturbation of matrix MnP̄n (notice that we are using the same notation for the

variables in the general and auxiliary system).

Matrix MnP̄n has the following expression in terms of the blocks corresponding

to the slow and fast processes:

MnP̄n =


M11(n)P̄1(n) M12(n)P̄2(n) · · · M1q(n)P̄q(n)

M21(n)P̄1(n) M22(n)P̄2(n) · · · M2q(n)P̄q(n)

...
...

. . .
...

Mq1(n)P̄1(n) Mq2(n)P̄2(n) · · · Mqq(n)P̄q(n)

 . (2.8)

In order to show that (2.7) can be perfectly aggregated, let us multiply both

sides by matrix Un+1

Un+1Xn+1 = Un+1MnP̄nXn = Un+1MnVnUXn ,

where we have used Lemma 1. Therefore, if we define the vector of global variables

by

Yn = UnXn , (2.9)

we see that (2.7) can be expressed as a function of the global variables exclusively.

In this way, the aggregated system is defined by

Yn+1 = M̄nYn , (2.10)
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where matrix M̄n ∈ Rq×q is given by M̄n = Un+1MnVn, and has the form

M̄n =


uT

1 (n+ 1)M11(n)v1(n) · · · uT
1 (n+ 1)M1q(n)vq(n)

...
. . .

...

uT
q (n+ 1)Mq1(n)v1(n) · · · uT

q (n+ 1)Mqq(n)vq(n)

 . (2.11)

Therefore, for each time n, the element of row i and column j of the matrix of the

aggregated model is uT
i (n+1)Mij(n)vj(n) =

∑
m,l u

m
i (n+1)vlj(n)Mml

ij (n) which is

a linear combination of the coefficients of the slow dynamics at time n corresponding

to the transference from group j to group i. Notice that the coefficients are defined

by the equilibrium characteristics of the fast dynamics for intervals ∆n and ∆n+1

and that the aggregated system does not depend on the value of k used in the

modeling of the general system.

The following lemma, which is a trivial consequence of (2.11) and of the fact

of vectors vi(n) and ui(n) being positive for all i and n, allows one to relate the

incidence matrix of matrices Mn and M̄n.

Lemma 3. For all n, M̄n is a non-negative matrix in which the element of row i

and column j of M̄n is nonzero if and only if matrix Mij(n) is not zero.

From this last result we have that the pattern of nonzero elements in M̄n

coincides with the pattern of nonzero blocks Mij(n) for the slow dynamics.

The global variables Yn = (y1
n, . . . , y

q
n)

T, defined by (2.9), have the following

expression in terms of the variables Xn of the auxiliary system:

yin = uT
i (n)xiTn = u1

i (n)xi1n + u2
i (n)xi2n + · · ·+ uNii (n)xiNin , i = 1, . . . , q . (2.12)

As a consequence:

• yin is a linear combination of the microvariables corresponding to group i, being

the coefficients of the combination the components of vector ui(n). Recall that, as

it was specified in the previous section, ui(n) is a vector of reproductive values for

the fast process in group i during interval ∆n. Therefore, for each j = 1, . . . , Ni
the microvariable xijn corresponding to subgroup j has a relative weight which is

proportional to uji (n), i.e. proportional to the contribution to the total population

at time n + 1 that the “initial” population at time n of group i and subgroup

j would have in the case that the system were governed by the fast process

exclusively and this process reached equilibrium within ∆n. In this way, the higher

the relative value of uji (n) in vector ui(n) is, the higher the relative contribution

of xijn to yin.

• the macrovariables are conservative for the fast process. Indeed, suppose that

the fast process is the only one acting in the system. Then, the microvariables

Xt would be transformed, for a projection interval [t, t + 1) corresponding to

the fast process and belonging to ∆n, in Xt+1 = PnXt. Aggregating, and using

Lemma 1, we have Yt+1 = UnPnXt = UnXt = Yt as we wanted to show.
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In this work, we will say that a given property holds “for k large enough”, when

there exists an integer k0 such that for all k ≥ k0 that property holds.

2.3. Relationships between micro and macrovariables

If z0 6= 0 is the initial condition for a system of non-autonomous difference equations

of the kind

zn+1 = Anzn , (2.13)

then, for every n ≥ 0, zn = Tnz0, where Tn = An−1 · · ·A1A0. Therefore, the

dynamics of the system is characterized by the behavior of the matrix products

Tn. In particular, in order to study the asymptotic behavior of the system we have

to deal with infinite backwards products of non-negative matrices.

For each p ≥ 0 and each n > p we define the following matrix products, which

will be useful in the sequel:

Πn,p(k) = Mn−1P
k
n−1 · · ·Mp+1P

k
p+1MpP

k
p ,

Π′n,p = Mn−1P̄n−1 · · ·Mp+1P̄p+1MpP̄p , (2.14)

Π̄n,p = M̄n−1 · · · M̄p+1M̄p

and we have the following expression for the original and aggregated system in

terms of the vector of initial conditions:

original system: Xn = Πn,0(k)X0 ,

auxiliary system: Xn = Π′n,0X0 , (2.15)

aggregated system: Yn = Π̄n,0Y0 .

For each n, let the eigenvalues of Pn (i.e. the union of the eigenvalues of the

Pi(n)) ordered by decreasing modulus be

1 = λ1(n) = · · · = λq(n) > |λq+1(n)| ≥ · · · ≥ |λN (n)| ,

and let δ verify the condition

δ = 1 if supn{|λq+1(n)|} = 1

1 > δ > supn{|λq+1(n)|} if supn{|λq+1(n)|} < 1 .
(2.16)

From this definition we see that δ is greater than the modulus of the subdomi-

nant eigenvalue of matrices Pn. Then we have:

Proposition 1. For all n we have Pk
n = P̄n + o(δk); k → ∞, where δ is given

by (2.16).

Proof. Let n be fixed and let us consider a Jordan canonical decomposition of Pn.

Eigenvalue 1 is simple and strictly dominant for each of the Pi(n) and is associated
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to right and left eigenvectors vi(n) and ui(n). Therefore, for matrix Pn eigenvalue

1 is strictly dominant, semisimple and has multiplicity q. Besides, the columns

of Vn and the rows of Un are bases of its associated right and left eigenspaces,

respectively. Since UnVn = Iq, a Jordan decomposition of Pn with eigenvalues

ordered by decreasing modulus will have the form

Pn = (Vn|V′n) diag(Iq,Hn)

(
Un

U′n

)
,

where V′n and U′n are appropriate matrices and Hn corresponds to Jordan blocks

associated to eigenvalues λq+1(n), . . . , λN (n) (of modulus strictly less than δ).

Therefore, taking into account that P̄n = VnUn we have

Pk
n = P̄n + (Vn|V′n) diag(0,Hk

n)

(
Un

U′n

)
,

from where

Pk
n − P̄n

δk
= (Vn|V′n) diag

(
0,

(
Hn

δ

)k)(
Un

U′n

)
,

and the desired result follows taking limits k →∞.

The following proposition provides a relationship between the micro and the

macrovariables and, besides, characterizes the relationship between the matrix

products in (2.14).

Proposition 2. Let p ≥ 0 and n ≥ p. Then:

(a) Π′n+1,p = MnVnΠ̄n,pUp, Π̄n,p = UnΠ
′
n,pVp

(b) Πn,p(k) = Π′n,p + o(δk), k →∞
where δ is given by (2.16)

(c) the variables Xn and Yn corresponding to the general and aggregated systems

respectively verify

Xn+1 = MnVnYn + o(δk) , k →∞
Yn = Un+1Xn + o(δk) , k →∞ .

(2.17)

Proof. (a) We know that Π′n,p = Mn−1P̄n−1 · · ·Mp+1P̄p+1MpP̄p. Multiplying

on the left by Un, on the right by Vp and bearing in mind Lemma 1 we have

UnΠ
′
n,pVp = UnMn−1Vn−1Un−1 · · ·Mp+1Vp+1Up+1MpVpUpVp

= M̄n−1 · · · M̄p+1M̄p = Π̄n,p ,

as we wanted to show. On the other hand, from Π̄n,p = UnΠ
′
n,pVp we have,

multiplying on the left by MnVn and on the right by Up,

MnVnΠ̄n,pVpUp = MnVnUnΠ
′
n,pVpUp = MnP̄nΠ

′
n,pP̄p

= MnP̄nMn−1P̄n−1 · · ·Mp+1P̄p+1MpP̄pP̄p = Π′n+1,p .
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(b) Let n and p be fixed. Using Proposition 1 we have

Πn,p(k) = Mn−1P
k
n−1 · · ·Mp+1P

k
p+1MpP

k
p

= Mn−1(P̄n−1 + o(δk)) · · ·Mp+1(P̄p+1 + o(δk))Mp(P̄p + o(δk))

= Π′n,p + Fn,p(k) ,

where Fn,p(k) is a sum of 2n−p−1− 1 factors in which each of them is o(δk), so the

result follows.

(c) Trivial consequence of (a) and (b) since for the original system,

Xn+1 = Πn+1,0(k)X0 = (Π′n+1,0 + o(δk))X0 = MnVnΠ̄n,0U0X0 + o(δk)

= MnVnΠ̄n,0Y0 + o(δk) = MnVnYn + o(δk) .

On the other hand,

Yn = Un+1Π
′
n,0X0 = Un+1(Πn,0(k) + o(δk))X0 = Un+1Xn + o(δk) .

For each time step, and if the separation between the two time scales is suf-

ficiently large, the incidence matrices corresponding to the original and auxiliary

systems are the same, as the next result shows.

Lemma 4. There exists a positive integer k0 such that for all k ≥ k0 we have

P̄n ∼ Pk
n (and therefore MnP̄n ∼MnP

k
n) for all n.

Proof. Let i be fixed. Since Pi(n) is primitive for all n we have Pk
i (n) > 0 for all

k ≥ N2
i − 2Ni + 2.20 Since P̄i(n) is a positive matrix, if we choose k0 = N2

max −
2Nmax + 2, where Nmax = max{N1, . . . , Nq}, it follows that P̄i(n) ∼ Pk

i (n) for all

k ≥ k0, all i and all n.

2.4. Aggregation of a non-autonomous multiregional model

In this section we illustrate with some applications the aggregation procedure con-

sidered in the preceding sections. We will consider the case of non-autonomous

multiregional models. We will show how, in some practical cases found in the liter-

ature, we can distinguish two time scales that make possible the use of aggregation

in order to simplify the corresponding model.

Multiregional models consider the dynamics of an age structured population

distributed among different spatial patches among which they can migrate. These

models have been used with profusion in Ref. 32 among other authors for the study

of human populations. A list of ecological applications can be found in Refs. 10

and 27.

In contrast with these references, that do not explicitly consider the existence

of different time scales, some approaches6–8,12,34 have considered that, as is usual

in many situations, migration is fast in comparison with the demographic process.

In our first application we aggregate a multiregional model under this hypothesis.
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2.4.1. Aggregation of a multiregional model with fast migration

We suppose that the population under study is divided into q age classes (corre-

sponding to groups) and spread out in r spatial patches (subgroups) among which

individuals may migrate. In this way, the population is structured in qr stages, each

of them corresponding to an age class and a spatial location.

The demographic and migratory processes are responsible for the transference

of individuals between the different stages. In this application we suppose that

migration is a fast process in comparison with demography, and we choose as time

step ∆n = [n, n+ 1) for the model the duration of each age class.

We will denote by xijn the number of individuals of age i in the jth spatial

patch at time n, with i = 1, 2, . . . , q and j = 1, 2, . . . , r. We use vectors xin =

(xi1n , x
i2
n , . . . , x

ir
n ) ∈ Rr (i = 1, 2, . . . , q), to describe the spatial allocation of

individuals in age class i. The population will be described by vector Xn =

(x1
n,x

2
n, . . . ,x

q
n)

T ∈ Rrq. For each i and each interval ∆n, migration for individuals

of age i is modeled by a matrix Pi(n) ∈ Rr×r which, since migration is a conserva-

tive process for the total number of individuals, is stochastic. Besides we suppose

that Pi(n) is primitive for each i and each n (this is the case, for example, if the

fast process corresponding to each ∆n verifies (i) transition from any patch to any

other, in a sufficient number of steps, is allowed and (ii) individuals of at least one

patch are allowed to stay in that patch).

In this way, each Pi(n) is primitive and, if the duration of each age class is

sufficiently long with respect to the projection interval of migration, the migra-

tory process in each ∆n will tend to an equilibrium. Let vi(n) be the vector that

provides the equilibrium structure of the population for group i, i.e. the positive

eigenvector of Pi(n) associated to eigenvalue 1 and normalized so that the sum of

its components is one. Notice that, since the Pi(n) are stochastic, the left eigen-

vectors associated to eigenvalue one and verifying (2.4) are independent of n and

have the form ui = (1, 1, . . . , 1)T ∈ Rr. So we have Vn = diag(v1(n), . . . ,vq(n));

U = Un = diag(uT
1 , . . . ,u

T
q ). Migration for the whole of the population is given,

for each ∆n, by matrix Pn = diag(P1(n), . . . ,Pq(n)).

The demographic process is defined through the following coefficients:

Fertility coefficients: F ji (n) = fertility rate for individuals of age i in patch j

during interval ∆n; i = 1, . . . , q; j = 1, . . . , r.

Survival coefficients: Sji (n) = fertility rate for individuals of age i in patch j

during interval ∆n; i = 1, . . . , q − 1; j = 1, . . . , r.

We define matrices

Fi(n) = diag(F 1
i (n), . . . , F ri (n)) , i = 1, . . . , q

and

Si(n) = diag(S1
i (n), . . . , Sri (n)) , i = 1, . . . , q − 1 ,

and then demography for the whole of the population is characterized, for each ∆n,

by the following generalized Leslie matrix:
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Mn =



F1(n) F2(n) · · · Fq−1(n) Fq(n)

S1(n) 0 · · · 0 0

0 S2(n) · · · 0 0

...
...

. . .
...

...

0 0 · · · Sq−1(n) 0


. (2.18)

The general system consists, then, of the following system of rq difference

equations:

Xn+1 = MnP
k
nXn , (2.19)

where k can be interpreted as the ratio between the projection intervals correspon-

ding to the demographic and migratory processes.

According to (2.9) we will have q global variables, each of them corresponding

to an age class, given by

yin = uT
i xiTn = xi1n + xi2n + · · ·+ xirn , i = 1, . . . , q ,

i.e. for a given instant n, the global variable corresponding to each class i is the

total population with that age.

The aggregated system has the form

Yn+1 = M̄nYn , (2.20)

where M̄n is a Leslie matrix with time varying vital rates given by

M̄n =



f1(n) f2(n) · · · fq−1(n) fq(n)

s1(n) 0 · · · 0 0

0 s2(n) · · · 0 0

...
...

. . .
...

...

0 0 · · · sq−1(n) 0


. (2.21)

The vital rates in (2.21) have the form

fi(n) = uT
i Fi(n)vi(n) =

r∑
j=1

vji (n)F ji (n) , i = 1, . . . , q ,

si(n) = uT
i+1Si(n)vi(n) =

r∑
j=1

vji (n)Sji (n) , i = 1, . . . , q − 1 ,

i.e. each fertility rate fi(n) in the aggregated system is a weighted linear combi-

nation of the fertility rates in the general system corresponding to individuals of

age class i and time n, the weights being the coefficients vji (n) of the equilibrium

spatial distribution for the migratory process in ∆n. Something analogous holds for

the survival rates.
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Notice that fi(n) is nonzero if and only if Fi(n) is. In the same way, si(n) is

nonzero if and only if Si(n) is.

In order to illustrate the above discussions we will particularize them to a very

simple case in which there are only two patches and two age classes. Then the

matrices Mn and Pn that characterize demography and migration are given by

Mn =


F 1

1 (n) 0 F 1
2 (n) 0

0 F 2
1 (n) 0 F 2

2 (n)

S1(n) 0 0 0

0 S2(n) 0 0

 ,

Pn = diag(P1(n),P2(n)) =


1− p1(n) q1(n) 0 0

p1(n) 1− q1(n) 0 0

0 0 1− p2(n) q2(n)

0 0 p2(n) 1− q2(n)

 ,

where p1(n) and p2(n) denote migration rates at time n for individuals of age class 1

and 2, respectively, from patch 1 to patch 2, and q1(n) and q2(n) have an analogous

meaning for the migration from patch 2 to patch 1. S1(n) and S2(n) denote survival

rates for age class one in patches 1 and 2 respectively.

If we assume that all the migration rates are different from 0 and 1, then matrices

P1(n) and P2(n) are positive and, consequently, primitive. Vectors vi(n) and ui
are given by

vi(n) =

(
qi(n)

pi(n) + qi(n)
,

pi(n)

pi(n) + qi(n)

)T

, i = 1, 2 , u1 = u2 = (1, 1)T ,

so that the general system has the expression
x11
n+1

x12
n+1

x21
n+1

x22
n+1

 = MnP
k
n


x11
n

x12
n

x21
n

x22
n

 ,

and the global variables are

y1
n = uT

1 (x11
n , x

12
n )T = x11

n + x12
n ,

y2
n = uT

2 (x21
n , x

22
n )T = x21

n + x22
n .

The aggregated model has the following form

(
y1
n+1

y2
n+1

)
=


q1(n)F 1

1 (n) + p1(n)F 2
1 (n)

p1(n) + q1(n)

q2(n)F 1
2 (n) + p2(n)F 2

2 (n)

p2(n) + q2(n)

q1(n)S1(n) + p1(n)S2(n)

p1(n) + q1(n)
0


(
y1
n

y2
n

)
.
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2.4.2. Aggregation of a multiregional model with fast demography

In some practical cases found in the literature, demography can be considered a

fast process in relation to migration. Investigating the dynamics of the popula-

tion of Canada and Great Britain, Refs. 25 and 26 have shown, both empirically

and analytically, that the tendency of a multiregional population projection to a

fixed asymptotic distribution takes place in two stages: First, a relatively rapid

convergence to the stable age compositions in each region and, second, a gradual

convergence towards a stable interregional allocation of the national population.

This suggests, as Rogers points out in Refs. 31 and 32, the use of aggregation tech-

niques (in which the role of the fast dynamics will be played by the demographic

process) in order to simplify the multiregional system

Therefore, we will now consider a multiregional model with demographic and mi-

gratory coefficients depending on time and in which the demographic process is fast

in comparison with migration. We will first setup the general situation and then we

will particularize it to a very simple case that will illustrate the methodology used.

As in the application above, we suppose a population structured by age and

patch living in an environment composed of q patches (which in this case correspond

to the different groups) and divided in r discrete age classes (subgroups). We will

denote by xijn the number of individuals of age j living in patch i at time n, with

i = 1, . . . , q and j = 1, . . . , r. The variables corresponding to patch i are given by

vector xin = (xi1n , x
i2
n , . . . , x

ir
n ) and the whole population is described by vector Xn =

(x1
n,x

2
n, . . . ,x

q
n)T which therefore has rq components. Notice that the notation for

this application has a different meaning from the previous one. This is a consequence

of the fact that now the fast and slow processes are interchanged with respect to

those corresponding to the first application.

We choose as time step ∆n = [n, n + 1) for the model, the one corresponding

to the migratory process. The characteristics of migration between the different

patches are given, for each ∆n, by the following coefficients:

mj
kl(n) = rate of transference of individuals of age j from patch l to patch k,

during interval ∆n; k, l = 1, . . . , q; j = 1, . . . , r.

These coefficients must satisfy the obvious restrictions 0 ≤ mj
kl(n) for all k, l

and
∑q
k=1 m

j
kl(n) = 1 for all l, j and n. From the last expression we have mj

ll(n) =

1−
∑q
k 6=lm

j
kl(n) for all l, j and n, i.e. the qr rates that characterize the proportion

of the population that does not leave the corresponding patch are determined by

the remaining (q − 1)qr migration rates.

Therefore, migration for the whole population at time n is defined by the

following matrix of dimensions qr × qr.

Mn =


M11(n) M12(n) · · · M1q(n)

M21(n) M22(n) · · · M2q(n)

...
...

. . .
...

Mq1(n) Mq2(n) · · · Mqq(n)

 ,
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where matrix Mkl(n) ∈ Rr×r characterizes the transference of individuals from

patch l to patch k at time n, and is given by

Mkl(n) = diag(m1
kl(n),m2

kl(n), . . . ,mr
kl(n)) for k, l = 1, . . . , q .

Notice that, as it must be the case for a conservative process, each Mn is a stochastic

matrix.

Demography is an internal process for each patch. We assume that the fertility

and survival coefficients are allowed to vary only with each time step corresponding

to migration. Therefore, for each time step of the demographic process belonging

to ∆n, the demography for each patch i will be given by a Leslie matrix Pi(n) in

the following way:

Pi(n) =



F 1
i (n) F 2

i (n) · · · F r−1
i (n) F ri (n)

S1
i (n) 0 · · · 0 0

0 S2
i (n) · · · 0 0

...
...

. . .
...

...

0 0 · · · Sr−1
i (n) 0


∈ Rr×r , (2.22)

where the vital rates have the classical interpretation, i.e.

F ji (n) = fertility rate of individuals of age j in patch i at time n .

Sji (n) = survival rate of individuals of age j in patch i at time n.

We will assume that (i) all the survival rates are nonzero, i.e. Sji (n) 6= 0 for all

i, j and n. (ii) for all patches and all times, the fertility coefficient of the last age

class is nonzero, i.e. F ri (n) 6= 0 for all i and n. (iii) for all n, given any patch i,

there is an age j such that F ji (n) 6= 0 and g.c.d. (r, j) = 1. These three conditions,

which are usually met in most practical situations, guarantee that for all i and

n matrices Pi(n) are primitive. Therefore, if ∆n is large enough with respect to

the projection interval corresponding to migration, the demographic process in all

patches and all ∆n tends to a steady structure. Besides, if we assume that, for all i

and n, the dominant eigenvalue of Pi(n) is one, then the demography in each patch

makes the individuals change age classes but does not make the total population

of the patch grow indefinitely or decay to zero. This last assumption is reflected

in the requirement that the vital rates of Pi(n) satisfy the following equality (see

Ref. 10): For i = 1, . . . , q and n = 0, 1, . . . ,

F 1
i (n) + F 2

i (n)S1
i (n) + · · ·+ F ri (n)S1

i (n)S2
i (n) · · ·Sr−1

i (n) = 1 .

We denote vi(n) the vector expressing the equilibrium population structure

corresponding to patch i in interval ∆n, i.e. the positive probability normed eigen-

vector of Pi(n) associated to eigenvalue 1. We also define ui(n) as the (positive) left

eigenvector of Pi(n) associated to 1 and normalized so uT
i (n)vi(n) = 1; this vector

characterizes the reproductive values of the individuals for the demographic process
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in patch i and time ∆n. For each j, uji (n) measures the relative contribution that

individuals of patch i initially present in age j would have in the total equilibrium

population of group i at the end of ∆n if the system were controlled exclusively by

demography and started to evolve at time n. The explicit expressions for vectors

ui(n) and vi(n) in terms of the vital rates in patch i can be found in Ref. 10.

The demography for the whole population will be defined by matrix

Pn = diag(P1(n),P2(n), . . . ,Pq(n)) .

Following the general method described in previous sections we also define matrices

Vn = diag(v1(n),v2(n), . . . ,vq(n)) and Un = diag(uT
1 (n),uT

2 (n), . . . ,uT
q (n)).

In order to approximate the effect of demography over the time interval of the

model, which is much longer than its own projection interval, we suppose that

during each interval ∆n matrix Pn operates k times, where k is a large integer.

Therefore, the proposed model will be the following system of qr difference equations

Xn+1 = MnP
k
nXn .

Following the procedure proposed in Sec. 2.2 we will have q variables (global

variables or macro variables), one for each of the patches, governing the aggregated

system. These variables are given by:

yin = uT
i (n)xiTn = u1

i (n)xi1n + u2
i (n)xi2n + · · ·+ uri (n)xirn , i = 1, . . . , q ,

i.e. the global variable corresponding to patch i is a linear combination of the

microvariables of patch i, the coefficient of each microvariable xijn being proportional

to the reproductive values of individuals of age j in that patch.

The aggregated system (2.10) has the form:

Yn+1 = M̄nYn ,

where matrix M̄n is given by (2.11):

M̄n =



r∑
j=1

uj1(n+ 1)vj1(n)mj
11(n) · · ·

r∑
j=1

uj1(n+ 1)vjq(n)mj
1q(n)

...
. . .

...

r∑
j=1

ujq(n+ 1)vj1(n)mj
q1(n) · · ·

r∑
j=1

ujq(n+ 1)vjq(n)mj
qq(n)


.

As we can see, the entries of the matrix of the aggregated system are functions

of the migration rates as well as the equilibrium characteristics of demography. We

have collapsed the original system into the aggregated system in which the popu-

lation is structured only by patch and in which each macro variable corresponds to

one patch.

In order to illustrate the above discussions we will particularize them to a simple

case in which there are only two spatial patches and two age classes. Under these
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assumptions we have four microvariables x11
n , x12

n , x21
n , x22

n and matrices Mn and

Pn are given by

Mn =


1− p1(n) 0 q1(n) 0

0 1− p2(n) 0 q2(n)

p1(n) 0 1− q1(n) 0

0 p2(n) 0 1− q2(n)

 ,

Pn =


F 1

1 (n) F 2
1 (n) 0 0

S1(n) 0 0 0

0 0 F 1
2 (n) F 2

2 (n)

0 0 S2(n) 0

 ,

where the vital rates have the same meaning as in the previous application.

The restrictions on the vital rates so that matrices P1(n) and P2(n) have domi-

nant eigenvalue 1 are F 1
1 (n)+F 2

1 (n)S1(n) = 1 and F 1
2 (n)+F 2

2 (n)S2(n) = 1. Besides,

we will suppose that all the fertility and survival rates are always positive, which

yields the primitivity of matrices P1(n) and P2(n). Vectors vi(n) and ui(n) are

given by

v1(n) =

(
1

1 + S1(n)
,

S1(n)

1 + S1(n)

)T

, v2(n) =

(
1

1 + S2(n)
,

S2(n)

1 + S2(n)

)T

,

u1(n) =
1 + S1(n)

1 + F 2
1 (n)S1(n)

(1, F 2
1 (n))T , u2(n) =

1 + S2(n)

1 + F 2
2 (n)S2(n)

(1, F 2
2 (n))T .

The microsystem has the form
x11
n+1

x12
n+1

x21
n+1

x22
n+1

 = MnP
k
n


x11
n

x12
n

x21
n

x22
n

 ,

and the global variables y1
n and y2

n corresponding, respectively, to patches 1 and 2

are defined by

y1
n = uT

1 (n)(x11
n , x

12
n )T =

1

1 + F 2
1 (n)S1(n)

(x11
n + F 2

1 (n)x1
n2)

y2
n = uT

2 (n)(x21
n , x

22
n )T =

1

1 + F 2
2 (n)S2(n)

(x21
n + F 2

2 (n)x22
n ) ,

while the aggregated system reads as(
y1
n+1

y2
n+1

)
= M̄

(
y1
n

y2
n

)
,
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with

M̄=


1+S1(n+ 1)

1 + S1(n)

p′1(n)+F 2
1 (n+ 1)S1(n)p′2(n)

1 + F 2
1 (n+ 1)S1(n+ 1)

(1+S1(n+ 1))(q1(n) + F 2
1 (n+ 1)S1(n)q2(n))

(1 + S2(n))(1 + F 2
1 (n+ 1)S1(n+ 1))

(1+S2(n + 1))(p1(n) + F 2
2 (n+ 1)S1(n)p2(n))

(1 + S1(n))(1 + F 2
2 (n+ 1)S2(n+ 1))

1+S2(n+ 1)

1 + S2(n)

q′1(n) + F 2
2 (n+ 1)S2(n)q′2(n)

1 + F 2
2 (n+ 1)S2(n+ 1)

 ,

where, for the sake of compactness, we have denoted p′(n) = 1− p(n) and q′(n) =

1− q(n).

3. Non-Autonomous Systems and Weak Ergodicity

Let us consider a generic linear time discrete model for a stage-structured popula-

tion withN stages, in which the conditions of the environment are changing through

time. We will therefore deal with a system of difference equations with non-constant

coefficients of the kind (2.13), where zn ∈ RN and An ∈ RN×N (n = 0, 1, . . .), are

non-negative matrices which represent the vital rates of the population in the dif-

ferent environmental conditions. Let us denote by ‖ ∗ ‖ the 1-norm in RN , i.e. if

z = (z1, z2, . . . , zN)T we have ‖z‖ = |z1|+ |z2|+ · · ·+ |zN |. Then, the total popula-

tion of system (2.13) at time n is ‖zn‖ and the population structure at time n will

be given by zn/‖zn‖. Given any initial condition z0 6= 0, the population vector for

any time n ≥ 0 is zn = Tnz0, where

Tn = An−1 · · ·A1A0 ,

and so the population structure at time n will be defined by Tnz0/‖Tnz0‖.
The type of study we are interested in for a system of the kind (2.13) depends

on the pattern of environmental variation. A typical case is the one corresponding

to periodical variation, i.e. An+T = An for all n. The population eventually grows

exponentially and typically the asymptotic population structure oscillates among

T vectors.10

Another interesting situation appears when the environment tends to stabiliza-

tion, i.e. there exists a matrix A which represents the environment at equilibrium,

such that limn→∞An = A. In that case it can be shown (see Ref. 34) that under

some very general conditions, the system behaves asymptotically as if the environ-

ment were constant and defined by matrix A. In particular, the population grows

asymptotically in an exponential fashion and the population structure converges

to a certain vector which is independent of initial conditions, i.e. for all z0 6= 0,

z0 ≥ 0, it follows limn→∞ zn/‖zn‖ = v for a certain v. This property of the sys-

tem, by which there is a convergence of the population structure to a fixed vector

independent of the initial conditions, is known as “strong ergodicity”. It implies

that the system “forgets its past” in the sense that, for sufficiently high times, the

population structure tends to a fixed vector independent of the initial condition.

In Ref. 34 the authors have investigated the relationships between the original and

the aggregated systems in the cases in which the environment varies in a periodic

fashion or tends to stabilization.
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In the case in which the environment changes with time in a general fashion,30 it

is not possible to expect that the population grows exponentially or that population

structure converges to a certain vector. However, under quite general circumstances,

the population structure also “forgets its past” in the sense that two different

initial populations, subjected to the same sequence of environmental variation, have

structures that become more and more alike (even though they do not necessarily

converge). In other words, system (2.13) is weakly ergodic when, for any nonzero

initial conditions z0 and z′0 we have

lim
n→∞

∥∥∥∥ Tnz0

‖Tnz0‖
− Tnz

′
0

‖Tnz′0‖

∥∥∥∥ = 0 , (3.23)

and therefore the structure of the population vector asymptotically becomes inde-

pendent of the nonzero initial conditions.

When this property, denoted “weak ergodicity”, holds, the population structure

for sufficiently high times will be determined by the recent history of vital rates.

The importance of weak ergodicity lies in the fact that, in the absence of some kind

of ergodic result, the explanation of population structure at a given time would

require an explanation of the initial population, i.e. we would need to know its

prior age structures indefinitely into the past.17 The rest of this paper is devoted to

establishing relationships between this property of weak ergodicity for the original

and aggregated systems.

The weak ergodicity of certain age structured populations was first demon-

strated in Ref. 28 and has been extended to general time discrete systems using

the so-called “contractive property” of multiplication by positive matrices.16,19,37

More recently, some results have been proved concerning weak ergodicity for certain

systems in continuous time.21,38 In Ref. 23 an experimental study of weak ergodicity

in human populations is considered in which it is shown that, in several practical

situations, the knowledge of (approximately) 75 years prior to a given instant com-

pletely determine, at practical effects, the population structure at that time. Weak

ergodicity also plays an important role in the study of stochastic systems15,17 in

which it has to do with the capacity of the probability distribution of the population

structure to become independent of initial conditions.

In our approach, and in other works in the field of population dynamics17,18,23,28

weak ergodicity has to do with the capacity of the system to become independent of

conditions at time 0. Most of the mathematical approaches to weak ergodicity16,19,37

are slightly different in the sense that in them weak ergodicity means the capacity

of the system to become independent of the conditions of the system at any time

and not only of initial conditions

In order to study the weak ergodicity of a system, it is customary to use a mathe-

matical tool called “projective distance”.18,37 This is a pseudometric that measures

the distance between positive vectors attending to their relative composition, i.e. it

is independent of their size and only depends on the structure of the vectors under

consideration. Related to the projective distance is the “ergodicity coefficient” of a
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non-negative matrix, that loosely speaking measures the capacity of the matrices

to act contractively in this metric.

For the interested reader, the Appendix contains some mathematical details and

references about these matters. Most of the mathematical theory involved in the

study of weak ergodicity can be found in the work of E. Seneta.37

In order to study the ergodicity of a system using the projective distance and

the ergodicity coefficient as a tool, it is usual to slightly modify the definition given

by (3.23). In particular, the attention is restricted to systems in which the An are

allowable matrices. We adopt as definition of weak ergodicity the following one19,37:

Definition 1. Let An be a sequence of N ×N allowable matrices. The products

Tn = [tijn ] are weakly ergodic or, equivalently, system (2.13) is weakly ergodic, when

there exists a sequence of N ×N positive matrices of rank one Sn = [sijn ] such that

lim
n→∞

tijn

sijn
= 1 for all i, j = 1, 2, . . . , N . (3.24)

It is straightforward to check that condition (3.24), which can be paraphrased

saying that the columns of Tn asymptotically become positive and proportional,

implies (3.23). Notice that a necessary condition for the weak ergodicity of system

(2.13) is that the products Tn become positive for large enough n.

Necessary and sufficient conditions on the matrices An for weak ergodicity to

hold are not known. The following theorem, essentially E. Seneta’s Theorem 3.3 in

Ref. 37, gives very general sufficient conditions for weak ergodicity which hold in

many practical situations for populations and are easy to check in practice. Besides,

those sufficient conditions guarantee that the system forgets its past in a “geometric

fashion”, concept that is made clear in the Appendix.

We will adopt the notation min+(A) and max(A) to denote, respectively, the

smallest positive element and the largest element of A.

Theorem 1. Let An be a sequence of matrices such that:

(a) the An are allowable.

(b) the positive entries of the An are bounded away from zero and infinity, i.e. there

exist positive constants c ≤ d such that min+(An) ≥ c and max(An) ≤ d for

all n.

Then, if there exists a positive integer t such that for all m = 0, 1, 2, . . . we

have

A(m+1)t−1 · · ·Amt+1Amt > 0

(in the sequel condition (D)), it follows weak ergodicity for system (2.13).

Proof. This theorem is essentially Seneta’s Theorem 3.3 in Ref. 37. In our case

the definition of weak ergodicity corresponds to that of the “backwards products”

of Seneta making p = 0. Seneta’s condition (ii) follows trivially if our condition
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(b) is met, and Seneta’s condition (i) for p = 0 is our condition (D). The same

reasoning as Seneta’s shows that there exists δ < 1 such that for all m we have

τ(A(m+1)t−1 · · ·Amt+1Amt) < δ and therefore 0 ≤ limn→∞ τ(AnAn−1 · · ·A0) ≤
limn→∞ δ[n/t] = 0 ([∗] denotes integer part) as we wanted to show.

Condition (a) can be interpreted by saying that in system (2.13) the following

two conditions hold: For all n, if the population is nonzero at time n, it will be

nonzero at time n + 1, and if at time n there are individuals in all stages (zn is

positive), the same thing happens at time n+ 1.

Condition (D), which gives (a) and (b) guarantees the weak ergodicity of the

system, can be interpreted in the following way: There exists a positive integer t

such that any individual initially present in the population is allowed to be in any

stage by time t. In the same way, any of these individuals present at time t are

allowed to be in any stage by time 2t, and so on.

Notice that, in particular, condition (D) is satisfied if matrices An are bounded

between two primitive matrices, i.e. there exist primitive matrices C and D such

that

C ≤ An ≤ D for all n . (3.25)

In the rest of this work we will use the term “ergodicity” to denote weak

ergodicity.

4. Weak Ergodicity for the Original and Aggregated Systems

In this section we obtain results that relate the ergodicity property of the original

system (2.3) to that of the aggregated system (2.10). We will prove that in very

general situations, the sufficient conditions for ergodicity established by Theorem 1

hold simultaneously for the general and aggregated systems assuming that the se-

paration between the two time scales is sufficiently high. More precisely, we will

show that, given properties (a) and (b) of Theorem 1 hold for both systems, then

condition (D) regarding the “positivity of the product of a consecutive number of

matrices” is satisfied simultaneously for both systems.

We will impose the following two starting hypotheses on our system:

H1. The nonzero entries of matrices Mn and Pn are bounded away from zero

and infinity, i.e. there exist positive constants ε, K, ε′ and K ′ such that for all n

we have

min+(Mn) ≥ ε , min+(Pn) ≥ ε′

max(Mn) ≤ K , max(Pn) ≤ K ′ .

H2. For each n, Mn is row allowable and “blockwise column allowable”.

We say that Mn is “blockwise column allowable“ when for all j = 1, . . . , q there

exists i = i(j) such that Mij(n) 6= 0. Notice that H2 can be interpreted by saying
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that for all n the slow process verifies: (a) for all i = 1, 2, . . . , q and j = 1, 2, . . . , Ni,

there exists at least one allowed transition towards subgroup j of group i and (b)

for all j = 1, . . . , q there is at least one allowed transition from group j to any other

group (possibly also group j).

The next proposition shows that under condition H1, the positive entries corre-

sponding to the general and aggregated systems are bounded away from zero and

infinity (condition (b) of Theorem 1). It is also shown that conditionH2 is necessary

and sufficient for the matrices of the original and aggregated systems to be allowable

(condition (a) of Theorem 1) for a separation of time scales sufficiently high.

Proposition 3. (a) Assume H1 holds and k is fixed. Then there exist positive

constants a, b, c and d such that for all n we have

min+(MnP
k
n) ≥ a , min+(M̄n) ≥ c ,

max(MnP
k
n) ≤ b , max(M̄n) ≤ d .

(b) Let n be fixed. Matrices M̄n and MnP
k
n are allowable for k large enough if and

only if Mn is row allowable and blockwise column allowable.

Proof. (1) First, we will prove that the set of right and left eigenvectors for the

Pi(n) defined by conditions (2.4) has entries bounded away from zero and infinity.

Let η, φ > 0 and let A be the set constituted by the primitive matrices of size r×r,
with spectral radius equal to one and such that for all A ∈ A is min+(A) ≥ η and

max(A) ≤ φ (*). In order to demonstrate that A is a compact set, it is sufficient to

show that it is closed, for it is obviously bounded. If (An) is a Cauchy sequence of

matrices belonging to A, it converges in Rr×r+ to a certain matrix A. Because of the

continuity of eigenvalues as functions of the entries of the corresponding matrix, it

must be ρ(A) = 1. Besides, A must verify conditions (*). Next, conditions (*) and

the convergence of An imply that, from a certain n0 on, An ∼ A, so A must be

primitive. In conclusion, A is a compact set.

We define the mapping f : A → R in the following way: f(A) = max(v), where

v is the positive eigenvector of A associated to one and normalized so that it is

unitary in norm one. This is a continuous mapping, for normalized eigenvectors as-

sociated to simple eigenvalues are continuous functions of the entries of the matrix

and the mapping max(v) is continuous. Since f is continuous in a compact set it

reaches its maximum and minimum in that set, so there exists ρ such that if A ∈ A,

then max(v) ≤ ρ. A similar reasoning for the mapping g(A) = min(v) leads to the

conclusion that there exists a positive ρ′ such that min(v) ≥ ρ′ for A ∈ A. Pro-

ceeding in a similar way we can guarantee that the largest and smallest entries for

the left eigenvalues of matrices from A associated to one and verifying any normal-

ization condition are bounded away from zero and infinity. Since all matrices Pi(n)

belong to A, for i = 1, . . . , q and n = 0, 1, . . . , then H1 guarantees that vectors

vi(n) and ui(n) verify the desired boundedness conditions. As a consequence, the

nonzero elements of Vn and Un are bounded away from zero and infinity.
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It is straightforward to check the validity of the following result: If A ∈ Rt×r and

B ∈ Rr×l are non-negative and AB 6= 0, then min+(AB) ≥ min+(A)min+(B) and

max(AB) ≤ rmax(A)max(B). So, if matrices A and B belong to a set T for which

there exist positive constants a and b such that min+(A) ≥ a and max(A) ≤ b for

A ∈ T , then min+(AB) ≥ a2 and max(A) ≤ rb2 for all A,B ∈ T . The results

follow then as a consequence of H1 just taking into account that k is fixed, that

P̄n = VnUn and that the nonzero elements of Vn and Un are bounded away from

zero and infinity.

(2) Let n be fixed. (a) First, we will show that Mn is row allowable if and only if

MnP̄n also is. If Mn is row allowable, then for all i = 1, . . . , q and l = 1, . . . , Ni there

exists j = j(i, l) ∈ {1, . . . , q} andm = m(i, l) ∈ {1, . . . , Nj} such that element (l,m)

of Mij(n) is nonzero. Bearing in mind (2.8) and the fact of matrices P̄j(n) being

positive, row l of Mij(n)P̄j(n) is positive and therefore MnP̄n is row allowable.

Reciprocally, if MnP̄n is row allowable then for i = 1, . . . , q and l = 1, . . . , Ni
there exists j = j(i, l) ∈ {1, . . . , q} and m = m(i, l) ∈ {1, . . . , Nj} such that the

element (l,m) of Mij(n)P̄j(n) is nonzero which implies that row l of Mij(n) must

be nonzero. So Mn is row allowable. (b) Lemma 3 guarantees that M̄n is row

allowable if Mn is.

(c) We will now show that MnP̄n is column allowable if and only if Mn is

blockwise column allowable. If for all j = 1, . . . , q there exists i = i(j) such

that Mij(n) 6= 0 then, since P̄j(n) is positive, Mij(n)P̄j(n) is column allow-

able. Therefore MnP̄n is column allowable. Reciprocally, if all Mij(n) were zero

for some j, then it would be Mij(n)P̄j(n) = 0 for all j and then MnP̄n

would not be column allowable. (d) Lemma 3 guarantees that M̄n is column

allowable if and only if Mn is blockwise column allowable. The result now

follows just taking into account Proposition 4, since P̄n ∼ Pk
n for k large

enough.

Therefore, Theorem 1 guarantees that, given H1 and H2, property (D) for the

original (aggregated) system is sufficient for the ergodicity of the original (aggre-

gated) system. The next proposition relates the ergodicity of systems (2.3) to that

of (2.10) and is based on the fact that under conditions H1 and H2, property (D)

verifies simultaneously for both systems.

Proposition 4. Assume hypotheses H1 and H2 hold. Then:

(1) The aggregated system verifies condition (D) if and only if the original system

verifies property (D) for k large enough.

(2) As a consequence, property (D) for the aggregated system implies that both the

aggregated and general systems (for k large enough) are weakly ergodic (in a

geometric fashion, see the Appendix).

Proof. Assume H2 holds. First, we will prove two preliminary results:
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(i) if Πp+t,p(k) > 0 for some t, p and k large enough, then Π̄p+t,p > 0. Indeed,

since Π̄p+t,p = Up+tΠ
′
p+t,pVp, the result follows taking into account that the

Un and Vn are allowable and using Lemma 4.

(ii) if Π̄p+t,p > 0 for some t and p, then Πp+t+1,p(k) > 0 for k large enough. Indeed,

we have (Proposition 2) Π′p+t+1,p = Mp+tVp+tΠ̄p+t,pUp. Since the Mn and

the Vn are row allowable, so is their product. Therefore Mp+tVp+tΠ̄p+t,p > 0

and since Up is column allowable, Π′p+t+1,p > 0. The desired result now follows

from Lemma 4.

(1) Now, let us suppose that system (2.3) verifies condition (D), i.e. there

exists t such that for k large enough, Π(m+1)t,mt(k) > 0 for all m. Then using

(i), Π̄(m+1)t,mt > 0 for all m and therefore system (2.10) meets condition (D).

Conversely, let us assume that system (2.10) meets condition (D), i.e. there

exists t such that Π̄(l+1)t,lt > 0 for all l = 0, 1, . . ..

(iii) we will show that system (2.3) verifies condition (D) for products with 2t

factors. Indeed, using the notation An(k) = MnP
k
n we have

Π(m+1)2t,2mt(k) = A2mt+2t−1(k) · · ·A2mt+t+2(k)A2mt+t+1(k)Π(2m+1)t+1,2mt(k) .

Now, using (iii) with l = 2m we have that, for k large enough, Π(2m+1)t+1,2mt(k) >

0 and besides the An(k) are allowable, so Π(2m+1)t+1,2mt(k) > 0 for all m as we

wanted to show.

(2) immediate from (1), Proposition 3 and Theorem 1.

4.1. Common incidence matrix

In many practical situations, the matrices that define a discrete non-autonomous

system of the kind (2.13) share the same incidence matrix, i.e. An ∼ An′ for all n

and n′. In this way the vital rates that characterize the population may vary with

time but in such a way that if a parameter is zero (nonzero) at some time, it will

be zero (nonzero) for all times.

In the sequel we study the relationships between the weak ergodicity for macro-

and microsystem under the hypothesis that all matrices that characterize the latter

have the same incidence matrix. Stronger results than the one corresponding to the

general case are obtained.

The next hypothesis guarantees that both the general system (for k large

enough) and the aggregated system verify the equality of incidence matrices

mentioned above.

H3. All matrices Mn share a same incidence matrix.

Notice that Lemma 4 guarantees thatH3 implies that M̄n ∼ M̄n′ and MnP
k
n ∼

Mn′P
k
n′ for all n and n′ independently of the incidence matrices of the Pn.

The following proposition gives necessary and sufficient conditions for the

ergodicity property of both systems to hold.
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Proposition 5. Assume hypotheses H1, H2 and H3 hold and let i(M̄) be the

incidence matrix of the M̄n. Then:

the microsystem is weakly ergodic for k large enough if and only if the aggregated

system is weakly ergodic if and only if i(M̄) is primitive.

Proof. Particular case of Proposition 7 with T = 1 and C = i(M̄).

4.2. Cyclical sequence of incidence matrices

Now we will address the problem of studying the weak ergodicity of a generic system

of the kind (2.13) under the hypothesis that the incidence matrices of the An vary

in a cyclic fashion, i.e. in such a way that there exists a positive integer T such

that i(An) = i(An+T ) for all n. Notice that this situation is a generalization of

the periodic case, i.e. An = An+T for all n. The setting we propose corresponds to

the practical situation in which a population lives in a periodic environment with T

seasons; the vital rates may vary in a nonperiodic way but subjected to the following

restriction: If a vital rate is zero (nonzero) at a given time n corresponding, say,

to season j, then it will always be zero (nonzero) as long as the environmental

conditions correspond to season j, i.e. at times n + T , n + 2T, . . . . This situation

arises in those models in which one accepts that the environmental conditions for

each season are not constant (for example, two springs are never the same with

respect to temperature, rain, etc.) but the vital rates which are zero or nonzero are

always the same.

As an illustrative example, we can think of a population living in an environment

with seasonal variation (say, summer and winter) with dynamics characterized by

a Leslie model with variable coefficients in the following way: The fertility rates

vary with time, but if an age class has zero (nonzero) fertility rate in summer (or

winter), then it will also be zero (nonzero) the following summer (or winter) and

so on. Something analogous holds for the survival coefficients.

Under these conditions, and given hypotheses similar to those considered in

Sec. 4, we will obtain necessary and sufficient conditions for a system of the kind

(2.13) to be weakly ergodic.

In the first place, let us define the different incidence matrices for system (2.13)

by Bn = i(An); n = 0, 1, . . . , T − 1. The following proposition, which is an adapta-

tion of Theorem 1 for this situation, characterizes the ergodicity of system (2.13).

Proposition 6. If the following conditions hold :

(a) there exists an integer T such that i(An) = i(An+T ) for all n,

(b) matrices An are allowable,

(c) there exist positive constants c ≤ d such that min+(An) ≥ c and max(An) ≤ d
for all n.

Then, system (2.13) is weakly ergodic if and only if matrix C = BT−1 · · ·B1B0

is primitive.
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Proof. Let us assume that system (2.13) is weakly ergodic. Then there exists n0

such that for all n ≥ n0,Tn > 0. Then, choosing n ≥ n0 with n = mT and

using (a) we have Tn ∼ Cm > 0 and so C must be primitive. Conversely, if C

is primitive then there exists s such that Cs > 0. For all m we have, using (a),

A(m+1)Ts−1 · · ·AmTs+1AmTs ∼ Cs and therefore condition (D) of Theorem 1 is

met for t = sT . Since the rest of the hypotheses of the theorem are trivially satisfied,

weak ergodicity for system (2.13) follows.

Now we address the study of the weak ergodicity of the original and aggregated

systems in the assumption that the incidence matrices in each of them varies in

a periodic fashion. In the first place, we establish a sufficient condition for the

above-mentioned periodicity of incidence matrices to hold.

H4. The incidence matrices of the Mn vary in a periodic way, i.e. there exists

a positive integer T such that i(Mn+T ) = i(Mn) for all n.

Notice that Lemma 4 implies that for all n and n′ and for k large enough, we have

M̄n+T ∼ M̄n, Mn+T P̄n+T ∼MnP̄n and Mn+TPk
n+T ∼MnP

k
n independently of

the incidence matrices of the Pn.

Let us define matrices Bj = i(M̄j). Then:

Proposition 7. Given conditions H1, H2 and H4 hold, then:

the original system is weakly ergodic for k large enough if and only if the aggregated

system is weakly ergodic if and only if matrix C = BT−1 · · ·B1B0 is primitive.

Proof. Let C(k) = i(MT−1P
k
T−1) · · · i(M0P

k
0). In the first place we will show

that C is primitive if and only C(k) is primitive (for k large enough). (a) From

H4 we have Π̄mT,0 ∼ Cm and therefore C is primitive if and only if Π̄mT,0 >

0 for large enough m (*). From (ii) in the proof of Proposition 4 we find that

Π̄mT,0 > 0 implies ΠmT+1,0(k) > 0 for k large enough, and since matrices MnP
k
n

are allowable, it follows that Π(m+1)T,0(k) > 0 for k large enough. From H4 we

have Π(m+1)T,0(k) ∼ C(k)m+1 (**) and, since the left-hand side is positive, it must

be C(k) primitive for k large enough. (b) From (**) it follows that, if C(k) is

primitive for k large enough, then ΠmT,0(k) > 0 for k and m large enough. Taking

into account (i) in the proof of Proposition 4 we have Π̄mT,0 > 0 for m large

enough, and from (*) C must be primitive. From H1, H2 and H4, the original and

aggregated systems verify conditions (a), (b) and (c) of Proposition 6, and therefore

the desired result follows.

4.3. Weak ergodicity in a multiregional model with fast migration

In this section we illustrate the preceding results applying them to the study of

the weak ergodicity of the multiregional model with fast migration (2.19) and its

aggregated system (2.20) proposed in Sec. 2.4.1.
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Application 1. Let us assume the multiregional model of Sec. 2.4.1 with the

following additional hypotheses:

(a) at every instant, the survival coefficients for all patches and age classes are

nonzero, i.e. Sil (n) 6= 0 for all n, i and l.

(b) At all times, the fertility coefficient corresponding to the last age class is nonzero

in all the patches, i.e. F ql (n) 6= 0 for all l and n. Besides, there is at least another

age class i such that i and q are mutually prime and such that for all times

that class is fertile in at least one patch, i.e. there exists i with g.c.d. (i, q) = 1

such that Fi(n) 6= 0 for all n.

(c) The nonzero entries of matrices Mn and Pn corresponding, respectively, to

demography and migration, are bounded away from zero and infinity. In other

words, as far as demography is concerned: (1) both the nonzero fertility rates

and the nonzero survival rates cannot descend below a certain positive threshold

and (2) the fertility rates are bounded above. Regarding migration, the nonzero

migration coefficients cannot be lower than a certain positive value.

It is clear from the previous results that H1 and H2 are met. Besides, as

we will show, condition (3.25) (and consequently condition (D)) is also met for

the aggregated multiregional model. Therefore, Proposition 4 guarantees that both

the original and the aggregated models are weakly ergodic for a sufficiently high

separation of time scales between the migratory and the demographic processes.

Indeed, let us consider c and d from Proposition 3. Then we have

cL ≤ M̄n ≤ d11T ,

where L ∈ Rq×q is the incidence matrix of a primitive Leslie matrix and 1 =

(1, 1, . . . , 1)T and so condition (3.25) is met.

Application 2: Cyclical sequence of incidence matrices for demography

In this occasion, we consider the multiregional model and assume that the incidence

matrices for demography have a periodic variation with period T . To simplify the

exposition, let us consider the multiregional model of Sec. 2.4.1 in the case that

the population has three age classes (i.e. q = 3) and it is distributed among r regions.

Moreover, let us assume T = 2, which may correspond to a typical seasonal model

with two seasons (say summer and winter) and incidence matrix for demography

constant for instants corresponding to the same season. In such a case, matrices

Mn and Pn have dimensions 3r × 3r and matrices M̄n dimensions 3× 3.

As an example, let us assume that demography verifies:

(a) At any time, the survival coefficients for all patches and age classes are nonzero,

i.e. Sil (n) 6= 0 for all n, i and l.

(b) At any time, the fertility coefficients for the third age class in all regions are

nonzero, i.e. F 3
l (n) 6= 0 for all n and l.

(c) For all n = 0, 2, 4, . . . there is at least one nonzero fertility coefficient for the

second age class. Besides, all the fertility rates for the first age class are zero.
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For all n = 1, 3, 5, . . . there is at least one nonzero fertility coefficient for the

first age class, meanwhile all the fertility rates for the second age class are zero.

(d) The nonzero entries of the matrices that characterize demography and migra-

tion are bounded away from zero and infinity (condition H1).

Then we have that the incidence matrices for the aggregated system verify:

i(M̄n) =

{
B0 if n = 0, 2, 4, . . .

B1 if n = 1, 3, 5, . . .

where

B0 =

 0 + +

+ 0 0

0 + 0

 , B1 =

+ 0 +

+ 0 0

0 + 0

 ,

and the symbol + denotes nonzero elements.

The product B1B0 =

(
0 + +
0 + +
+ 0 0

)
is primitive, and therefore Proposition 7 gua-

rantees that the aggregated system is ergodic and so is the general system for k

large enough.

5. Conclusion

The method developed here allows one to aggregate a time varying complex sys-

tem with two time scales to obtain a reduced time varying aggregated system. The

variables which govern the aggregated system are certain linear combinations of the

state variables of the original system, the coefficients being dependent on the char-

acteristics of the fast process. The parameters of the aggregated system can be easily

expressed as functions of the slow dynamics and of the equilibrium proportions of

individuals corresponding to the fast process. In this way, it is possible to study

how changes in the fast dynamics affect the dynamics of the aggregated system.

The variables corresponding to the original and reduced systems can be related

easily, therefore allowing one to study the dynamics of the former through that of

the latter. Besides, in a very general framework, the weak ergodicity of the original

system can be related to that of the reduced one.

In future contributions the authors plan to generalize the original system pre-

sented here to include the more realistic possibility of dealing with a fast dynamics

which can vary within the characteristic time corresponding to the slow process.

In Ref. 36, the authors have partially addressed the study of aggregation tech-

niques in systems with environmental stochasticity, relating the variables and the

moments of the population vector of the original system to those of the aggregated

system. Another line of research will be directed towards investigating possible

relationships concerning weak and strong stochastic ergodicity for these systems.
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Appendix A

If x and y are positive vectors of the same dimension, their projective distance is

defined by

d(x,y) = ln

[
maxi(

xi
yi

)

mini(
xi
yi

)

]
= max

i,j
ln

(
xiyj

xjyi

)
.

This mapping has the properties of a metric except the following: d(x,y) = 0 ⇔
x = λy for any λ > 0. Besides, d(x,y) = d(λx, µy) for λ and µ > 0, which makes

it appropriate for measuring distances between the structure of population vectors.

The use of the projective distance in the studies of weak ergodicity is based on

the property by which multiplication by non-negative matrices acts as a contraction

in this metric (see Ref. 37 for details in all this section). If A ≥ 0 is row allowable

and x,y > 0, then d(Ax,Ay) ≤ d(x,y) (we require that A is row allowable in order

to guarantee that Ax is positive if x is, so that d(Ax,Ay) is defined). Besides, if

A is strictly positive, the inequality is strict. In order to quantify the contraction

produced when multiplying by a certain non-negative matrix it is useful to define

the “ergodicity coefficient” or “contraction coefficient” of a row allowable matrix

A by

τ(A) = sup
x,y>0,x 6=λy

d(Ax,Ay)

d(x,y)
(A.1)

from where τ(A) ≤ 1 follows immediately. In order to simplify the study of the

contraction coefficient, most works in this field deal exclusively with allowable

matrices19,37 (a notable exception is Ref. 16). If A is allowable we have: (a) τ(A) < 1

if and only if A is positive, and (b) τ(A) = 0 if and only if A is positive and has

rank one, i.e. it maps any two positive vectors into proportional ones. Besides, it is

easy to evaluate this coefficient in terms of the entries of the matrix.

Definition (1) corresponds to Seneta’s definition of ergodicity in Ref. 37 if p = 0

is fixed. As it is shown in this reference, it can be stated in terms of the contraction

coefficient in the following way: Let An be a sequence of allowable matrices. The

products Tn are weakly ergodic if and only if limn→∞ τ(Tn) = 0.

If the hypotheses to Theorem 1 are met, the weak ergodicity of the system is

said to be geometric, i.e. the decay to zero of τ(Tn) is geometric. More precisely,

there exists σ (depending on b, c and t) belonging to (0, 1) such that for each n

τ(Tn) ≤ σ[n/t] .
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