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1. Introduction

In order to study ecological systems, one has to decide the level of complexity and
detail one should incorporate into the model so as to optimize the study. Indeed, any
model is a compromise between generality and simplicity in one hand and realism on
the other. Models which include many biological details in its speci�cation become
complicated, and their analytical study is often non-viable. On the other hand, very
simple models, although analytically tractable, often do not justify the assumptions
needed to obtain such simplicity.
Nature o�ers many examples of systems with an inherent complexity. For example,

communities are sets of interacting populations. Populations themselves have an internal
structure, for individuals may have di�erent ages or be in di�erent stages. These stages
may correspond to size, spatial patches, genotypes, individual activities as rest or search
for food, etc.
Aggregation methods study the relationships between a large class of complex sys-

tems, in which many variables are involved, and their corresponding reduced or ag-
gregated systems, governed by a few variables. The aim of aggregation techniques
is twofold: on the one hand they allow one to rigorously construct, starting from a
complex system, a simpler model which summarizes some characteristics of its dy-
namics, therefore simplifying their analytical study. On the other hand, the complex
systems are explanations of the simpler ones at a �ner level of detail. The essential
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property of complex systems that allows their aggregation is the existence of two time
scales. This allows one to think of a hierarchically organized system with a division
into subsystems, in such a way that these subsystems are weakly coupled through the
slow process and however exhibit strong internal dynamics corresponding to the fast
process.
In many of the complex systems found in nature, it is possible to distinguish several

processes which take place with di�erent time scales. For example, it is usually the case
that processes that take place at the individual behavioral level, as migrations, are fast
with respect to those regarding the population level, as the growth of the population
[1]. In the majority of models found in the literature, it is implicitly assumed that the
fast process reaches equilibrium very fast in comparison to the time scale corresponding
to the slow process, and therefore the fast dynamics is supposed to have a negligible
impact in the dynamics of the system. However, by using aggregation techniques we
may consider the dynamics of both the fast and the slow processes without paying a
high cost in terms of the complexity of the models we have to analyze. The idea of
aggregation is to choose some (usually one) global variable for each subsystem and
to build a reduced system for those global variables. The aggregated system reects
in a certain way both the slow and the fast dynamics of the original system. The
dynamics of the aggregated system usually corresponds to the dynamics of the original
system, while the fast dynamics of the original system is reected in the coe�cients
of the reduced one in such a way that it is possible to study the inuences between
the di�erent hierarchical levels.
Aggregation techniques have been widely studied in the context of time continu-

ous systems with di�erent time scales for both linear and density-dependent models
[2–5]. Aggregation techniques have also been extended to deal with autonomous time
discrete systems in both linear and nonlinear cases [38], under the hypothesis that the
fast process is conservative of the total number of individuals as, for example, mi-
gration. The complex models proposed can be classi�ed in two groups; a �rst one in
which the time step of the model corresponds to the characteristic time of the fast
process [6–8], and a second group in which the slow dynamics is the time unit for
the model [31,9]. In [33], the authors have extended the second group to deal with
linear systems in which the fast process can have a general nature, while [11] applies
the theoretical results to a practical case regarding the study of an arborescent river
network. Aggregation in the non-autonomous linear case has also been considered by
the authors in [32].
The aim of this work is to extend variables aggregation techniques to deal with

time discrete models that contemplate environmental stochasticity, developing a general
procedure that is used to reduce the complexity of some multiregional models in which
two time scales are involved. Environmental stochasticity refers to the incorporation of
randomness in a model by considering that the population under study lives in an habitat
which presents di�erent environmental conditions. The sequence of environments to
which the population is subjected at di�erent times is not deterministic but can only
be characterized in a probabilistic way.
Section 2 briey goes through the di�erent kinds of stochastic matrix models, focus-

ing in the essential aspects of models with environmental stochasticity. In Section 3
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we present a very general stochastic matrix model with two time scales (microsystem)
for a population living in a random environment. Both the fast and the slow dynamics
may correspond to any two biological processes, with the only restriction that the fast
process in each environment tends to an equilibrium in a certain sense that it will
be speci�ed. In Section 4 we develop a procedure to transform the microsystem into
an aggregated system in two di�erent cases. In the �rst place, we address the aggre-
gation of the microsystem under an additional hypothesis which has to do with the
characteristics of the fast process. We present a criterium to de�ne the global variables
as linear combinations of the state variables and transform the original system into a
stochastic aggregated system for which the pattern of environmental variation coincides
with that of the microsystem. The entries of the matrices that represent the vital rates
for the aggregated system in each environment are obtained as linear combinations of
the ones corresponding to the slow process in that environment, being the coe�cients
of the combination functions of the equilibrium characteristics of the fast process. In
second place, we aggregate the microsystem in the general case. The procedure is sim-
ilar to the one mentioned above, but in this case we end up with an aggregated system
in which the environmental variation is more complex than that corresponding to the
microsystem.
Section 5, where ecologists interested mainly in applications may focus their atten-

tion, is devoted to applying the techniques above mentioned to simplify the study of
two kinds of stochastic multiregional models, with population structured by age and
patch, in which there are di�erent time scales involved. In the �rst case, in which the
simplifying assumption of Section 4 is met, we aggregate a stochastic multiregional
model in which the migratory process is fast in comparison with demography. The av-
eraging procedure results in an averaging over the spatial component of the population,
obtaining a stochastic Leslie model. In the second case, in which the above mentioned
simplifying assumption is not veri�ed, we address the aggregation of a multiregional
model in which demography is fast in comparison with migration. In this case, we de-
�ne the global variables by averaging over the age structure of the population in each
patch, therefore ending up with an aggregated system in which population is structured
attending only to its spatial location.
Section 6 studies some relationships between the microsystem and the aggregated

system in the general case. To start with, we obtain relationships between the state
variables and the global variables in terms of the separation of time scales between
the slow and fast processes. In this way we can describe, in an approximate way, the
dynamics of the microsystem if we know that of the reduced one. Next, we particularize
our study to the case in which environmental change is modeled by a Markov chain,
and obtain relationships between the statistical moments of the population vector for
original and aggregated systems. Section 7 briey goes over the results of the work
and points to some open problems.

2. Matrix models and environmental stochasticity

The literature o�ers several approaches to include stochasticity in matrix determin-
istic models for the study of structured populations. Roughly we can distinguish three
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kinds of models. The �rst type consists in time-series models [12] that consider a
deterministic model in which a random error is added (see for example [30]). These
models present some inconveniences to study population dynamics [35] and have not
been treated with much profusion in this �eld. The second kind of models consider
“demographic stochasticity”. In them (see among others [25–27]), individuals transfer
among di�erent states according to certain probabilities (instead of in �xed proportions
as it is implied in the deterministic models), which introduces the random character
in the model. They are particular cases of the multitype branching processes [18] and
their interest seems to be restricted to the study of small populations, for they cannot
account for any substantial part of the observed variability in the dynamics of moderate
to large populations [35]. The third type of models takes into account “environmental
stochasticity”, i.e., the randomness introduced when we consider random uctuations
in the environment and, consequently, in the vital rates which a�ect the population.
These models are analogous to the deterministic ones but in this case the matrix of
vital rates in each projection interval is selected within a given set of matrices accord-
ing to a certain (possibly time varying) probability distribution. The greatest part of
the literature in stochastic matrix models for the study of populations is devoted to
this kind of models (see [38, Chapter 3] for a basic introduction and [37] for a full
discussion) for they are conceptually adequate and lead to projections that agree with
the variability observed in populations.
Next, we will illustrate a little deeper the characteristics of the models that consider

environmental stochasticity. We will restrict our attention to the case in which the
number of environments is �nite. Therefore, we assume that the population lives in
an ambient in which there are s environmental states. The vital rates corresponding to
each one of these environments are given by the non-negative matrices A� ∈ RN×N ,
�=1; : : : ; s in such a way that, for each �; A� represents the vital rates of the population
in environment �.
The kind of environmental variation is characterized by a sequence of random vari-

ables �n; n = 1; 2; : : : de�ned in a certain probability space (
;F; p) and with state
space {1; : : : ; s}. For each realization ! ∈ 
 of the process, the population is subjected
to environmental conditions �n+1(!) during times n and n+1. In this way, the model
reads

Zn+1 = A�n+1Zn; (2.1)

where for each n = 0; 1; : : : ; Zn is a vector random variable in RN which represents
the population vector at time n.

3. A model with two time scales

The model we propose is an adaptation of models previously presented by the authors
in [33] to deal with environmental stochasticity in systems in which there are two time
scales. We assume that the population under study lives in an environment in which
there are s environmental conditions 1; 2; : : : ; s. For a given time, the environment to
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which the population is subjected is chosen randomly from among the s possible states
according to a certain probability distribution.
We suppose a stage-structured population in which the population is classi�ed into

stages or groups attending to any characteristic of the life cycle. Moreover, each of
these groups is divided into several subgroups that may correspond to di�erent spatial
patches, di�erent individual activities or any other characteristic that could change the
life cycle parameters. The model is therefore general in the sense that we do not state
in detail the nature of the population or the subpopulations, although in Section 5
we will particularize it to deal with multiregional models.
We consider the population being subdivided in q populations (groups). Each group

is subdivided in subpopulations (subgroups) in such a way that for each i=1; 2; : : : ; q;
group i has Ni subgroups. Therefore, the total number of subgroups is N =N1 +N2 +
· · ·+ Nq:
We will denote by xijn the random variable corresponding to the density of subpopu-

lation j of population i at time n, with i=1; 2; : : : ; q and j=1; 2; : : : ; Ni. In order to de-
scribe the population of group i we will use the random vector �xin=(x

i1
n ; x

i2
n ; : : : ; x

iNi
n ) ∈

RNi ; i = 1; 2; : : : ; q. The composition of the total population is then given by vector
Xn = (�x1n; �x

2
n; : : : ; �x

q
n)
T ∈ RN , where T denotes transposition.

In the evolution of the population we will consider two processes whose correspond-
ing characteristic time scales, and consequently their projection intervals, are very dif-
ferent from each other. In order to include both time scales in our model we will
model these two processes, to which we will refer as the fast and the slow dynamics,
by two di�erent matrices. Both the slow and the fast processes may be functions of
the environmental conditions.
We will choose as the projection interval of our model, that corresponding to the

slow dynamics, i.e., the time elapsed between times n and n + 1 is the projection
interval of the slow process. For simplicity, we will denote the time span [n; n+1) as
�n.
We will make no special assumptions regarding the characteristics of the slow dy-

namics. Therefore, for a certain �xed projection interval, the slow dynamics will be
represented by a non-negative projection matrix M� ∈ RN×N , which we consider di-
vided into blocks Mij(�); 1 ≤ i; j ≤ q. We have then

M� =



M11(�) M12(�) · · · M1q(�)

M21(�) M22(�) · · · M2q(�)
...

...
. . .

...
Mq1(�) Mq2(�) · · · Mqq(�)


 ; (3.1)

where each block Mij(�) = [Mml
ij (�)] has dimensions Ni × Nj and characterizes the

rates of transference of individuals from the subgroups of group j to the subgroups
of group i in environment �. More speci�cally, for each m = 1; 2; : : : ; Ni and each
l= 1; 2; : : : ; Nj; Mml

ij (�) represents the rate of transference due to the slow process, of
individuals from subgroup l of group j to subgroup m of group i, in environment �.
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Regarding the fast process we will make the following assumptions:
(A) The fast dynamics is an internal process for each group, i.e., there is no trans-

ference of individuals from one group to a di�erent one. Therefore, if we consider a
�xed projection interval, the fast dynamics of group i in environmental conditions �
will be represented by a non-negative matrix Pi(�) of dimensions Ni × Ni for each
i = 1; : : : ; q and � = 1; 2; : : : ; s: The matrix that characterizes the fast dynamics for the
whole population in each environment � will be then:

P� = diag(P1(�);P2(�); : : : ;Pq(�)): (3.2)

(B) For each i and �, matrix Pi(�) is irreducible and primitive, which is usually
assumed in the modeling of biological systems.
(C) For each i and �, matrix Pi(�) has spectral radius equal to one.
As we stated before, we choose the projection interval of the slow process as the time

step of the model: Therefore, we need to approximate the e�ect of the fast dynamics
over a period much longer than its corresponding projection interval. Assume that, for
�xed n, the population is subjected to environment � during �n. We will suppose that,
during �n, matrix P� operates a number k of times, where k can be interpreted as
the ratio between the projection intervals corresponding to the slow and fast dynamics.
Since the projection intervals of both processes are supposed to be very di�erent from
each other, k is a big number and, moreover, we assume it is an integer. Thus, the
matrix that characterizes the dynamics of the population during �n will be M�Pk�. In
this way, the set of vital rates for our system in the di�erent environments will be
{M1Pk1 ;M2Pk2 ; : : : ;MsPks}.
The pattern of environmental variation will be de�ned by a sequence of random

variables �n; n=1; 2; : : : which take values in the set of environmental states {1; : : : ; s}.
Therefore, the proposed model, to which we will refer as “microsystem” or “original
system” consists in the following system of N random di�erence equations

Xn+1 =M�n+1P
k
�n+1Xn: (3.3)

Hypothesis (C), by which the spectral radius of the Pi(�) is one, has a clear bio-
logical justi�cation. Indeed, if the spectral radius of any Pi(�) were smaller or greater
than one then, for a big enough separation between the two time scales, the fast pro-
cess in group i during environmental conditions � would lead the total population of
this group to zero or in�nity, respectively, before the slow process has time to act.
Therefore, the dynamics of the system would be controlled by the fast process and the
distinction of two processes in the modeling of the system would be unnecessary.
The primitivity of the Pi(�), together with assumption (C), guarantees that for a

separation of the two time scales su�ciently high, the fast process in each environment
approaches an equilibrium distribution.
Let us denote by ‖ ∗ ‖1 the 1-norm in the appropriate RN space, that is, if z =

(z1; z2; : : : ; zN )T we have ‖z‖1=|z1|+|z2|+· · ·+|zN |. For each i=1; : : : q and �=1; : : : ; s
let the positive vectors vi(�) and ui(�) be de�ned by

Pi(�)vi(�) = vi(�); uTi (�)Pi(�) = u
T
i (�);

‖ui(�)‖1 = 1; uTi (�)vi(�) = 1; (3.4)
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i.e., vi(�) and ui(�) are, respectively, the right and left positive eigenvectors of Pi(�)
associated to eigenvalue 1 and normalized in such a way that the sum of the components
of ui(�) is one and uTi (�)vi(�) = 1. Hypothesis (B) and (C) guarantee that vi(�) and
ui(�) are de�ned in a unique way by conditions (3.4).
Vectors vi(�) and ui(�) may be interpreted in terms of the behavior of the fast

process of group i in environment �. Consider the hypothetical situation in which the
system was governed by the fast process exclusively. Assume that for one sample path
of the stochastic process, to interval �n there corresponds environment �. Suppose
besides that �n is long enough with respect to the projection interval corresponding
to the fast process for this to reach its equilibrium conditions during �n. Then, for
any non-zero “initial condition” of the system at time n, we would have that at the
end of �n, the structure of the population of group i would be characterized by the
direction of vector vi(�), meanwhile the reproductive value of the individuals of that
group would be de�ned by ui(�) [10].
In this way, we have that for each �= 1; : : : ; s and each i= 1; : : : ; q, the matrix that

characterizes the equilibrium fast process in environment � for group i is

�Pi(�) = lim
k→∞

Pki (�) = vi(�)u
T
i (�)¿ 0 (3.5)

and, therefore, the equilibrium conditions for the fast dynamics in environment � is
de�ned by

�P� = diag( �P1(�); �P2(�); : : : ; �Pq(�)): (3.6)

We de�ne matrices

V� = diag(v1(�); v2(�); : : : ; vq(�));

U� = diag(uT1 (�); u
T
2 (�); : : : ; u

T
q (�)); � = 1; : : : ; s; (3.7)

whose interpretation is immediate bearing in mind what we pointed out about vi(�)
and ui(�).
Some of the properties of these matrices are gathered in the following lemma, whose

proof is trivial:

Lemma 3.1. For all � = 1; : : : ; s; matrices P�; �P�;V� and U� verify:
(a) P� �P� = �P�P� = �P�
(b) P�V� = V�
(c) U� �P� =U�; U�V� = Iq; �P� = V�U�

4. The aggregated system

In this section we will approximate microsystem (3.3), consisting of N variables
(microvariables) associated to the di�erent subgroups, by an aggregated system (or
macrosystem) of q variables (global variables), each of them associated to one group.
In the general case it is not possible to perfectly aggregate the microsystem, i.e., it

is not possible to de�ne a set of global variables as functions of the microvariables



96 L. Sanz, R. Bravo de la Parra / Nonlinear Analysis: Real World Applications 1 (2000) 89–122

Yn = fn(Xn) in such a way that the microsystem depends solely on these global vari-
ables. Biological systems can be perfectly aggregated only in some cases and for very
particular values of the parameters involved [20], so perfect aggregation has only a
theoretical interest. In [17], conditions for perfect aggregation in a certain kind of time
continuous stochastic models are explored.
As a general technique, in order to aggregate the microsystem we will make use of

approximate aggregation. For this we will consider an auxiliary system which approx-
imates the dynamics of the general system and that can be perfectly aggregated.
We introduce the “auxiliary system” as the stochastic model de�ned by

Xn+1 =M�n+1
�P�n+1Xn; (4.1)

i.e., a system in which environmental variability is de�ned in the same way as in the
original system and where, for each realization !; M�n+1(!)

�P�n+1(!) is the matrix of vital
rates for the auxiliary system corresponding to interval �n. Each matrix M� �P� can be
interpreted as the matrix of vital rates corresponding to environment � in the original
system, when we substitute the fast process in � by the equilibrium characteristics of
the fast dynamics in �. In this way the auxiliary system can be considered, if k is
big enough, as a perturbation of the original system. Note that we employ the same
notation for the variables corresponding to the original and auxiliary systems, and every
time they appear, the context will determine which of them we are referring to.

4.1. Particular case

In the �rst place, we will address the aggregation of system (3.3) in the case the fast
dynamics, besides meeting the three hypothesis introduced in the last section, veri�es
an additional restriction. As it will be seen later on, this is a simplifying assumption
that holds in many practical situations and that leads to a relatively simple aggregated
system. This hypothesis will be dropped later on to deal with the general case.
Hypothesis (D). for each i=1; : : : ; q, the reproductive value of individuals of group

i does not depend on the environment, i.e., ui(�) = ui for all � = 1; : : : ; s.
Some situations in which this holds are:
(1) Fast process independent of the environmental conditions, i.e., P�=P for each �.
(2) Fast dynamics corresponding to processes which are conservative of the total

number of individuals, as it is the case with migration. In this situation, matrices Pi(�)
are stochastic and ui(�) = (1=Ni)(1; 1; : : : ; 1)T for all � and i. (see Section 5.1).
Hypothesis (D) is satis�ed also in some other particular cases. In Section 5.2 we will

see an example of a situation in which a fast dynamics corresponding to demography
meets this condition.
Under hypothesis (D) we have U� =U for all �. Let us now consider the auxiliary

system (4.1). In order to show that this system can be perfectly aggregated, let us
multiply both sides by U. Then we have

UXn+1 =UM�n+1
�P�n+1Xn =UM�n+1V�n+1UXn; (4.2)

where we have used Lemma 3.1. Then, if we de�ne the global variables by

Yn =UXn ∈ Rq; (4.3)
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we can express (4.2) as a function of the global variables exclusively. In this way, the
aggregated system is de�ned by

Yn+1 = �M�n+1Yn; (4.4)

where, for each n; �M�n is given by
�M�n =UM�nV�n :

Note that in our aggregation procedure we have used that, as a consequence of
hypothesis (D), �P� = V�U for all �.
The aggregated system (4.4) can be interpreted as a stochastic model in which, as

in the original system (3.3), there are s environmental conditions. Besides, the pattern
of environmental variation coincides with that of the original system and, for each �,
the matrix of vital rates in environment � for the aggregated system is

�M� =UM�V� ∈ Rq×q; � = 1; : : : ; s; (4.5)

in such a way that the set of matrices for the di�erent environmental conditions is

{ �M1; �M2; : : : ; �Ms}: (4.6)

Note that each �M� only depends on the characteristics of the fast and slow processes
in environment � and has the explicit form

�M� =



uT1M11(�)v1(�) uT1M12(�)v2(�) · · · uT1M1q(�)vq(�)

uT2M21(�)v1(�) uT2M22(�)v2(�) · · · uT2M2q(�)vq(�)
...

...
. . .

...
uTqMq1(�)v1(�) uTqMq2(�)v2(�) · · · uTqMqq(�)vq(�)


 :

In this way, the element of row i and column j of matrix �M� is uTi Mij(�)vj(�) =∑
m; l M

ml
ij (�)u

l
jv
l
j (�); which is a linear combination of the coe�cients of the slow

process relative to the transference of individuals from group j to group i. The coef-
�cients of the linear combination are de�ned by the equilibrium characteristics of the
fast process in environment �.

4.2. The general case

Now, we will aggregate the auxiliary system (4.1) in the general case that results
when we drop hypothesis (D). The methodology is similar to the one considered above
but, as we will see, the resulting aggregated system is more complex.
Multiplying both sides of (4.1) by U�n+2 we have

U�n+2Xn+1 =U�n+2M�n+1
�P�n+1Xn =U�n+2M�n+1V�n+1U�n+1Xn: (4.7)

Then, if we de�ne the global variables by

Yn =U�n+1Xn ∈ Rq; (4.8)

we can express (4.2) as a function of the global variables exclusively. In this way, the
aggregated system is de�ned by

Yn+1 =U�n+2M�n+1V�n+1Yn: (4.9)
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Note that if we de�ne the random variable ��n=(�n+1; �n) with state space {1; : : : ; s}×
{1; : : : ; s} we can write (4.9) as

Yn+1 = �M ��n+1Yn; (4.10)

where matrices �M;� are given by

�M;� =UM�V� ∈ Rq×q; ; � = 1; : : : ; s: (4.11)

In this case, the aggregated system (4.10) can be interpreted as a stochastic model
with q variables which has the following characteristics:
(a) Unlike the original system, in this case there are s2 environmental conditions that

we can consider numbered (; �); ; � = 1; : : : ; s. Each environment in the aggregated
system is de�ned by a pair of environments corresponding to the original system. The
matrix of vital rates for system (4.10) in each environment (; �) is given by

�M;� =



uT1 ()M11(�)v1(�) uT1 ()M12(�)v2(�) · · · uT1 ()M1q(�)vq(�)

uT2 ()M21(�)v1(�) uT2 ()M22(�)v2(�) · · · uT2 ()M2q(�)vq(�)
...

...
. . .

...
uTq ()Mq1(�)v1(�) uTq ()Mq2(�)v2(�) · · · uTq ()Mqq(�)vq(�)


 : (4.12)

The vital rates in this environment are therefore given by uTi ()Mij(�)vj(�) =∑
m; l M

ml
ij (�)u

l
j()v

l
j (�) and so they are functions of (1) the slow process for the

original system in environment � and (2) the equilibrium characteristics of the fast
process in environments  and �.
(b) The pattern of environmental variation for (4.10) is de�ned by the sequence

of random variables ��n = (�n+1; �n). Therefore, for each realization ! the environment
for the aggregated system during �n is (�n+2(!); �n+1(!)), which depends on the
environment selected for the original system during intervals �n and �n+1. Thus, we
can say that the state of the environment for the aggregated system at a given time n
depends on the state of the environment for the original system at times n and n+ 1.
As we have stated before, one of the main purposes of aggregation techniques is

that of reducing the complexity of systems. In the case of stochastic models of kind
(2.1), this complexity is determined by both the number of the variables of the system
and the number of possible environmental states. The general system has N variables
and s environmental states. In the case in which hypothesis (D) holds, the aggregated
system is governed by q variables and the number of possible environmental states
is s, so aggregation always results in a simpli�cation of the system. In the general
case, however, even though the aggregation procedure reduces the number of variables
from N to q, the number of environmental states increases from s to s2. Therefore,
aggregation will be an useful technique when N is much greater than q and s is small.
The set of matrices of vital rates for the di�erent environments in the aggregated

system is then

Aag = { �M1;1; �M2;1; : : : ; �Ms;1; �M1;2; �M2;2; : : : ; �Ms;2; : : : ; �M1; s; �M2; s; : : : ; �Ms; s}: (4.13)
The following lemma characterizes the incidence matrix of the matrices �M;� in

terms of that of matrices M�.
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Lemma 4.1. For ; �=1; : : : ; s; �M;� is a nonnegative matrix in which the element of
row i and column j of �M;� is non zero if and only if matrix Mij(�) is not zero.

Note from this last result that the pattern of non-zero elements in �M;� coincides
with the pattern of non zero blocks Mij(�) for the slow dynamics in environment �.

4.2.1. Global variables
The global variables Yn=(y1n; : : : ; y

q
n)T, de�ned by (4.8), have the following expres-

sion in terms of the variables Xn of the auxiliary system:

yin = u
T
i (�n+1) �x

iT
n = u

1
i (�n+1)x

i1
n + u

2
i (�n+1)x

i2
n + · · ·+ uNii (�n+1)xiNin ; i = 1; : : : ; q;

(4.14)

in such a way that if for a realization ! the environment during �n+1 is �, i.e.,
�n+1(!) = �, then

yin(!) = u
T
i (�) �x

iT
n (!) = u

1
i (�)x

i1
n (!) + u

2
i (�)x

i2
n (!) + · · ·+ uNii (�)xiNin (!);

i = 1; : : : ; q:

As a consequence we have:
yin(!) is a linear combination of the microvariables of the auxiliary system cor-

responding to group i, being the coe�cients of the combination the components of
vector ui(�). Recall that, as it was stated earlier, ui(�) is a vector of reproductive val-
ues for the fast process in group i and environment �. Therefore we have that, for each
j=1; : : : ; Ni, the microvariable x

ij
n (!) corresponding to subgroup j has a relative weight

which is proportional to uji (�). Recall that u
j
i (�) is proportional to the contribution to

the total population at time n + 1 that an individual present in group i and subgroup
j at time n would have in the case that the system were subjected to environmental
condition �, were governed by the fast process exclusively and this process reached
equilibrium within �n. In this way, the higher the relative value of u

j
i (�) in vector

ui(�) is, the higher the relative contribution of x
ij
n (!) to yin(!).

As we stated before, in the case the fast process is conservative of the total number
of individuals in each one of the groups, we have that matrices Pi(�) are stochastic and
ui(�)=(1=Ni)(1; 1; : : : ; 1)T for all � and i. Therefore, the global variable corresponding
to each group is proportional to the total population in that group, i.e.,

yin =
1
Ni
(xi1n + x

i2
n + · · ·+ xiNin ); i = 1; : : : ; q:

Note that in the case hypothesis (D) holds, we have �M;�=UM�V�= �M� and �M ��n=
�M�n ; so the aggregated model (4.10) simpli�es to system (4.4) which we considered
in Section 4.1. In particular, set (4.13) reduces to (4.6) and the global variables
simplify to

yin(!) = u
T
i �x

iT
n (!) = u

1
i x
i1
n (!) + u

2
i x
i2
n (!) + · · ·+ uNii xiNin (!)

for all ! ∈ 
; i = 1; : : : ; q:
Unless otherwise stated, in the sequel we will always consider the aggregated system

in the general case (4.10).
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5. Stochastic multiregional models

In this section we use the aggregation procedure considered in the preceding sections
to simplify the treatment of stochastic multiregional models. We will show how, in
some practical cases found in the literature, we can distinguish two time scales that
make possible the use of aggregation in order to simplify the corresponding model.
Multiregional models consider the dynamics of an age structured population dis-

tributed among di�erent spatial patches among which they can migrate. These models
have been used with profusion by Rogers [29] among others for the study of human
populations. A list of ecological applications can be found in [10,24]. The usual ap-
proach has been deterministic, but the stochastic setting has also been used (see for
example [15]).
The above references do not explicitly consider the existence of di�erent time scales

in the multiregional system. The approaches of Bravo et al. [6,7,9], S�anchez et al.
[31] and the authors [32], have considered migration to be fast in comparison with the
demographic process. In our �rst application we aggregate a multiregional model under
these conditions. We will see that hypothesis (D) of Section 4 is met and, therefore,
we end up with a very simple aggregated system.

5.1. A multiregional model with fast migration

We suppose that the population under study is divided into q age classes (corre-
sponding to groups) and spread out in r spatial patches (subgroups) among which
they may migrate. In this way, the population is structured in qr stages, each of them
corresponding to an age class and a spatial location. Besides, the population lives in
an habitat in which there are s environmental conditions that inuence the vital rates.
The demographic and migratory processes are responsible for the transference of

individuals among the di�erent stages. In this application we suppose that migration is a
fast process in comparison with demography, and we choose as time step �n=[n; n+1)
for the model, the duration of each age class.
We will denote by xijn the number of individuals of age i in the jth spatial patch at

time n, with i = 1; 2; : : : ; q and j = 1; 2; : : : ; r. We use vectors �xin = (x
i1
n ; x

i2
n ; : : : ; x

ir
n ) ∈

Rr; i = 1; 2; : : : ; q; to describe the spatial allocation of individuals in age class i. The
population will be described by vector Xn=(�x1n; �x

2
n; : : : ; �x

q
n)
T ∈ Rrq. For each i and each

environment � = 1; : : : ; s, migration for individuals of age i is modeled by a matrix
Pi(�) ∈ Rr×r that, since migration is a conservative process for the total number of
individuals, is stochastic. Besides we suppose that Pi(�) is primitive for each i and
each � (this is the case, for example, if the fast process in each environment veri�es
(1) transition from any patch to any other, in a su�cient number of steps, is allowed
and (2) individuals of at least one patch are allowed to stay in that patch). Since the
Pi(�) are stochastic, the left eigenvectors associated to eigenvalue one and verifying
(3.4) are independent of � and have the form ui = (1=r)(1; 1; : : : ; 1)T ∈ Rr . We have
then that hypothesis (A)–(D) of Sections 3 and 4 are met.
Since matrices Pi(�) are primitive, if the duration of each age class is su�ciently

long with respect to the projection interval of migration, the migratory process in each
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environment � will approximately reach equilibrium within each �n. Let vi(�) be a
(positive) vector whose direction characterizes the equilibrium structure of the popula-
tion for group i in environment �. As normalization condition we impose, according to
(3.4), that the sum of its components is r. So we have V�=diag(v1(�); : : : ; vq(�)); U=
U�=diag(uT1 ; : : : ; u

T
q ). Migration for the whole of the population is given, for each en-

vironment �; by matrix P� = diag(P1(�); : : : ;Pq(�)).
The demographic process is de�ned through the following coe�cients:

Fertility coe�cients: Fji (�) = fertility rate for individuals of age i in patch j under
environment �; i = 1; : : : ; q; j = 1; : : : ; r; � = 1; : : : ; s.
Survival coe�cients: Sji (�) = survival rate for individuals of age i in patch j under

environment �; i = 1; : : : ; q− 1; j = 1; : : : ; r; � = 1; : : : ; s.
We de�ne matrices Fi(�)=diag(F1i (�); : : : ; F

r
i (�)); i=1; : : : ; q and Si(�)=diag(S

1
i (�);

: : : ; Sri (�)); i = 1; : : : ; q − 1, and then demography for the whole of the population in
each environment � is de�ned by the following generalized Leslie matrix:

M� =




F1(�) F2(�) · · · Fq−1(�) Fq(�)

S1(�) 0 · · · 0 0

0 S2(�) · · · 0 0
...

...
. . .

...
...

0 0 · · · Sq−1(�) 0



:

We will assume that the pattern of environmental variation is characterized by a
sequence �n; n= 1; 2; : : : of random variables with values in the set {1; : : : ; s} in such
a way that for each realization !, the environment during �n is given by �n+1(!).
The general system or microsystem consists then in the following system of rq

random di�erence equations:

Xn+1 =M�n+1P
k
�n+1Xn; (5.1)

where k can be interpreted as an integer representing the ratio between the projection
intervals corresponding to the demographic and migratory processes.
Following the aggregation procedure developed in Section 4.1, we collapse the rq

state variables of the original multiregional model into q global varibles, each one of
them corresponding to one age class, given by

yin = u
T
i �x

iT
n =

1
r
(xi1n + x

i2
n + · · ·+ xirn ); i = 1; : : : ; q;

i.e., for a given instant n; the global variable corresponding to each class i is propor-
tional to the total population with that age.
The aggregated system has the form

Yn+1 = �M�n+1Yn; (5.2)
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where, for each � = 1; : : : ; s; �M� is a classical Leslie matrix given by

�M� =




f1(�) f2(�) · · · fq−1(�) fq(�)

s1(�) 0 · · · 0 0

0 s2(�) · · · 0 0
...

...
. . .

...
...

0 0 · · · sq−1(�) 0



: (5.3)

The vital rates in (5.3) have the form

fi(�) = uTi Fi(�)vi(�) =
1
r

r∑
j=1

vji (�)F
j
i (�); i = 1; : : : ; q; � = 1; : : : ; s;

si(�) = uTi+1Si(�)vi(�) =
1
r

r∑
j=1

vji (�)S
j
i (�); i = 1; : : : ; q− 1; � = 1; : : : ; s;

i.e., each fertility rate fi(�) in the aggregated system is a weighted linear combination
of the fertility rates in the general system corresponding to individuals of age class i in
environment �, being the weights the coe�cients of the equilibrium spatial distribution
for the migratory process in environment �. Something analogous holds for the survival
rates. Note that fi(�) is non-zero if and only if Fi(�) is. In the same way, si(�) is
non-zero if and only if Si(�) is.
Note that the aggregated system is a stochastic Leslie model with q variables in

which, as it is the case for the original multiregional system, there are s possible
environmental conditions. The original multiregional model has been transformed into
a reduced system in which the spatial distribution has been averaged in a certain way
and the population appears structured only by age.
In order to illustrate the above discussions we will particularize them to a very

simple case in which there are only two patches, two age classes and two environmental
conditions, i.e., q=r=s=2 . Then the matrices M� and P� that characterize demography
and migration are given, for � = 1; 2; by

M� =



F11 (�) 0 F12 (�) 0
0 F21 (�) 0 F22 (�)

S1(�) 0 0 0
0 S2(�) 0 0


 ;

P� = diag(P1(�);P2(�)) =



1− p�1 t�1 0 0
p�1 1− t�1 0 0
0 0 1− p�2 t�2
0 0 p�2 1− t�2


 ;

where p�1 and p
�
2 denote the migration rates in environment � of individuals of age

1 and 2, respectively, from patches 1 to 2, and t�1 and t
�
2 have an analogous meaning

for migration from patches 2 to 1. S1(�) and S2(�), denote the survival rates, in
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environmental condition �, of individuals of age 1 in patches 1 and 2, respectively. If
we assume that, for � = 1; 2, coe�cients p�1 ; p

�
2 ; t

�
1 and t

�
2 are di�erent from 0 or 1,

then matrices P1(�) and P2(�) are primitive. Vectors vi(�) and ui have the form

v1(�) = 2
(

t�1
p�1 + t

�
1
;

p�1
p�1 + t

�
1

)T
; v2(�) = 2

(
t�2

p�2 + t
�
2
;

p�2
p�2 + t

�
2

)T
; � = 1; 2

u1 = u2 = 1
2 (1; 1)

T :

In this way, the general system has the following expression:


x11n+1

x12n+1

x21n+1

x22n+1


=M�n+1P

k
�n+1




x11n

x12n

x21n

x22n


 :

The global variables y1n and y
2
n corresponding, respectively, to age classes 1 and 2

are

y1n = u
T
1 (x

11
n ; x

12
n )

T = 1
2 (x

11
n + x

12
n ); y2n = u

T
2 (x

21
n ; x

22
n )

T = 1
2 (x

21
n + x

22
n );

so that they are proportional to the total population with ages 1 and 2, respectively.
The aggregated system takes the form[

y1n+1

y2n+1

]
= �M�n+1

[
y1n

y2n

]
;

where the vital rates in environments 1 and 2 are given by the following Leslie matrices:

�M� =UM�V� =



t�1F

1
1 (�) + p

�
1F

2
1 (�)

p�1 + t
�
1

t�2F
1
2 (�) + p

�
2F

2
12(�)

p�2 + t
�
2

t�1S
1(�) + p�1S

2(�)
p�1 + t

�
1

0


 ; � = 1; 2:

5.2. A multiregional model with fast demography

In some practical cases found in the literature on multiregional models, demography
can be considered a fast process in relation to migration. Investigating the dynamics
of the population of Canada and Great Britain, Liaw has shown, both empirically and
analytically, that the tendency of a multiregional population projection to a �xed asymp-
totic distribution takes place in two stages: �rst, a relatively rapid convergence to the
stable age compositions in each region and, second, a gradual convergence towards a
stable interregional allocation of the national population [22,23]. This suggests [28,29],
the use of aggregation techniques, with the role of the fast process being played by
demography, in order to simplify the multiregional system.
Our next application consists in the formulation and aggregation of a stochastic

multiregional model in which, unlike the model of Section 5.1, demography is fast
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with respect to migration. Again, we will consider a population living in an habitat
in which there are several possible environmental conditions, and we will allow the
demographic and migratory coe�cients to be dependent on the environment. We will
�rst set up the general situation and then we will particularize it to a very simple case
that will illustrate the methodology used.
We suppose a population living in an environment composed of q patches (corre-

sponding to groups) and divided in r discrete age classes (which in this case correspond
to the subgroups). We will denote by xijn the number of individuals of age j living in
patch i at time n, with i=1; : : : ; q and j=1; : : : ; r. The variables corresponding to patch
i are given by vector �xin = (x

i1
n ; x

i2
n ; : : : ; x

ir
n ) and the whole population is described by

vector Xn=(�x1n; �x
2
n; : : : ; �x

q
n)
T which therefore has rq components. Note that the notation

in this case has a di�erent meaning with respect to the one employed in Section 5.1.
This is a consequence of the fact that now the fast and slow processes are interchanged
with respect to those corresponding to the �rst application.
Now, we choose the projection interval of the migratory process as time step �n =

[n; n+ 1) for the model.
The characteristics of migration between the di�erent patches are given, for each

� = 1; : : : ; s, by the following non-negative coe�cients:
mtij(�)= rate of transference of individuals of age t from patch j to patch i, in

environment �; i; j = 1; : : : ; q; t = 1; : : : ; r.
These coe�cients must satisfy the obvious restriction

∑q
i=1 m

t
ij(�)=1 for all j,t and

�. In this way, migration for the whole population in environment � is de�ned by the
following stochastic matrix of dimensions qr × qr:

M� =



M11(�) M12(�) · · · M1q(�)

M21(�) M22(�) · · · M2q(�)
...

...
. . .

...
Mq1(�) Mq2(�) · · · Mqq(�)


 ;

where matrix Mij(�) ∈ Rr×r characterizes the transference of individuals from patch j
to patch i in environment �, and is given by

Mij(�) = diag(m1ij(�); m
2
ij(�); : : : ; m

r
ij(�)) i; j = 1; : : : ; q; � = 1; : : : ; s:

Demography is an internal process for each patch. For each environmental condition �,
the demographic process in patch i is de�ned by a Leslie matrix Pi(�) in the following
way:

Pi(�) =




F1i (�) F2i (�) · · · Fr−1i (�) Fri (�)

S1i (�) 0 · · · 0 0

0 S2i (�) · · · 0 0
...

...
. . .

...
...

0 0 · · · Sr−1i (�) 0



∈ Rr×r ;
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where the vital rates have the classical interpretation, i.e.:
Fji (�)= fertility rate of individuals of age j in patch i in environment �.
Sji (�)= survival rate of individuals of age j in patch i in environment �.
We will suppose that: (a) All the survival rates are non-zero, i.e., Sji (�) 6= 0 for

all i; j and �. (b) For all patches and environments, the fertility coe�cient of the
last age class is non-zero, i.e., Fri (�) 6= 0 for all i and �. (c) For all � we have that
given patch i there is an age j such that Fji (�) 6= 0 and g:c:d:(r; j) = 1. These three
conditions, which are usually met in most practical situations, guarantee that for all i
and � matrices Pi(�) are primitive [24]. Therefore, if �n is long enough with respect
to the projection interval corresponding to migration, the demographic process in all
patches and environments tends to an equilibrium. Besides we will assume that, for all
i and �, the dominant eigenvalue of Pi(�) is one, i.e., the demography in each patch
and each environment makes the individuals change age classes but does not make the
total population of the patch grow inde�nitely or decay to zero. This last assumption is
reected in the requirement that the vital rates of Pi(�) satisfy the restriction (see [24])

F1i (�) + F
2
i (�)S

1
i (�) + · · ·+ Fri (�)S1i (�)S2i (�):::Sr−1i (�) = 1;

i = 1; : : : ; q; � = 1; : : : ; s:

We de�ne ui(�) as the positive left eigenvector of Pi(�) associated to 1 and nor-
malized so the sum of its components is 1. This vector characterizes the reproductive
values of the individuals for the demographic process in patch i and environment �.
For each j; u ji (�) measures the contribution that one individual of patch i initially
present in age j would have in the total equilibrium population of this patch i if the
system were subjected to environment � and there were no migration. Note that, in
general, vectors ui(�) depend on � and therefore hypothesis (D) of Section 4 is not
veri�ed.
We denote by vi(�) the positive eigenvector of Pi(�) associated to eigenvalue 1 and

verifying the normalization condition uTi (�)vi(�) = 1. This vector has the direction of
the equilibrium population structure corresponding to the demography of group i in
environment �. The explicit expressions for vectors ui(�) and vi(�) in terms of the
vital rates in patch i can be found in [10].
Demography for the whole population will be characterized by matrix P�=diag(P1(�);

P2(�); : : : ;Pq(�)).
In order to approximate the e�ect of demography over the time interval of the model,

which is much longer than its own projection interval, we suppose that during each
interval �n, matrix P� operates a number k of times, where k is a big number, that
we assume to be an integer, that in this case can be interpreted as the ratio between
the projection intervals of the migratory and demographic processes.
We will assume that the pattern of environmental variation is characterized by a

sequence �n; n= 1; 2; : : : of random variables with values in the set {1; : : : ; s} in such
a way that for each realization !, the environment during �n is given by �n+1(!).
Therefore, the proposed multiregional model will be the following system of qr

stochastic di�erence equations:

Xn+1 =M�n+1P
k
�n+1Xn: (5.4)
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Following the aggregation procedure proposed in Section 4.2, we will end up with
q random global variables, one for each one of the patches, governing the aggregated
system. These random variables are given by

yin = u
T
i (�n+1) �x

iT
n = u

1
i (�n+1)x

i1
n + u

2
i (�n+1)x

i2
n + · · ·+ uri (�n+1)xirn ; i = 1; : : : ; q:

Let us assume that for a realization ! of the stochastic process, the environment
during �n+1 is �, i.e., �n+1(!) = �. Then

yin(!) = u
T
i (�) �x

iT
n (!) = u

1
i (�)x

i1
n (!) + u

2
i (�)x

i2
n (!) + · · ·+ uri (�)xirn (!);

i = 1; : : : ; q;

so yin(!) is a linear combination of the microvariables corresponding to patch i, be-
ing the coe�cients of each microvariable xijn (!) the reproductive value u

j
i (�) for the

demographic process of individuals of age j in that patch and environment �.
The aggregated system has the form

Yn+1 = �M�n+2 ;�n+1Yn (5.5)

and can be interpreted as a stochastic system with s2 possible environmental conditions
that we can consider numbered (; �); ; �= 1; : : : ; s. The matrix �M;� ∈ Rq×q of vital
rates in each environment (; �) is given by

�M;� =




r∑
t=1

ut1()v
t
1(�)m

t
11(�)

r∑
t=1

ut1()v
t
2(�)m

t
12(�) · · ·

r∑
t=1

ut1()v
t
q(�)m

t
1q(�)

r∑
t=1

ut2()v
t
1(�)m

t
21(�)

r∑
t=1

ut2()v
t
2(�)m

t
22(�) · · ·

r∑
t=1

ut2()v
t
q(�)m

t
2q(�)

...
...

. . .
...

r∑
t=1

utq()v
t
1(�)m

t
q1(�)

r∑
t=1

utq()v
t
2(�)m

t
q2(�) · · ·

r∑
t=1

utq()v
t
q(�)m

t
qq(�)



:

As we can see, the entries of the matrix of the aggregated system for environment
(; �) are functions of the migratory rates in environment � as well as of the equilibrium
characteristics of the demographic process in environments � and . We have collapsed
the original system with rq variables and s environmental conditions into an aggregated
system with q variables, each of them corresponding to one patch, in which there are
s2 environments.
Note that, unlike the model studied in Section 5.1, in this case the original multi-

regional model is collapsed into a reduced multiregional system in which the age
structure has been averaged and, as a consequence, the population retains only its
spatial structure.
Let us illustrate the above discussions by particularizing them to a simple case

in which there are only two spatial patches, two age classes and two environmental
conditions. Under these assumptions we have four microvariables for our multiregional
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system x11n ; x
12
n ; x

21
n ; x

22
n and matrices M� and P� are given by

M� =



1− p�1 0 t�1 0
0 1− p�2 0 t�2
p�1 0 1− t�1 0
0 p�2 0 1− t�2


 ;P� =



F11 (�) F

2
1 (�) 0 0

S1(�) 0 0 0
0 0 F12 (�) F

2
2 (�)

0 0 S2(�) 0


 ;

where the migratory coe�cients have the same meaning than in Section 5.1 and S1(�)
and S2(�) denote the survival rates, in environmental condition �, of individuals of
age 1 in patches 1 and 2, respectively.
The restrictions over the vital rates so matrices P1(�) and P2(�) have dominant

eigenvalue 1 are

F11 (�) + F
2
1 (�)S1(�) = 1; F12 (�) + F

2
2 (�)S2(�) = 1: (5.6)

Besides we will suppose that all the fertility and survival rates are positive in all
environments, so matrices P1(�) and P2(�) are primitive. Vectors vi(�) and ui(�) are
given by

v1(�) =
1 + F21 (�)

1 + F21 (�)S1(�)

(
1

S1(�)

)
; v2(�) =

1 + F22 (�)
1 + F22 (�)S2(�)

(
1

S2(�)

)
;

u1(�) =
1

1 + F21 (�)

(
1

F21 (�)

)
; u2(�) =

1
1 + F22 (�)

(
1

F22 (�)

)
: (5.7)

Therefore, the microsystem has the form


x11n+1

x12n+1

x21n+1

x22n+1


=M�n+1P

k
�n+1




x11n

x12n

x21n

x22n




and the global variables y1n and y
2
n corresponding, respectively, to patches 1 and 2 are

de�ned by

y1n = u
T
1 (�n+1)(x

11
n ; x

12
n )

T =
1

1 + F21 (�n+1)
(x11n + F

2
1 (�n+1)x

12
n );

y2n = u
T
2 (�n+1)(x

21
n ; x

22
n )

T =
1

1 + F22 (�n+1)
(x21n + F

2
2 (�n+1)x

22
n ):

The aggregated system is a stochastic model with four environmental conditions
(; �); ; � = 1; 2 with the form[

y1n+1

y2n+1

]
= �M�n+2 ;�n+1

[
y1n

y2n

]
:
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Matrix �M;� corresponding to environment (; �) in this system is given by

�M;� =



1+F21 (�)
1+F21 ()

(1−p�1)+F21 ()S1(�)(1−p�2)
1+F21 (�)S1(�)

1+F22 (�)
1+F21 ()

t�1 +F
2
1 ()S1(�)t

�
2

1+F22 (�)S2(�)

1+F21 (�)
1+F22 ()

p�1+F
2
2 ()S2(�)p

�
2

1+F21 (�)S1(�)
1+F22 (�)
1+F22 ()

(1−t�1 )+F22 ()S2(�)(1−t�2 )
1+F22 (�)S2(�)


:

Note from (5.7) that, if we assumed F21 (�) = F
2
1 and F

2
2 (�) = F

2
2 for � = 1; 2, we

would have that vectors u1(�) and u2(�) would be independent of the environment,
and so hypothesis (D) would hold. So, by keeping the fertilities in the second age
class independent of the environment and allowing the rest of the parameters to vary
randomly (always meeting (5.6)), we end up with a simpler aggregated model with
two environments � = 1; 2[

y1n+1

y2n+1

]
= �M�n+1

[
y1n

y2n

]
;

in such a way that

�M� =




(
1− p�1

)
+ F21S1(�)

(
1− p�2

)
1 + F21S1(�)

1 + F22
1 + F21

t�1 + F
2
1S1(�)t

�
2

1 + F22S2(�)

1 + F21
1 + F22

(
p�1 + F

2
2S2(�)p

�
2

)
1 + F21S1(�)

(
1− t�1

)
+ F22S2(�)

(
1− t�2

)
1 + F22S2(�)


; � = 1; 2:

6. Relationships between micro and macro systems

In this section we will relate some important features of the microsystem (3.3), the
auxiliary system (4.1) and the aggregated system (4.10). As we will see, from the
behavior of the aggregated system we can exactly know the behavior of the auxiliary
system and we can approximate, in terms of the separation of time scales, the behavior
of the microsystem.
In the following, we will say that a given property holds “for big enough k”, when

there exists an integer k0 such that for all k ≥ k0 that property holds.

6.1. Global variables and microvariables

In this section we will relate the variables corresponding to microsystem (3.3), aux-
iliary system (4.1) and aggregated system (4.10).
For each �=1; : : : ; s, let the eigenvalues �i(�) of P� ordered by decreasing modulus

be

1 = �1(�) = · · ·= �q(�)¿ |�q+1(�)| ≥ · · · ≥ |�N (�)| (6.1)

and let

�¿max{|�q+1(1)| ; |�q+1(2)| ; : : : ; |�q+1(s)|}; (6.2)

i.e., � is any number greater that the modulus of the subdominant eigenvalue of matrices
P�. Note we can always take � to be less than one.
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Let wk be a sequence of random variables de�ned in a probability space (
; F; p).
If ak is a sequence of non-zero real numbers we will write wk = o(ak) to denote

wk(!) = o(ak) for all ! ∈ 
, i.e., limk→∞
wk(!)
ak

= 0 for all ! ∈ 
.
The following result establishes that every matrix Pk� is a perturbation of the corre-

sponding �P�.

Proposition 6.1. Pk� = �P� + o(�k); k → ∞ for all � = 1; : : : ; s with � given by (6:2).
Besides Pk�n = �P�n + o(�

k); k → ∞ for all n.

Proof. See the appendix.

The next result shows we can approximately obtain the variables corresponding to
the microsystem from the knowledge of the global variables, and conversely. Those
relationships turn exact if we consider the connections between the variables corre-
sponding to the auxiliary and aggregated systems.

Proposition 6.2. For all n= 1; 2; : : : we have
(a) variables Xn and Yn corresponding to the auxiliary system (4:1) and aggregated

system (4:10); respectively; verify

Xn =M�nV�nYn−1; Yn =U�n+1Xn;

(b) variables Xn and Yn corresponding to the microsystem (3:3) and aggregated
system (4:10) respectively; are related in the following way:

Xn =M�nV�nYn−1 + o(�
k); k → ∞;

Yn =U�n+1Xn + o(�
k); k → ∞; (6.3)

where � is given by (6:2).

Proof. (a) the equality Yn = U�n+1Xn holds by de�nition. Besides, we know that for
the auxiliary system Xn =M�n

�P�nXn−1 =M�nV�nU�nXn−1 =M�nV�nYn−1:
(b) For the original system we have, using Proposition 6.1

Xn =M�nP
k
�n : : :M�2P

k
�2M�1P

k
�1X0

=M�n( �P�n + o(�
k)) : : :M�2 ( �P�2 + o(�

k))M�1 ( �P�1 + o(�
k))X0

=M�n
�P�n : : :M�2

�P�2M�1
�P�1X0 + o(�

k) =M�nV�nYn−1 + o(�
k):

where in the last equality we have used a). Similarly, for the aggregated system we
have

Yn =U�n+1M�n
�P�n : : :M�2

�P�2M�1
�P�1X0

=U�n+1M�n(P
k
�n + o(�

k)) : : :M�2 (P
k
�2 + o(�

k))M�1 (P
k
�1 + o(�

k))X0

=U�n+1M�nP
k
�n : : :M�2P

k
�2M�1P

k
�1X0 + o(�

k) =U�n+1Xn + o(�
k):



110 L. Sanz, R. Bravo de la Parra / Nonlinear Analysis: Real World Applications 1 (2000) 89–122

6.2. Markovian and i.i.d. cases

In this section we further explore the relationships between the microsystem and
the aggregated system in the case the pattern of temporal variation for the former is
a Markov chain. Indeed, a great part of the models of the kind (2.1) found in the
literature represent environmental change through Markov chains (see among others
[13–15]), for Markov chains can represent sequential dependence between environ-
ments and yet are simple enough to be analyzed in detail. This approach contemplates,
as a particular case, the possibility of the �n being independent and having the same
probability distribution (i.i.d. case), which is an usual choice for the characterization
of an uncorrelated temporal variation.
Section 4.1 showed that, given hypothesis (D) holds, the number of environmen-

tal conditions and the kind of environmental change for the original and aggregated
systems coincide. However, in the general case, neither the number of environmental
states nor the pattern of temporal variation for the microsystem coincide with those
corresponding to the aggregated system. In this section we study the relationships be-
tween those patterns of environmental stochasticity in the case in which the �n are a
homogeneous Markov chain.
Assume the chain �n which characterizes the environmental change for the microsys-

tem is de�ned by the following transition and initial probabilities:

p(�n+1 = i | �n = j) = qij; i; j = 1; : : : ; s; n= 1; 2; : : : ;

p(�1 = i) = qi; i = 1; : : : ; s: (6.4)

We de�ne the stochastic matrix Q= [qij] ∈ Rs×s and the probability normed vector
q = (q1; : : : ; q s)T.
The following proposition, whose proof is straightforward, shows that under the

above conditions, the random variables which characterize environmental variation for
the aggregated system also constitute a Markov chain.

Proposition 6.3. Assuming �n constitute a Markov chain de�ned by conditions (6:4);
then ��n = (�n+1; �n) are also a Markov chain with transition and initial probabilities
given by

p( ��n+1 = (i; j) | ��n = (�; �)) = �j�qij;

p( ��1 = (i; j)) = qijqj:

For the environmental states of the aggregated system, we consider the ordering
consistent with that of (4.13), i.e.,

(1; 1); (2; 1); : : : ; (s; 1); (1; 2); (2; 2); : : : ; (s; 2); : : : ; (1; s); (2; s); : : : ; (s; s); (6.5)

and to each pair (i; j) we associate the number lij corresponding to its place in the
above ordering, i.e., lij = (j − 1)s+ i.
Then, matrix R∈Rs2×s2 and vector t∈Rs2 which characterize, respectively, the

transition probabilities and the initial probabilities for the chain corresponding to the
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aggregated system, are given by

r(lij; l��) = p( ��n+1 = (i; j) | ��n = (�; �)) = �j�qij; i; j; �; � = 1; : : : ; s; (6.6)

t = (q11q1; q21q1; : : : ; qs1q1; q12q2; q22q2; : : : ; qs2q2; : : : ; q1sqs; q2sqs; : : : ; qssqs);

where r(lij; l��) denotes the element of row lij and column l�� of R.
Regarding the environmental states for the aggregated system, the following two

comments deserve attention:
(1) if i and j are such that qij = 0; then the state (i; j) is a forbidden state in the

evolution of the environment.
(2) for all j 6= � it follows p( ��n+1 = (i; j) | ��n=(�; �))=0. Therefore, at most s3 out

of the s4 elements of R will be non-zero.
As a particular case of the above situation, let us consider the case in which

the pattern of environmental variation in the original system is i.i.d., in such a way
that

p(�n = �) = q�; � = 1; : : : ; s; n= 1; 2; : : : : (6.7)

Then, the environmental variation for the aggregated system is not i.i.d, for we have
from Proposition 6.3:

p( ��n+1 = (i; j) | ��n = (�; �)) = �j�qi:
This is a direct consequence of the fact that the environmental state at time n in the

aggregated system depends on the state of the environment in the original system at
times n and n+ 1, and so the ��n are correlated even though the �n are not.

6.2.1. Moments of the population vector for original and aggregated systems
Now we are interested in relating the statistical moments of the population vector

for microsystem and aggregated system. In particular, we want to obtain the dynamics
of the moments corresponding to the microsystem in terms of information pertain-
ing the aggregated system. Note that even though we know the relationships between
microvariables and global variables through Proposition 6.2, we cannot derive the re-
lationships between their moments directly from that proposition. Indeed, even in the
case the �n are i.i.d., variables M�nV�n and Yn−1 are correlated in (6.3), and so we
can not obtain the expectation of the microvariables in terms of the expectation of
the global variables.
In this section we will relate the behavior of the statistical moments of the population

vector corresponding to the original and aggregated systems under the hypothesis that
the environmental change in the original system is characterized by a Markov chain.
In order to do so we will use the fact that the evolution of the moments of the
population vector in systems of the kind (2.1) with the �n being an homogeneous
Markov chain and the initial population vector being �xed, can be known explicitly in
terms of the powers of certain matrices.
A useful tool for this task is the Kronecker matrix product, which for two matrices

A = [aij] ∈ Cm×n and B = [bij] ∈ Cr×s is de�ned as the matrix of size mr × ns



112 L. Sanz, R. Bravo de la Parra / Nonlinear Analysis: Real World Applications 1 (2000) 89–122

given by

A ⊗ B=



a11B a12B · · · a1nB

a21B a21B · · · a2nB
...

...
. . .

...
am1B am2B · · · amnB


 ; (6.8)

i.e., A⊗B is a matrix with mn blocks in which the block in position i; j has the form
aijB. A notable property of the Kronecker product that we will frequently use in the
sequel is (see [25]):

(A1 ⊗ A2 ⊗ · · · ⊗ Am)(B1 ⊗ B2 ⊗ · · · ⊗ Bm) = (A1B1)⊗ (A2B2)⊗ · · · ⊗ (AmBm):
(6.9)

In order to shorten some expressions we will use the notation A⊗m=A⊗A⊗ (m): : :⊗A
when necessary.
We will denote the expectation of a random variable z as E(z). If Z=(z1; : : : ; zN )T is

a vector random variable, the (non-central) moments of any order of the components
of Z, i.e., E((zi)s(zj)t) for s, t = 0; 1; : : : can be expressed in a compact form through
the use of the Kronecker product. Indeed, the moments of order m of Z will be given
by E(Z ⊗ Z ⊗ (m): : :⊗Z) ∈ RNm×1. In particular, the �rst order moments of Z provide
the expected value of its components, while the second order moments allow us to com-
pute the variances and covariances of such components. For example, if Z= (z1; z2)T,
the moments of �rst order of Z will be E(Z)=(E(z1); E(z2))T, meanwhile the moments
of second order are given by E(Z⊗ Z) = (E(z1z1); E(z1z2); E(z2z1); E(z2z2))T.
Suppose that the chain �n is de�ned by conditions (6.4). Then (see [37]), if we

assume that the initial population vector is some �xed z0 we have that, for all natural
m and n

E(Zn ⊗ (m): : :⊗Zn) = JmDn−1m FmSm(z0 ⊗ (m): : :⊗z0) ∈ RNm×Nm ; (6.10)

where

Dm = Fm(Q⊗ INm) ∈ RsNm×sNm ;
Fm = diag(A1 ⊗ (m): : :⊗A1; : : : ;As ⊗ (m): : :⊗As) ∈ RsNm×sNm ;
Jm = (INm |INm | (s): : : |INm) ∈ RNm×sNm ;
Sm = (q1INm |q2INm | (s): : : |qsINm)T ∈ RsNm×Nm :

Therefore, for each m the evolution of the moments of order m of Zn obeys a linear
dynamics characterized by the powers of the non-negative matrix Dm. This matrix is
composed of s×s blocks in such a way that the block element �; � is (Dm)��=q��A�⊗
(m): : :⊗A�. So, if Dm has a simple and strictly dominant eigenvalue � associated to right
and left eigenvectors rm and lm (both of size sNm × 1); we have that the asymptotic
behavior of the moments of order m of the system is given by

lim
n→∞

E(Zn ⊗ : : :(m)⊗Zn)
�n

=
1
�
〈lm;FmSm(z0 ⊗ : : :(m)⊗z0)〉

〈lm; rm〉 Jmrm: (6.11)
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Therefore we have: (a) The vector of moments grows asymptotically in an exponen-
tial fashion with growth rate �. (b) If we consider rm divided in s column blocks rim
each of them of dimensions Nm×1, the asymptotic structure of the vector of moments
is determined by vector Jmrm = r1m + · · · + rsm. In particular, the expected population
size grows asymptotically at a rate given by the dominant eigenvalue of �D1.
In the remainder of this section we will relate the evolution and the asymptotic

behavior of the moments of the original, aggregated and auxiliary systems. As an
initial condition for the original and auxiliary systems we will impose that the initial
population vector is some �xed a ∈RN×1, i.e., X0(!) = a for all ! ∈ 
. Note that for
the aggregated system we will have Y0 =U�1a and therefore the initial population for
the original system is a (non-constant) random variable.
Let m be �xed. Following (6.10), the evolution of the moments of order m of the

original and auxiliary systems is given by

Original system : E(Xn ⊗ (m): : :⊗Xn) = JmDn−1m (k)Fm(k)Sm(a ⊗ (m): : :⊗a);
Auxiliary system : E(Xn ⊗ (m): : :⊗Xn) = JmD′n−1

m F′mSm(a ⊗ (m): : :⊗a); (6.12)

where the di�erent matrices are de�ned by

Fm(k) = diag(M1Pk1 ⊗ (m): : :⊗M1Pk1 ; : : : ;MsPks ⊗ (m): : :⊗MsPks ) ∈ RsN
m×sNm ;

F′m = diag(M1 �P1 ⊗ (m): : :⊗M1 �P1; : : : ;Ms �Ps ⊗ (m): : :⊗Ms �Ps) ∈ RsNm×sNm ;
Dm(k) = Fm(k)(Q⊗ INm) ∈ RsNm×sNm ;
D′
m = F

′
m(Q⊗ INm) ∈ RsNm×sNm ;

Jm = (INm |INm | (s): : : |INm) ∈ RNm×sNm ;

Sm = (q1INm |q2INm | (s): : : |qsINm)T ∈ RsNm×Nm : (6.13)

In this way, the powers of matrices Dm(k) and D′
m characterize the evolution of the

moments of order m for the original and auxiliary systems, respectively.
In order to characterize the vector of moments for the aggregated system (4.10)

we could proceed in the same way and build appropriate matrices according to (6.10).
However, and due to the great number of environmental states in the aggregated system
(s2 states), this would imply working with matrices of great dimensions. For example,
the matrix whose powers would de�ne the behavior of the moments of the system,
would have size s2qm × s2qm. We will follow an alternative approach and will deduce
a way of calculating the moments of the population vector for the aggregated system
through the powers of matrices of size sqm × sqm. Indeed we have

E(Yn ⊗ (m): : :⊗Yn) =∑
!

prob(!) �M
⊗m
��n(!) : : : �M

⊗m
��2(!)

�M
⊗m
��1(!)(Y0(!)⊗ (m): : :⊗Y0(!))
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=
s∑

i1 ;:::; in+1=1

qin+1inqinin−1 : : : qi2i1q
i1 �M

⊗m
in+1in

�M
⊗m
inin−1

: : : �M
⊗m
i2i1 U

⊗m
i1 (a ⊗ (m): : :⊗a)

=
s∑

i1 ;:::; in+1=1

(qin+1in �M
⊗m
in+1in) (qinin−1

�M
⊗m
inin−1

) : : : (qi2i1 �M
⊗m
i2i1 ) (q

i1U⊗m
i1 ) (a ⊗ (m): : :⊗a):

(6.14)

We de�ne matrix �Cm ∈ Rsqm×sqm as a matrix of s× s blocks in such a way that the
block element �; � is ( �Cm)�� = q�� �M

⊗m
�� = q�� �M�� ⊗ (m): : :⊗ �M�� and matrices

�Jm = (Iqm |Iqm | (s): : : |Iqm) ∈ Rqm×sqm ;
Gm = diag(U1 ⊗ (m): : :⊗U1; : : : ;Us ⊗ (m): : :⊗Us) ∈ Rsqm×sNm :

Then, it is easy to check that we can write (6.14) in the form

E(Yn ⊗ (m): : :⊗Yn) = �Jm �C
n
mGmSm(a ⊗ (m): : :⊗a) (6.15)

and therefore the moments of order m of the aggregated system can be calculated in
terms of the powers of matrix �Cm.
The following paragraphs will deal with some relationships (in particular spectral

relationships) between matrices Dm(k); D′
m and �Cm which will allow us to relate the

moments of the population vectors for the three systems.
We introduce two matrices that will be helpful in the subsequent developments:

Tm =Gm(Q⊗ INm) ∈ Rsqm×sNm ;
Hm = diag(M1V1 ⊗ (m): : :⊗M1V1; : : : ;MsVs ⊗ (m): : :⊗MsVs) ∈ RsNm×sqm :

Next proposition relates some properties of matrices �Cm and D′
m including relation-

ships between their eigenelements (i.e., eigenvalues and eigenvectors).

Proposition 6.4. Matrices �Cm and D′
m verify:

(a) �Cm = TmHm; D′
m =HmTm;

(b) �C
n
m = TmD

′n−1
m Hm and D′n

m =Hm �C
n−1
m Tm;

(c) det(�IsNm−D′
m)=�

s(Nm−qm) det(�Isqm− �Cm); in particular; the dominant eigenvalues
of both matrices; including multiplicities; coincide.

(d) If r and l are; respectively; right and left eigenvalues of �Cm associated to � 6= 0
then Hmr and TTml are; respectively; right and left eigenvectors of D

′
m associated

to �.

Proof. (a) Straightforward from the expressions of Tm and Hm, property (6.9) and the
fact that V�U�= �P� for all �. (b) Trivial from (a). (c) Direct consequence of the fact
that the non-zero eigenvalues, including multiplicities, of TmHm coincide with those of
HmTm (see [19]). (d) We know �Cmr= �r 6= 0, i.e., TmHmr= �r 6= 0 (∗) so it must be
Hmr 6= 0. Multiplying on the left by Hm and using (a) we have

HmTmHmr=D′
mHmr= �Hmr:
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Analogously, we know lT �Cm = �lT 6= 0, i.e., lTTmHm = �lT 6= 0, so lTUgm 6= 0.
Multiplying on the right by Tm and using (a) we have

lTTmHmTm = lTTmHm = �lTTm

as we wanted to show.

Next, we relate the spectral properties of matrices Dm(k) and D′
m considering the

former as a perturbation of the latter. In order to see this intuitively, we write

Dm(k)−D′
m = (Fm(k)− F′m)(Q⊗ IN 2 ):

Matrix Fm(k)−F′m is block diagonal. Bearing in mind property (6.9), its �th diagonal
block has the form

(M� ⊗ (m): : :⊗M�) (Pk� ⊗ (m): : :⊗Pk� − �P� ⊗ (m): : :⊗ �P�):
The basic idea is that the second factor can be made arbitrarily small for big k using

the fact that Pk� can be made arbitrarily close to �P�, and therefore Dm(k) is indeed a
perturbation of D′

m.

Proposition 6.5. For all m= 1; 2; : : :

Dm(k)−D′
m = o(�

k); k → ∞;
Fm(k)− F′m = o(�k); k → ∞;

where � is any number verifying (6:2).

Proof. See the appendix.

The following proposition shows that the moments of the population vector corre-
sponding to the original and auxiliary systems can be evaluated in terms of the powers
of matrix �Cm that characterizes the evolution of those moments for the aggregated
system.

Proposition 6.6. For all m; n= 1; 2; : : : we have
(1) Aggregated system: E(Yn ⊗ (m): : :⊗Yn) = �Jm �C

n
mGmSm(a ⊗ (m): : :⊗a).

(2) Auxiliary system: E(Xn ⊗ (m): : :⊗Xn) = JmHm �Cn−1m GmSm(a ⊗ (m): : :⊗a).
(3) Original system: E(Xn⊗ (m): : :⊗Xn)= JmHm �Cn−1m GmSm(a⊗ (m): : :⊗a)+ o(�k) where �

is any number verifying (6:2).

Proof. We already have (1). Condition (2) follows trivially using Proposition 6.4. In
order to obtain (3) we write, for the original system and n and m �xed:

E(Xn ⊗ (m): : :⊗Xn) = JmDn−1m (k)Fm(k)Sm(a ⊗ (m): : :⊗a)

= Jm(D′
m + o(�

k))n−1(F′m+o(�
k))Sm(a ⊗ (m): : :⊗a)
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= JmD′n−1
m F′mSm(a ⊗ (m): : :⊗a) + o(�k)

= JmHm �C
n−1
m GmSm(a ⊗ (m): : :⊗a) + o(�k);

where we have used Proposition 6.5.

The asymptotic behavior of the moments of order m of the original, auxiliary and
aggregated systems is determined by the dominant eigenelements of matrices Dm(k),
D′
m and �Cm, respectively. In the following, we will obtain results that allow us to

approximate the asymptotic behavior of the moments of any order for the original
system in terms of the dominant eigenelements corresponding to matrices �Cm.
We introduce an assumption that guarantees that the moments of order m of the

aggregated system tend to an asymptotic structure:
H1. Matrix �Cm has an eigenvalue � which is simple and strictly dominant, with

associated right and left non-negative eigenvectors r and l, respectively.
Assume the original system has a non-negative initial condition a. Using (6.15) we

have that hypothesis H1 guarantees that the aggregated system veri�es

lim
n→∞

E(Yn ⊗ : : :(m)⊗Yn)
�n

= lim
n→∞

�Jm

( �Cm
�

)n
GmSma

=
〈l;GmSm(a ⊗ : : :(m)⊗a)〉

〈l; r〉
�Jmrm:

Now, the asymptotic behavior of the moments of order m of for the auxiliary system
is given by the following result:

Proposition 6.7. Let m be such that H1 holds. Then; for any initial condition a ≥ 0
for the auxiliary system; the asymptotic behavior of the moments of order m of this
system is characterized by

lim
n→∞

E(Xn ⊗ : : :(m)⊗Xn)
�n

=
1
�
〈l;GmSm(a ⊗ : : :(m)⊗a)〉

〈l; r〉 JmHmrm:

Proof. Absolutely analogous to the proof of Proposition 6.9 below.

The following proposition characterizes the dominant eigenelements of matrix Cm(k).

Proposition 6.8. Let m be such that �Cm veri�es H1. Then; for k big enough; matrix
Dm(k) has a simple and strictly dominant eigenvalue �(k) that can be expressed in
the form

�(k) = �+ o(�k); �→ ∞
with � given by (6:2). Besides; associated to �(k) there are right and left eigenvectors
that can be written; respectively; in the form

Hmr+ o(�k); TTml + o(�
k):
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Proof. See the appendix.

The proposition above guarantees that the asymptotic growth rate and the struc-
ture of the moments of any order of the population vector for the microsystem can
be approximated if we know its analogues for the aggregated system. The larger
the separation of time scales is, the sharper the approximation will be. Indeed we
have:

Proposition 6.9. Let m be such that H1 holds. Then; for k big enough and for any
initial condition a ≥ 0 for the original system; the asymptotic behavior of the moments
of order m of this system is characterized by

lim
n→∞

E(Xn ⊗ : : :(m)⊗Xn)
(�+ o(�k))n

=
1
�
〈l;GmSm(a ⊗ : : :(m)⊗a)〉

〈l; r〉 JmHmrm + o(�k):

Proof. From (6.11) and Propositions 6.5 and 6.8 we have that, for big enough k;

lim
n→∞

E(Xn ⊗ : : :(m)⊗Xn)
(�(k))n

=
1

�+ o(�k)
Jm
(Hmr+ o(�k))(lTTm + o(�k))
(lTTm + o(�k))(Hmr+ o(�k))

(F′m + o(�
k))Sm(a ⊗ (m): : :⊗a)

=
(
1
�
+ o(�k)

)
Jm
HmrlTTm + o(�k)
lTTmHmr+ o(�k)

(F′mSm(a ⊗ (m): : :⊗a) + o(�k))

=
(
1
�
+ o(�k)

)
Jm

(
HmrlTTm
lT �Cmr

+ o(�k)
)
(HmGmSm(a ⊗ (m): : :⊗a) + o(�k))

=
1
�
Jm
HmrlT �Cm
�lTr

GmSm(a ⊗ (m): : :⊗a) + o(�k)

=
1
�
Jm
�HmrlT

�lTr
GmSm(a ⊗ (m): : :⊗a) + o(�k)

=
1
�
〈l;GmSm(a ⊗ : : :(m)⊗a)〉

〈l; r〉 JmHmrm + o(�k);

where we have used �Cm = TmHm and, as it is trivial to show, F′m =HmGm.

To illustrate how one can study the inuence of the fast and slow processes in
the system through the dynamics of the aggregated system, let us consider the mul-
tiregional model with fast demography (5.4) presented in Section 5.2. Migration is a
conservative process for the total number of individuals in the population, so if we
consider the stochastic multiregional model in the case migration is the only process
acting, the system will keep its total population constant. However, if we consider also
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demography, the picture considerably changes. For example, given a Markovian pattern
of environmental variation, the matrix �C1 corresponding to the aggregated system (5.5)
will not in general have 1 as its dominant eigenvalue. Consequently, the multiregional
model will have an expected population size that, depending on the value of the mi-
gratory and demographic rates in the di�erent environments, either decays to zero or
grows exponentially.

7. Discussion

This work develops a method which allows one to treat a stochastic complex system
in which there are two time scales involved to obtain a reduced model. The variables
which govern the aggregated system are certain linear combinations of the state vari-
ables of the original system, being the coe�cients dependent of the characteristics of
the fast process. The parameters of the aggregated system can be easily expressed as
functions of the slow dynamics and of the equilibrium proportions of individuals cor-
responding to the fast process. The variables corresponding to the original and reduced
systems can be related in an easy way, therefore allowing one to study the dynamics
of the former by that of the latter. Moreover, in the Markovian case it is possible to
relate the moments of the population vector for both systems. In this way, it is possible
to study how changes in both the fast and slow processes a�ect the dynamics of the
aggregated system.
There are some features related to the dynamics of systems of kind (2.1) that would

be interesting to address in future contributions to check whether we can be related
for the original and reduced models. The �rst is the existence of stochastic ergodicity,
roughly the capacity of the distribution of the structure of the population to forget initial
conditions [13,14]. Besides, we plan to study parameters as the asymptotic expectation
and variance for the logarithm of total population size [36], which approximately char-
acterize the probability of extinction of the population [21]. The former, also known
as the stochastic growth rate, characterizes the expected growth rate over the di�erent
realizations of the process and plays a major role in the study of these kinds of systems
[37,38].

Appendix

Proof of Proposition 6.1. Let � be �xed and let us consider a Jordan canonical de-
composition of P�. Eigenvalue 1 is simple and strictly dominant for each of the Pi(�)
and is associated to right and left eigenvectors vi(�) and ui(�). Therefore, we have
that for matrix P� eigenvalue 1 is strictly dominant, semisimple and has multiplicity
q. Besides the columns of V� and the rows of U� are bases of its associated right and
left eigenspaces, respectively. Since U�V� = Iq we have that a Jordan decomposition
of P� with eigenvalues ordered by decreasing modulus will have the form

P� = (V� |V′
�)diag(Iq;H)

(
U�
U′
�

)
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where V′
� and U

′
� are appropriate matrices and H corresponds to Jordan blocks asso-

ciated to eigenvalues �q+1(�); : : : ; �N (�) (of modulus strictly less than �). Therefore,
taking into account that �P� = V�U� we have

Pk� = �P� + (V� |V′
�)diag(0;H

k)
(
U�
U′
�

)

and so Pk� − �P� = o(�k); k → ∞. Since the state space of �n is {1; : : : ; s}, it follows
that for all n and all ! ∈ 
, Pk�n(!) =

�P�n(!) + o(�
k); k → ∞ as we wanted to

show.

Proof of Proposition 6.5. Let � ∈ {1; : : : ; s} be �xed. The �-th diagonal block of
Fm(k)− F′m is (M� ⊗ (m): : :⊗M�) (Pk� ⊗ (m): : :⊗Pk� − �P� ⊗ (m): : :⊗ �P�). Using Lemma 3.1 and
proceeding by induction, it is trivial to show that the second factor can be expressed in
the form (P�⊗(m): : :⊗P�− �P�⊗(m): : :⊗ �P�)k . We denote ��=(P�⊗(m): : :⊗P�− �P�⊗(m): : :⊗ �P�).
Let us consider a Jordan canonical decomposition of P� with eigenvalues ordered by
decreasing modulus. Bearing (6.1) in mind, it follows that this decomposition will have
the form P�=Sdiag(Iq;H�)S−1 where S is an appropriate matrix and H� corresponds
to upper triangular Jordan blocks associated to eigenvalues �q+1(�); : : : ; �N (�) (of mod-
ulus strictly less than �). Since �P� = limk→∞ Pk� we have �P� = Sdiag(Iq; 0)S−1 and
consequently it follows

�� = (S⊗ (m): : :⊗S)(A� − B�)(S⊗ (m): : :⊗S)−1; (7.1)

where

A� = diag(Iq;H�)⊗ (m): : :⊗diag(Iq;H�); B� = diag(Iq; 0)⊗ (m): : :⊗diag(Iq; 0)
and where we have used that the inverse of the Kronecker product is the Kronecker
product of the inverses [16, p. 138]. The direct product of upper triangular matrices is
upper triangular and its diagonal elements are the product “all with all” and ordered
in a certain sense of the diagonal elements of the factors of the product [16, p. 138].
Therefore, since H� has diagonal elements �q+1(�); �q+2(�); : : : ; �N (�), matrix A� will
be upper triangular and its diagonal entries will consist (in a certain order which
is nor relevant for our discussion) in qm ones and Nm − qm elements of the kind
�i1 (�)�i2 (�) : : : �im(�) where the ij ∈ {1; : : : ; N}; j = 1; : : : ; m and at most m − 1 of
the ij are equal to one. In the same way, matrix B� will be upper triangular and its
diagonal entries will be qm ones, which will be placed in the same positions that those
corresponding to A�; and Nm − qm zeroes. Therefore, A� − B� is upper triangular and
its diagonal elements, i.e., its eigenvalues are qm zeroes and Nm − qm elements of the
kind �i1 (�)�i2 (�) : : : �im(�) where the ij ∈ {1; : : : ; N}; j = 1; : : : ; m and at most m − 1
of the ij are equal to one. Since all |�i(�)|¡ 1 and |�i(�)|¡� for i ∈ {q+ 1; : : : ; N}
we have that the spectral radius of A� − B� is less than �. From (7.1) we have ��
is similar to A� − B�; so �(��)¡� and therefore limk→∞(��=�)k = 0 for all �. We
have then

Dm(k)−D′
m = diag(M1 ⊗ · · · ⊗M1�k1; : : : ;Ms ⊗ · · · ⊗Ms�ks )(Q⊗ IN 2 )

and dividing by �k and taking limits k → ∞; the desired result follows.
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Proof of Proposition 6.8. We know (Proposition 6.5) that for any consistent matrix
norm ‖ ∗ ‖ we have ‖Dm(k) − D′

m‖ = E with E = o(�k). Therefore, using Theorem
7.1 (appendix) and Proposition 6.4 we have that, for k big enough, Dm(k) has an
eigenvalue �(k) which is simple and strictly dominant in the form

�(k) = �+
〈TTml; (Dm(k)−D′

m)Hmr〉
〈TTml;Hmr〉

+ O(o(�k)2):

Associated to � there are right and left eigenvectors Hmr + O(o(�k)) and TTml +
O(o(�k)) respectively. Since O(o(�k)) = o(�k) all we have to do is to show that

〈TTml; (Dm(k)−D′
m)Hmr〉

〈TTml;Hmr〉
= o(�k);

which is trivial for the scalar product is a continuous mapping and D′
m(k)−D′=o(�k).

Below we state a result about matrix perturbation theory that is used in this work
and which can be found in [34].

Theorem 7.1. Let � be a simple eigenvalue of a matrix A of dimensions N × N
with associated right and left eigenvectors xr and xl; respectively. Let Ã=A+E be
a perturbation of matrix A; and ‖ ∗ ‖ any consistent matrix norm in the space of
matrices N × N . Then
(a) there exists a unique eigenvalue �̃ of Ã such that

�̃= �+
xTl Exr
xTl xr

+ O(‖E‖2):

(b) associated to �̃ there exist right and left eigenvectors x̃r and x̃l respectively
such that

x̃r = xr + O(‖E‖); x̃l = xl + O(‖E‖):
(c) for small enough ‖E‖; �̃ is the only eigenvalue of Ã in a certain neighborhood

of � (therefore; if � is strictly dominant for A; so will be �̃ for Ã).
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