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We present a model of two interacting populations using two individual strategies, hawk
and dove. Individuals encounter each other frequently and can change tactics several
times in their life. Conflicts occur between individuals belonging to the same population
and to different populations. The general model is based on the replicator equations
which are used to describe the variations of the hawk proportions of the two popula-
tions. According to parameter values, namely the gain-, the intra- and inter-population
costs, and the relative intra-population encounter rates, we classify the different phase
portraits. We show that a decrease in the intra-population cost of a population provokes
an increase in the hawk proportion in this population and of the dove proportion in the
other population. An increase in the inter-population cost favors hawk strategy in the
population which causes more injuries and dove strategy in the other. We also study
the effects of the relative densities of the two populations on the stability of equilibria.
In most cases, an increase in the relative density of a population leads to a decrease in
hawk proportion in this population and of dove proportion in the other.

1. Introduction

Evolutionary game theory started with pioneer works of J. Maynard Smith.16 In

this context, one considers a single population which is composed of individuals
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that can adopt different behavior strategies, either pure or mixed. The game is

defined by the payoff matrix whose coefficients aij represent the benefit obtained

by an individual playing strategy i against an individual playing strategy j. At

any time, the population is divided into sub-populations of individuals playing the

different strategies. The per capita growth rate of sub-population i is equal to

the gain of an individual playing strategy i against the population.9 A strategy

that can resist invasion by any other strategy is said to be an Evolutionary Stable

Strategy, ESS. Instead of choosing the numbers of individuals as variables, it is

also frequent to consider the proportions (or frequencies) of individuals using the

different tactics. The equations that govern the time evolution of the frequencies

are referred to in the literature as the Replicator equations.12 In these equations,

one compares the gain of a given strategy, i.e. of an individual always playing this

strategy against the population, to the average gain of individuals of the population.

If this difference is positive, it is favorable to use this tactic and the proportion of

individuals playing it is increasing. Otherwise, the corresponding sub-population is

decaying. The replicator equations are a system of ODEs and an ESS corresponds

to an equilibrium point of this system that must be at least locally asymptotically

stable, l.a.s.. This condition l.a.s. is sufficient in the case of two strategies. In the

general case of more than two possible strategies, it is required that the equilibrium

point be strongly stable to be equivalent to an ESS.8

In the classical evolutionary game theory, an individual always adopts the same

strategy during all its life. Individuals using strategies corresponding to large fitness

better reproduce than others, leading in the long term to selection of the best fitted

strategies. In some recent works,1,3,18 it was assumed alternatively that individuals

can adopt different tactics in their life. There is empirical evidence that the same

individual can use different strategies in its life. Examples of behavior changing over

time is widespread in mammals’ taxa like, e.g., domestic cat Felis catus,15 elephant

seals Mirounga angustirostris,11 red deer Cervus elaphus,6 pronghorn Antilocapra

americana5 or gray squirrels Sciurus carolinensis.14 In our approach an individual

adopts the strategy that maximizes its benefit which is interpreted as a resource

that individuals try to monopolize.

Game dynamics has been widely used to describe the behavioral dynamics

of individuals belonging to a single population. In many concrete situations the

population is not isolated but is interacting with at least another one. Individuals

of both populations can compare different tactics taking into account encounters

within their population and with individuals of the other one. In this case,

it is necessary to weigh the influence of the different types of encounters. In

general, one may assume that each population assigns any weight to every type

of encounters. Two particular cases are of interest. Firstly, one can assume that the

weights are equal which leads to the type of models for two interacting populations

that are presented in Refs. 1, 9 and 18. A second case corresponds to a situation

where the weights are equal to the relative proportions of the different types of

encounters and thus depend on the relative densities of the two populations. This
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work is based on a general model for the case of two populations and two tactics

with weights that could be made explicit in any particular case. A close formulation

can be found in Refs. 7 and 10.

In the classical hawk–dove game with a single population, when the cost C is

larger than the gain G, the hawk proportion in the population tends to a constant

G/C which is an ESS. At equilibrium, the population is polymorphic with constant

proportions of hawks and doves. Otherwise, the population is pure hawk. In this

paper, we shall consider the case of two populations and two tactics, hawk and dove.

Consequently, two types of encounters can occur, intra-population encounters and

inter-population ones. We assume that the gain G which corresponds to a common

resource is identical for individuals of both populations. But, we assume that the

costs due to fights between hawks are different within each population and between

them. Thus, intra-population costs C11 and C22 and inter-populations ones C12

and C21 are defined. According to values of gain and costs, we shall find which

combinations of tactics for both populations are compatible.

In Sec. 2, we present the general model for two populations and two tactics,

hawk and dove. The mathematical model is based on the replicator equations.12 In

Sec. 3, we study the stability properties of the equilibrium points of this system.

In Sec. 4, we classify the different phase portraits with respect to parameter values.

In Sec. 5, we present two particular cases with different weights assigned to intra-

and inter-population encounters. In Sec. 6, we study the effects of the relative

population densities on the stability of the equilibria.

2. The Model

We consider a community of two populations whose individuals can use hawk

(H) and dove (D) tactics. There are interactions between individuals of the same

population and of different populations. The winner of the game gains an access to

a common resource. Therefore, we assume that the gain G is identical for all indi-

viduals of the two populations. The gains obtained by hawk and dove individuals

of population i when interacting with hawk and dove individuals of population j

are represented by matrix Aij which is a classical hawk–dove matrix:

Aij =


G− Cij

2
G

0
G

2

 . (2.1)

Let nH
α(t) and nD

α (t) be respectively the numbers of individuals using hawk and dove

strategies of population α, α = 1, 2, at time t. The total population α is denoted

nα(t) = nH
α(t) +nD

α (t). Let xH
α(t) and xD

α (t) be the proportions of individuals using

hawk and dove tactics:

xH
α =

nH
α

nα
and xD

α =
nD
α

nα
. (2.2)
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Let us denote x1 = (xH
1 , x

D
1 ) and x2 = (xH

2 , x
D
2 ).

Each individual compares the different tactics. An individual of population 1

using the pure H strategy against individuals of its own population sharing the two

different tactics in proportions x1 gets the following payoff:

∆H
11 = (1, 0)A11x

T
1 ;

in this situation the average payoff of individuals of population 1 is:

∆11 = x1A11xT
1 .

If population 1 was considered isolated, according to the classical replicator

equations,12 the proportion of individuals of population 1 using strategy H, xH
1 ,

would increase (resp. decrease) when its payoff would be larger (resp. smaller) than

the average payoff of its population. As a consequence the relative rate of change

of the proportion of hawks in population 1 would be proportional to the difference

∆H
11 −∆11. In this work individuals of population 1 also encounter individuals of

population 2. An individual of population 1 using the pure H strategy against in-

dividuals of population 2 sharing the two different tactics in proportions x2 gets

the following payoff:

∆H
12 = (1, 0)A12x

T
2 ;

in this case the average payoff of individuals of population 1 is:

∆12 = x1A12xT
2 .

If population 1 was only playing against population 2, the relative rate of change

of the proportion of hawks in population 1 would be proportional to the difference

∆H
12 −∆12.

In the case of coupled populations, that is when each individual encounters

individuals of its own population and of the other one, it is necessary to consider

at the same time the intra- and inter-population games weighted by a constant

parameter representing the different influences of the two types of game. So the

relative rate of change of the proportion of hawks in population 1 is assumed to be

proportional to ω1(∆H
11−∆11)+(1−ω1)(∆H

12−∆12), where ω1 could be considered

as the relative intra-population 1 encounter rate.

Extending the same reasoning to the proportions of hawk and dove in the two

populations we can write the following set of ordinary differential equations which

describes the change of H and D proportions in each population:

dxH
1

dt
=xH

1 (ω1((1, 0)A11x
T
1−x1A11xT

1 )+(1− ω1)((1, 0)A12x
T
2−x1A12xT

2 )) ,

dxD
1

dt
=xD

1 (ω1((0, 1)A11x
T
1−x1A11xT

1 )+(1− ω1)((0, 1)A12x
T
2−x1A12xT

2 )) ,

dxH
2

dt
=xH

2 ((1− ω2)((1, 0)A21xT
1−x2A21x

T
1 )+ω2((1, 0)A22x

T
2−x2A22xT

2 )) ,

dxD
2

dt
=xD

2 ((1− ω2)((0, 1)A21xT
1−x2A21x

T
1 )+ω2((0, 1)A22x

T
2−x2A22xT

2 )) .

(2.3)
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If we call A the following matrix:

A =

(
ω1A11 (1− ω1)A12

(1− ω2)A21 ω2A22

)
, (2.4)

after substitution of Eq. (2.1) we get

A =



ω1
G− C11

2
ω1G (1− ω1)

G− C12

2
(1− ω1)G

0 ω1
G

2
0 (1− ω1)

G

2

(1− ω2)
G− C21

2
(1− ω2)G ω2

G− C22

2
ω2G

0 (1− ω2)
G

2
0 ω2

G

2


,

and we can write system (2.3) in a classical replicator form,12,19 generalized to two

populations, 

dxH
1

dt
= xH

1 ((1, 0, 0, 0)AxT − x1AxT) ,

dxD
1

dt
= xD

1 ((0, 1, 0, 0)AxT − x1AxT) ,

dxH
2

dt
= xH

2 ((0, 0, 1, 0)AxT − x2AxT) ,

dxD
2

dt
= xD

2 ((0, 0, 0, 1)AxT − x2AxT) ,

(2.5)

where xT = (xH
1 , x

D
1 , x

H
2 , x

D
2 ).

Bearing in mind that xH
1 + xD

1 = 1 and xH
2 + xD

2 = 1, the previous system (2.5)

reduces to the next two equations:
dx

dt
=

1

2
x(1− x)(G − ω1C11x− (1− ω1)C12y) ,

dy

dt
=

1

2
y(1− y)(G− (1− ω2)C21x− ω2C22y) ,

(2.6)

where we denote x = xH
1 and y = xH

2 , the proportions of hawk individuals in

populations 1 and 2 respectively.

3. Stability of Equilibrium Points

System (2.6) is a set of two coupled ordinary differential equations. Our variables x

and y vary in the interval [0,1]. Thus, the domain of study is the square [0, 1]× [0, 1].

The steady states are located at its corners (0, 0), (0, 1), (1, 0), (1, 1), located on its

boundaries,
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(
G

ω1C11
, 0

)
,

(
0,

G

ω2C22

)
,

(
1,
G− (1− ω2)C21

ω2C22

)
,

(
G− (1− ω1)C12

ω1C11
, 1

)
,

and one point

Q = (x∗, y∗)

=

(
G(ω2C22 − (1− ω1)C12)

ω1ω2C11C22 − (1− ω1)(1− ω2)C12C21
,

G(ω1C11 − (1− ω2)C21)

ω1ω2C11C22 − (1− ω1)(1− ω2)C12C21

)
inside the domain (according to parameter values). The lines x = 0, x = 1, y = 0

and y = 1 are nullclines. Consequently, the square [0, 1]× [0, 1] is invariant and the

ω-limit set of every orbit inside the square is an equilibrium point of this domain

because the system is competitive.
The Jacobian matrix associated to system (2.6) reads as follows:

J(x, y) =
1

2
(1− 2x)(G− ω1C11x− (1− ω1)C12y)− 1

2
ω1C11x(1− x) − 1

2
(1− ω1)C12x(1− x)

−1

2
(1− ω2)C21y(1− y)

1

2
(1− 2y)(G− ω2C22y − (1− ω2)C21x)− 1

2
ω2C22y(1− y)

.
We can obtain the following conditions (details of the calculation are given in the

appendix) for the local asymptotic stability (l.a.s.) of equilibrium points:

(0, 0) never l.a.s. .

(0, 1) l.a.s. if ω2C22 < G < (1− ω1)C12 .

(1, 0) l.a.s. if ω1C11 < G < (1− ω2)C21 .

(1, 1) l.a.s. if max{ω1C11 + (1− ω1)C12, ω2C22 + (1− ω2)C21} < G .

(
G

ω1C11
, 0

)
l.a.s. if G < ω1C11 < (1− ω2)C21 ,

(
0,

G

ω2C22

)
l.a.s. if G < ω2C22 < (1− ω1)C12 ,

(
1,
G− (1− ω2)C21

ω2C22

)
l.a.s. if 0 < G− (1− ω2)C21 < ω2C22 and

G(ω2C22− (1−ω1)C12) > ω1ω2C11C22− (1−ω1)(1−ω2)C12C21,(
G− (1−ω1)C12

ω1C11
, 1

)
l.a.s. if 0 < G− (1− ω1)C12 < ω1C11 and

G(ω1C11− (1−ω2)C21) > ω1ω2C11C22 − (1− ω1)(1−ω2)C12C21,

Q = (x∗, y∗) l.a.s. if ω1ω2C11C22 > (1− ω1)(1− ω2)C12C21,

0 < x∗ < 1 and 0 < y∗ < 1 .
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4. Phase Portraits

In Sec. 3, we studied the local stability properties of equilibrium points. In this

section, we shall describe the phase portraits corresponding to the different set

of values of the parameters. To simplify the notations, let us define the following

parameters:

α =
G

ω1C11
, β =

G− (1− ω1)C12

ω1C11
, γ =

G− (1− ω2)C21

ω2C22
and δ =

G

ω2C22
, (4.1)

which correspond to the locations of the equilibrium points on the lines x = 0,

x = 1, y = 0 and y = 1. The parameter α = G
ω1C11

(δ = G
ω2C22

) is proportional to the

fraction of aggressive individuals in population 1 (2) when uncoupled to population

2 (1). Indeed, in the classical hawk–dove game, when G < C, the equilibrium

proportion of hawks is equal to G/C. If population 1 is isolated, i.e. uncoupled

to population 2, the equilibrium proportion of hawks would be G/C11 = ω1α. It

represents the initial (or potential) hawk proportion of population 1. A similar

result holds for population 2 with a potential hawk proportion G/C22 = ω2δ. If α

is close to zero, individuals of population 1 if isolated from 2 would be mainly dove.

If δ is close to 1/ω2, individuals of uncoupled population 2 would be mostly hawks.

Thus, α and δ are directly related to the potential aggressiveness of individuals in

both populations before coupling.

The parameters of the model are linked by the following relations, β = α −
(1−ω1)C12

ω1C11
and γ = δ− (1−ω2)C21

ω2C22
. While parameters α and δ are positive, parameters

β and γ can be positive, negative or even equal to zero. Furthermore, β and γ must

remain respectively smaller than α and δ which determine some possible domains for

the parameters. An increase in the inter-population costs (C12, C21) corresponding

to fighting between individuals belonging to different populations leads to a decrease

in the parameter values, β and γ.

The phase portraits depend on the relative positions of the two following lines

(nullclines) R1 and R2 with respect to the unit square:

R1 : G− ω1C11x− (1− ω1)C12y = 0 ,

R2 : G− ω2C22y − (1− ω2)C21x = 0 ,
(4.2)

which are respectively x and y-nullclines. In Fig. 1, we distinguish five different

positions of the x-nullcline R1 corresponding to five cases noted as I, II, III, IV

and V. Figure 2 presents the domains which are associated to these five regions

with respect to parameters α and β. As we have seen earlier, the domain of interest

for the parameter plane (α, β) corresponds to α > 0 and to β < α. This possible

domain is divided into the five sub-domains of Fig. 1 that we still note in the same

way I, II, III, IV and V.

In each of these cases, one still must distinguish five positions of the nullcline R2

which we note as i, ii, iii, iv and v, see Fig. 3. The combination of the two relative

positions of R1 and R2 nullclines leads to different cases that we shall now study.
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Fig. 1. The different positions that the nullcline R1 can take corresponding to five different cases
I, II, III, IV and V.

Fig. 2. The five different cases I, II, III, IV and V of Fig. 1 represented in the parameter plane
(α, β).
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Fig. 3. The different positions that the nullcline R2 can take corresponding to five different cases
i, ii, iii, iv and v.

�

Fig. 4. Case I, G
ω1C11

< 1, initial mixed population 1, G < ω1C11 + (1 − ω1)C12 and G >

(1 − ω1)C12. Different possible ω-limit sets according to sub-domains of the parameter plane
(δ, γ). In the region noted (α, 0), all orbits within the unit square tends to the asymptotically
stable equilibrium (α, 0). In the region noted (α, 0) and (β, 1), according to the initial condition
within the unit square , either the trajectory tends to the asymptotically stable point (α, 0) or to
(β, 1).
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Fig. 5. Case I, different phase portraits that correspond to the different possibilities shown in
Fig. 4.

We shall classify the phase portraits corresponding to each case I, II, III, IV

and V. Case I corresponds to a domain in the (α, β) plane of Fig. 2. Figure 4 shows

the possible ω-limits of case I according to different values of the parameters δ and

γ. As for the (α, β) plane, the domain of interest for the parameter plane (δ, γ)

corresponds to δ > 0 and γ < δ. The (δ, γ) plane is divided into regions where

the equilibrium points that are asymptotically stable are indicated. When a single

equilibrium point is indicated, it is globally asymptotically stable in the unit square.

When two equilibrium points are noted, both are asymptotically stable and there

exists a separatrix which is the boundary of their domains of attraction. Figure 5

shows examples of phase portraits associated to each of the (δ, γ) sub-domains of

Fig. 4. Figures 6–9 show the possible ω-limits of cases II, III, IV and V respectively.

Given gain G, costs C11, C22, C12 and C21, and relative intra-population

encounter rates ω1 and ω2, the values of the parameters α, β, γ and δ are fixed.

Therefore, it is possible by use of the previous figures to check easily which

equilibrium points are stable in each particular case.

Common trends are found in Figs. 4 and 6 to 9. When parameter δ is fixed,

an increase in parameter γ corresponds to an increase in the hawk proportion in

population 2. For example, in Fig. 6, case II, a vertical line in the direction of

increasing γ values corresponds to a hawk proportion of population 2 varying from

0 to 1. When fixing a δ value, the potential hawk proportion within population 2

is chosen. Then, an increase in parameter γ corresponds to a decrease in inter-cost

C21. This means that injuries caused by individuals of population 1 to individuals
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Fig. 6. Case II, G
ω1C11

> 1, initial hawk population 1. G > ω1C11 + (1 − ω1)C12. Different

possible ω-limit sets according to sub-domains of the parameter plane (δ, γ).

Fig. 7. Case III, G
ω1C11

> 1, initial hawk population 1. (1−ω1)C12 < G < ω1C11 + (1−ω1)C12.

Different possible ω-limit sets according to sub-domains of the parameter plane (δ, γ).
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Fig. 8. Case IV, G
ω1C11

> 1, initial hawk population 1. ω1C11 < G < (1 − ω1)C12. Different

possible ω-limit sets according to sub-domains of the parameter plane (δ, γ).

Fig. 9. Case V, G
ω1C11

< 1, initial mixed population 1. (1 − ω1)C12 < G < ω1C11. Different

possible ω-limit sets according to sub-domains of the parameter plane (δ, γ).
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of population 2 are weaker. In turn, this favors the hawk strategy in population 2.

On the other hand, an increase in parameter γ also corresponds to a decrease in the

hawk proportion in population 1. For example in Fig. 8 case IV, a vertical line can

change the hawk proportion of population 1 from 1 to 0. Indeed, a decrease in the

inter-cost C21 means that individuals of population 1 cause fewer injuries when

they fight against individuals of population 2. Consequently, the hawk proportion

in population 1 decreases.

In all cases I–V, we can also see that a horizontal line in the direction of increas-

ing δ values corresponds to an increase in the hawk proportion in population 2 and a

decrease in the hawk proportion in population 1. Indeed, when inter-population cost

C21 is fixed, an increase in δ corresponds to an increase in the potential proportion

of hawks in population 2. This in turn causes a decrease in the hawk proportion

of the other opponent population 1 because its individuals encounter more and

more aggressive individuals of population 2. It also favors an increase in hawks in

population 2 which become more efficient against individuals of population 1.

To summarize:

– An increase in the inter population costs always favors hawk strategy in the

population which causes more injuries and dove strategy in the other.

– An increase in the potential hawk proportion in a population (before coupling),

favors hawk strategy in this population and dove strategy in the other (after

coupling).

5. Some Particular Cases of Relative Intra-Population

Encounter Rates

Assuming that intra- and inter-population encounters are similarly weighted we

must choose ω1 = ω2 = 1/2. Such an assumption is implicit in Sec. 3 of the book

by Cressman.9 In that case, system (2.6) reads:
dx

dt
=

1

4
x(1− x)(2G− C11x− C12y) ,

dy

dt
=

1

4
y(1− y)(2G− C21x− C22y) .

(5.1)

In other cases, it is necessary to take into account the densities n1 and n2. For

instance, if we have many individuals in population 1 (large n1) and few indivi-

duals in population 2 (small n2), individuals of population 2 will mostly encounter

individuals of population 1. This density effect was not considered in model (5.1).

In order to consider this density effect, we must choose ω1 = n1/n and ω2 = n2/n,

where n = n1 + n2.

This leads us to consider the next set of differential equations:
dx

dt
=

x

2n
(1− x)(G(n1 + n2)− C11n1x− C12n2y) ,

dy

dt
=

y

2n
(1− y)(G(n1 + n2)− C21n1x− C22n2y) .

(5.2)
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In this system population densities (n1, n2) are constant parameters.

Another way to derive system (5.2) is to consider a new system whose variables

are densities (nH
1 , n

D
1 , n

H
2 , n

D
2 ):

dnH
1

dt
=

nH
1

nn1
((n1, 0, 0, 0)AnT − n1AnT) ,

dnD
1

dt
=

nD
1

nn1
((0, n1, 0, 0)AnT − n1AnT) ,

dnH
2

dt
=

nH
2

nn2
((0, 0, n2, 0)AnT − n2AnT) ,

dnD
2

dt
=

nD
2

nn2
((0, 0, 0, n2)AnT − n2AnT) ,

(5.3)

where we have used the following notations: n = (nH
1 , n

D
1 , n

H
2 , n

D
2 ), n1 = (nH

1 , n
D
1 ,

0, 0) and n2 = (0, 0, nH
2 , n

D
2 ).

One must note that n1 and n2 are constants of motion for Eq. (5.3) and thus

are constant parameters.

6. Density Effects on Game Dynamics

In the cases when both populations are monomorphic at equilibrium the relative

densities (ω1, ω2) only affect the size of the parameters domain in which the steady

state is l.a.s.

In the cases when at least one of the populations is mixed at equilibrium the

hawk proportion depends on relative densities:

• ( G
ω1C11

, 0). The hawk proportion of population 1 is a decreasing function of ω1.

This means that population 1, which is encountering a completely dove popula-

tion 2, is becoming less aggressive as its relative density increases.

• (0, G
ω2C22

). This is the symmetric case to the previous one.

• (1, G−(1−ω2)C21

ω2C22
). If G > C21 the hawk proportion of population 2 is a decreasing

function of ω2. This result is similar to the previous cases. If G < C21 we find

the opposite relationship. In that case population 2 encounters a pure hawk

population 1 which causes important injuries to it — an increase in the relative

density of population 2 yields an increase in its hawk proportion.

• (G−(1−ω1)C12

ω1C11
, 1). Analogous to the previous one.

• Q = (x∗, y∗) = ( G(C22−C12)
C11C22−C12C21

1
ω1
,

G(C11−C21)
C11C22−C12C21

1
ω2

). In this case the increase in

the relative proportion of any of the two populations provokes a decrease in its

hawk proportion.

To summarize we have found that in most cases an increase in relative density

of a population leads to a decrease in its hawk proportion.
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7. Discussion and Conclusion

In this paper, we have classified the different phase portraits for two interacting

hawk–dove populations. There are many possibilities because pure as well as mixed

equilibria are possible for both populations. Furthermore, several equilibria can be

stable at the same time. However, it was possible to find general common trends

that we now summarize: An increase in the potential aggressiveness of a popula-

tion favors a mixed strategy with a high hawk proportion in this population and

dove proportion in the other. An increase in injuries caused by a population to

another provokes an increase in hawk proportion in the first population and of

dove proportion in the second one.

In this contribution, population densities are constant. But, in Sec. 6 we have

studied the effects of the relative densities of the populations on equilibria. We

found that in most cases, an increase in the relative proportion of a population

favors the increase in hawk proportion in this population and of dove proportion in

the other.

In Ref. 3, we considered a single population with hawk and dove individuals.

We considered two time scales, a fast one for the game dynamics and a slow one

for the demography of the population. We used aggregation methods to obtain

an equation governing the total population at the slow time scale. Aggregation

methods are based on different time scales and allow us to reduce the dimension of

the dynamical system.2,4,13,17 This reduced model was a logistic equation with a

carrying capacity that was a decreasing function of the hawk proportion of the

population at the fast equilibrium. This leads us to the following interpretation:

Large populations in urban areas are mainly dove while small density populations

in rural areas are aggressive. This result was confirmed by empirical evidence in the

case of domestic cat populations.

In this paper, the densities of the two populations are constant parameters. In a

future work, we shall couple the present game dynamics model for two populations

and two tactics with a population dynamics model. To perform this, we shall

assume that the game dynamics corresponds to a fast time scale with respect to

demography. Therefore, we shall use this new model to study the influence of the

individual behavior selected by individuals of both populations (hawk or dove)

at the fast time scale on their coexistence or mutual exclusion in the long term.

This will allow us to study the coevolution of the behavioral dynamics and of the

population dynamics. This aspect was partly discussed in Sec. 6 of this paper as

equilibrium points depend on the relative population densities. But, the next step

is to connect the two types of models, game and population dynamics and to study

the coupling between both processes, i.e. the effects of densities on the tactics

adopted by individuals but also the effects of strategies selected by individuals on

the dynamics of their population densities.
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Appendix. Local Stability Analysis of the Equilibrium Points

In the case of the origin the Jacobian matrix reads:

J(0, 0) =

(
G 0

0 G

)
.

The two eigenvalues are equal to the positive parameter G and the origin is an

unstable node.

In the case of the (1, 0) the Jacobian matrix reads:

J(1, 0) =

−1

2
(G− ω1C11) 0

0
1

2
(G− (1− ω2)C21)

 .

Thus, (1, 0) is a stable node if both entries on the main diagonal are negative which

can be expressed by ω1C11 < G < (1 − ω2)C21. A similar result holds for the

equilibrium points (0, 1) and (1, 1) which have a diagonal Jacobian matrix.

In the case of the equilibrium point ( G
ω1C11

, 0) the Jacobian matrix reads:

J

(
G

ω1C11
, 0

)
=

G

(
G

ω1C11
− 1

)
G

(1− ω1)C12

ω1C11

(
G

ω1C11
− 1

)
0 G

(
1− (1− ω2)C21

ω1C11

)
 .

As the matrix is triangular, the eigenvalues are the entries of the main diagonal.

Thus, the equilibrium point is a stable node if both eigenvalues are negative which

can be expressed by G < ω1C11 < (1−ω2)C21. In the case of the three equilibrium

points (0, G
ω2C22

), (1, G−(1−ω2)C21

ω2C22
) and (G−(1−ω1)C12

ω1C11
, 1), the Jacobian matrix is also

triangular and the stability conditions are easily found.

In the remaining case of the equilibrium point Q = (x∗, y∗), after some algebra,

the Jacobian matrix reads:

J(x∗, y∗) =

 −ω1C11

2
x∗(1− x∗) − (1− ω1)C12

2
x∗(1− x∗)

− (1− ω2)C21

2
y∗(1− y∗) −ω2C22

2
y∗(1− y∗)

 .

The equilibrium point Q = (x∗, y∗) must be located inside the unit square to make

sense, i.e. 0 < x∗ < 1 and 0 < y∗ < 1. Then, the trace of the Jacobian matrix is

negative. To be a sink, its determinant must be positive leading to the condition

ω1C11ω2C22 − (1− ω1)C12(1− ω2)C21 > 0.
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