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Abstract – In ecology, we are faced with modelling complex systems involving many
variables corresponding to interacting populations structured in different compartmental
classes, ages and spatial patches. Models that incorporate such a variety of aspects would
lead to systems of equations with many variables and parameters. Mathematical analysis
of these models would, in general, be impossible. In many real cases, the dynamics of the
system corresponds to two or more time scales. For example, individual decisions can be
rapid in comparison to growth of the populations. In that case, it is possible to perform
aggregation methods that allow one to build a reduced model that governs the dynamics
of a lower dimensional system, at a slow time scale. In this article, we present a review
of aggregation methods for time continuous systems as well as for discrete models. We
also present applications in population dynamics. A first example concerns a continuous
time model of a single population distributed on a system of two connected patches (a
logistic source and a sink), by fast migration. It is shown that under a certain condition,
the total equilibrium population can be larger than the carrying capacity of the logistic
source. A second example concerns a discrete model of a population distributed on two
patches, still a source and a sink, connected by fast migration. The use of aggregation
methods permits us to conclude that density-dependent migration can stabilize the total
population. © 2000 Académie des sciences/Éditions scientifiques et médicales Elsevier
SAS

approximate aggregation of variables / population dynamics / time scales / dynamical
systems / source–sink models

Résumé – Méthodes d’agrégation de variables en dynamique de population. En
écologie, nous sommes confrontés à la modélisation de systèmes complexes mettant en
jeu un grand nombre de variables correspondant à des populations structurées en
différentes classes d’âge, de comportement ou encore distribuées spatialement sur des
sites. Un modèle qui prendrait en compte un tel niveau de détail dans la structure des
populations serait composé d’un système d’équations comportant un grand nombre de
variables et de paramètres. L’analyse mathématique d’un tel modèle serait en général
impossible. Cependant, dans certains cas, la dynamique du système correspond à
différentes échelles de temps. Par exemple, les décisions individuelles peuvent être
rapides en comparaison de la croissance des populations. Dans ce cas, il est possible
d’utiliser la méthode d’agrégation des variables qui permet de construire un modèle
réduit gouvernant la dynamique d’un système de faible dimension à une échelle de
temps lente. Dans cet article, nous présentons une revue des méthodes d’agrégation
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pour les modèles en temps continu et en temps discret. Nous proposons également des
applications en dynamique de populations. Un premier exemple concerne un modèle
en temps continu d’une population distribuée sur deux sites (une source avec croissance
logistique et un puits) connectés par des migrations se déroulant à une échelle de temps
rapide. Nous montrons que, sous certaines conditions, l’effectif total de la population à
l’équilibre peut être supérieur à celui de la source isolée. Un second exemple concerne
un modèle en temps discret d’une population encore distribuée sur un système
puits–source avec des migrations rapides. La méthode d’agrégation permet de montrer
que la densité dépendance des taux de migration peut stabiliser la population totale à
l’équilibre. © 2000 Académie des sciences/Éditions scientifiques et médicales Elsevier
SAS

agrégation de variables par approximation / dynamique de population /
échelles de temps / systèmes dynamiques / modèles puits–source

Version abrégée

Dans cette contribution, nous présentons une revue
des articles portant sur les méthodes d’agrégation des
variables et sur leurs applications en dynamique de
population. Dans le domaine de la dynamique des
communautés et des populations, une tendance actuelle
consiste à prendre en compte les structures internes
des populations. Une communauté est un ensemble de
plusieurs populations en interaction, elles-mêmes sub-
divisées en des sous-populations distribuées spatiale-
ment sur des sites ou encore correspondant à des
classes d’âge ou de comportement. La prise en compte
d’un niveau de description détaillé en dynamique de
population conduit alors à des modèles mathématiques
pouvant comporter de nombreuses variables d’état.
L’étude analytique de tels modèles est en général
impossible et bien souvent l’étude se réduit à des
simulations numériques sur ordinateur.

Cependant, les systèmes écologiques sont composés
de plusieurs niveaux d’organisation. En général, les
niveaux de l’individu, de la population et de la com-
munauté sont pris en compte. À ces niveaux d’organi-
sation correspondent des échelles spatio-temporelles
différentes. En effet, les décisions individuelles concer-
nent typiquement une échelle de temps de l’ordre de la
journée, les croissances des populations sont annuelles
et les évolutions des structures des communautés peu-
vent se faire sur des durées encore beaucoup plus
longues.

La prise en compte d’échelles de temps différentes
dans un modèle de dynamique de population permet
dans certains cas de réduire la dimension du système
dynamique. Cette opération s’appelle une agrégation
de variables. À partir du modèle mathématique initial
comportant de nombreuses variables d’état, il est pos-
sible de tirer parti de l’existence d’échelles de temps
différentes afin d’obtenir un modèle mathématique
réduit gouvernant la dynamique de quelques variables
globales. Ce modèle agrégé est un nouveau modèle
obtenu par des méthodes d’approximation dont la

dynamique est très proche de celle du modèle com-
plexe initial. L’approximation consiste à supposer que
les processus rapides atteignent un équilibre qui doit
être stable. Le modèle réduit présente parfois l’avan-
tage de pouvoir être étudié de manière analytique, ce
qui permet alors d’obtenir des résultats généraux sur la
dynamique.

Dans cet article, nous présentons une revue des
modèles mathématiques pour lesquels les méthodes
d’agrégation de variables ont été développées, les
systèmes d’équations différentielles ordinaires et les
systèmes discrets. Nous présentons également deux
applications nouvelles en dynamique de population.
Dans les deux cas, il s’agit d’une population distribuée
sur deux sites, un puits (un site défavorable où la
population ne peut survivre) et une source (un site
favorable) connectés par des migrations. Le modèle
initial décrit la dynamique des deux sous-populations
sur les sites. Nous faisons l’hypothèse que la dynami-
que de migration se produit à une échelle de temps
plus rapide que la dynamique de croissance des sous-
populations sur chaque site. L’agrégation de variables
permet d’obtenir un modèle mathématique gouvernant
une seule variable, la population totale des deux sites.

Le premier exemple concerne un modèle en temps
continu. Nous montrons que, sous certaines condi-
tions, la population totale tend vers un équilibre qui
peut être supérieur, c’est-à-dire avec un effectif plus
élevé, que celui de la sous-population sur le site
favorable. La connection d’une source avec un puits
par un processus de migration rapide peut ainsi favo-
riser le développement global de la population totale.

Le second exemple concerne un modèle en temps
discret. Dans ce cas, nous étudions la dynamique d’une
population distribuée sur un système puits–source.
Dans le cas de migrations à taux constants, selon les
cas, la population s’éteint ou bien croît sans limites.
Nous étudions ensuite l’effet d’une migration densité
dépendante sur la croissance globale de la population.
Dans le cas d’une migration de la source vers le puits
dont le taux augmente avec l’effectif des individus sur
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la source, l’effectif global de la population peut être
stabilisé et tendre vers un équilibre. Cet exemple

illustre ainsi comment les comportements individuels
rapides peuvent émerger au niveau de la population.

1. Introduction

A first generation of mathematical models in ecology
and in population dynamics has provided simple models
involving a small number of state variables and param-
eters. The time continuous prey–predator Lotka–Volterra
models as well as the discrete host–parasite Nicholson–
Bailey models are classic examples, see Edelstein-Keshet
[1] and Murray [2]. In such models, the state variables are
often chosen as the population numbers and the model is
a system of non-linear coupled ODEs or discrete equations
that describe the time variation of the interacting popula-
tions. The next step in ecological modelling is to consider
more and more detailed models. Populations must not be
considered as homogeneous in the sense that all individu-
als are identical but structured in sub-groups correspond-
ing to different ages or stages, compartmental classes, or
still distributed geographically on patches connected by
migrations.

Incorporating more details in the models is necessary to
advance towards a more realistic description of ecological
systems. Against a detailed description of systems is the
fact that models become more complex, involving an
increasing number of variables and parameters, and so
making them impossible to study mathematically. For this
reason, it is important to find which details are really
relevant and must be incorporated in a model. An impor-
tant goal of ecological modelling is thus to describe trac-
table models. Slow–fast models and perturbation methods
permit some simplifications, see Muratori and Rinaldi [3]
and Rinaldi and Muratori [4, 5].

In this article, we focus on a method of aggregation of
variables. The main goal is to reduce the dimension of the
mathematical model to be handled analytically. In gen-
eral, the aggregation of a system consists in defining a
small number of global variables, functions of its state
variables, and a system describing their dynamics. When
the aggregated dynamics are consistent with the original
dynamics in the sense that the global variables behave
identically both in the initial system and in the aggregated
one, it is called perfect aggregation, see Iwasa et al. [6].
Perfect aggregation is rarely possible and methods for
approximate aggregation have been developed, see Iwasa
et al. [7], and also Levin and Pacala [8] and Pacala and
Levin [9]. By approximate aggregation we mean the kind
of aggregation where the consistency between the dynam-
ics of the global variables in the original and the aggre-
gated system is only approximate.

In this article, we consider approximate aggregation
methods that are based on the existence of different time
scales. This approximate aggregation is closer to the per-
fect aggregation as the ratio between time scales grows. It
is common in ecology to consider different ecological

levels of organization, the individual, population, com-
munity and ecosystem levels. In general, different charac-
teristic time scales are associated with these levels of
organization. For example, a fast time scale corresponds to
individual processes and a slow one to demographic ones.
It is possible to take advantage of these two time scales in
order to reduce the dimension of the initial complete
model and to build a simplified system that describes the
dynamics of a small number of global variables. In this
article, we focus on approximate aggregation methods
and we shall refer to a series of papers by P. Auger and a
group of co-workers.

In section 2 we present a review of aggregation methods
for time continuous models. Section 3 does the same for
discrete models. Sections 4 and 5 present applications of
aggregation methods for a population distributed on two
spatial patches connected by fast migrations in continuous
and discrete time contexts, respectively. In both examples,
aggregation allows us to derive an equation that governs
the time evolution of the total population at the slow time
scale.

2. Review of aggregation methods for
time continuous models

We study a general case of a population that can be
partitioned into several classes or sub-populations. Let
ni� t � be the number of individuals of class i at time t,
i = 1,... N. We assume that different processes occur at two
different time scales. A fast process corresponds to the
changes of classes of individuals and a slow process
corresponds to the internal dynamics of each class. Under
these general assumptions, the dynamics of the state vari-
ables can be written in a general form as follows:

ε
dni

dt = fi� n1,...,nN � + εgi� ni �, ε > 0, i = 1,...,N (1)

where the function fi� n1,...,nN � relates to the fast dynam-
ics and are functions of all state variables. Functions gi� ni �
relate to the slow dynamics and only depend on the
corresponding state variable. It is usual to define a fast time

scale in comparison to the slow time scale t, such as τ = t
ε

which allows one to rewrite the previous system, called
the complete system, as follows:

dni

dτ = fi� n1,...,nN � + εgi� ni �, ε > 0, i = 1,...,N (2)

In order to proceed to aggregation, we need to define a
global variable. The global variable depends on the N
state variables. Furthermore, we need this global variable
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to be constant of motion for the fast dynamics. In this
section, we choose the most usual global variable, the sum
of all state variables:

n� t � = �
i = 1

N

ni� t � (3)

In that case, the condition for the global variable to be
constant at the fast time scale is the following one:

�
i = 1

N

fi� n1,...,nN � = 0 (4)

The next step consists in calculating the fast equilibrium.
The fast equilibrium is obtained by neglecting the small
terms of the order of ε of the previous complete system and
by looking for solutions for which the velocity is equal to
zero:

� fi� n1,...,nN � = 0, i = 1,...,N

�
i = 1

N

ni = n
(5)

The previous system may have several different solutions
or no solution. Let us assume that there exists one solution
which is an asymptotically stable equilibrium of system

dni

dτ = fi� n1,...,nN �, i = 1,...,N

when considered on the manifold

�
i = 1

N

ni = n

This asymptotic stability condition is necessary to perform
aggregation. The fast equilibrium is noted by an upper star
and obviously verifies

fi�n1
*,...,nN − 1

* , n − �
i = 1

N − 1

ni
*� = 0, i = 1,..., N

As a consequence, the fast equilibrium is a function of the
global variable n and we denote its co-ordinates
� n1

*
� n �,...,nN

*
� n � �.

The next step consists in adding the N equations of the
initial complete system (1) and substituting the previously
calculated fast equilibrium as a function of n for the
variables ni in equation (1) to arrive at (6):

dn
dt = �

i = 1

N

gi� n1
*
� n �,...,nN

*
� n � � + O� ε � (6)

This equation governs the global variable n and is the
so-called aggregated model. This aggregated model is an
approximation of the initial complete model. It is obtained
as a Taylor expansion with respect to the powers of the
small parameter ε > 0. The first term of the series is a good
approximation of the real dynamics of the complete sys-
tem when the two following conditions hold:

• system dn
dt = �i = 1

N gi� n1
*
� n �,...,nN

*
� n � � is structurally

stable, see Auger and Roussarie [10], and Poggiale [11];

• the small parameter ε > 0 is small enough.

In the case of an aggregated equation that is not struc-
turally stable, it is necessary to calculate the next term of
the Taylor expansion with respect to the small parameter ε
in order to approximate the real dynamics. We refer to
Auger and Poggiale [12] where the calculation of further
terms of the series is made and applied to the study of a
concrete example. Here, we assume that the aggregated
model is structurally stable, and thus the first term of the
series is a good approximation of the real dynamics of the
global variable.

By aggregating, we have reduced the dimension of the
model from N to 1. Indeed, the dimension of the initial
complete model is N which is the number of initial state
variables while the dimension of the aggregated model is 1
because we have considered a single global variable. In
general, the mathematical analysis of the initial complete
model is impossible because it involves too many vari-
ables and equations. But, the mathematical analysis of the
aggregated equation may be possible by studying only the
first term of the series, higher order terms being neglected.

Aggregation not only provides a reduction of the dimen-
sion of the initial model and its simplification, but it also
provides interesting information about the emergence of
fast processes at a global level in the long run. Indeed,
although the aggregated equation does not depend explic-
itly on the functions fi� n1,...,nN �, i = 1,...,N, of the fast
dynamics, the fast equilibrium points depend on the choice
of these functions. Different functions fi have different fast
equilibrium points � n1

*
� n �,...,nN

*
� n � �. Remember that to

aggregate, the fast equilibrium is substituted into the equa-
tions of the complete system. Consequently, in general,
different fast models lead to different aggregated equa-
tions. Thus, the aggregation method provides a tool for
studying the effects of different types of fast dynamics on
the slow dynamics of a global variable.

It is also important to note that in general there is not
uniqueness of the aggregated model. In the case of differ-
ent asymptotically stable fast equilibrium points, each one
having its own basin of attraction, we obtain a different
aggregated equation for each of them. Thus, in general, we
do not have a single aggregated model but a family of
aggregated models, each of them associated to a different
fast equilibrium point. The aggregated model describing
approximately the dynamics of the general system finally
depends on the initial conditions which are attracted to
only one of the fast equilibrium points.

Aggregation methods have been developed in more
general contexts than the one presented in this article.

• Aggregation methods can be performed for more than a
single global variable and we refer to Auger [13] for
general methods and applications.
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• Aggregation can be used for global variables that are
not just the sum of initial state variables but that can be
non-linear combinations of them (Auger and Poggiale
[14]).
• Aggregation methods can be used in cases of fast cyclic
variations of initial state variables, for example for a fast
limit cycle (Poggiale and Auger [15]).
• Aggregation can be used in some cases of infinite
dimensional dynamical systems, for example PDEs (Arino
et al. [16, 17], Bravo et al. [18]).

Regarding applications to population dynamics and
ecology, aggregation methods have been used in the fol-
lowing cases:
• modelling a trout fish population in an arborescent river
network composed of patches connected by fast migra-
tions (Charles et al. [19, 20]);
• studying the effects of different individual decisions on
the global dynamics of a prey–predator system in an
heterogeneous environment composed of patches con-
nected by fast migrations (Auger and Benoît [21], Auger
and Poggiale [12], Auger et al. [22], Bernstein et al. [23],
Chiorino et al. [24], Morand et al. [25], Michalski et al.
[26], Poggiale et al. [27]);
• modelling a sole larvae population with a continuous
age with fast migration between different spatial patches
(Arino et al. [17], Bravo et al. [18]);
• modelling the influence of different individual strategies
on the dynamics of a population or of two competing
populations using fast game dynamics (Auger and Pontier
[28], Sánchez et al. [29], Auger et al. [30]);
• modelling food chain structures (Kooi et al. [31]).

3. Review of aggregation methods
for discrete models

We now suppose a population, whose evolution is
described in discrete time, which is classified into groups
according to any characteristic of its life cycle or its
environment. We consider the population subdivided into
N sub-populations (or groups). We will denote by ni� t � the
density of sub-population i at time t, with i = 1, 2,..., N and
t = 0,1,2,... In order to describe the population at time t we
will use the vector n� t � = � n1� t �,...,nN� t � �

T ∈ �
N, where

T denotes transposition.
In the evolution of the population we will consider two

processes whose corresponding characteristic time scales,
and consequently their projection intervals, that is their
time units, are very different from each other. In order to
take account of both time scales we will model these two
processes, to which we will refer as the fast and the slow
dynamics, by two different matrices. We will choose as the
projection interval for our model that corresponding to the
slow dynamics, i.e. the time elapsed between times t and
t + 1 is the projection interval of the slow dynamics.

In principle, we will make no special assumptions
regarding the characteristic features of the slow dynamics.

Thus, for a certain fixed projection interval the slow dynam-
ics will be represented by a non-negative projection matrix
L = � lij �1 < i,j < N ∈ �

N × N , which in this context is usu-
ally referred to as a Leftkovitch matrix. Each entry lij
represents the average number of individuals transferred
to sub-population i per individual in sub-population j per
unit of time.

As far as the fast dynamics is concerned, we will make
the following assumptions.
a) The fast dynamics will be represented by a non-negative
matrix P = � pij �1 < i,j < N ∈ �

N × N .
b) There exists a fixed and sufficiently large time span
which makes possible the transference of individuals from
every sub-population to any other including itself. This is a
common feature in the modelling of biological systems
(see Caswell [36]). In technical terms, this is equivalent to
the condition that matrix P is primitive.
c) The total population does not, by means of the fast
dynamics, asymptotically decay to zero or grow to infinity,
i.e. the dominant eigenvalue of P is equal to one. This
assumption has a clear biological justification. Indeed, if
the dominant eigenvalue of P were smaller or greater than
one then, if the separation between the two time scales is
sufficiently high, the fast process would lead the total
population of this group to zero or infinity, respectively,
before the slow process has time to act. In that case, the
dynamics of the general system would be controlled by
the fast process alone, and the distinction of two processes
in the evolution of the system would be unnecessary.

As mentioned above , the projection interval of the
model is that corresponding to matrix L. We then need to
approximate the effect of the fast dynamics over a time
interval much longer than its projection interval. In order
to do so we will suppose that during each projection
interval corresponding to the slow process matrix P has
operated a number k of times, where k is an integer large
enough that can be interpreted as the ratio between the
projection intervals corresponding to the slow and fast
dynamics. Therefore, the fast dynamics is included in the
system as Pk and the proposed model reads as follows:

n� t + 1 � = LPk n� t � (7)

The fact that P is primitive implies that 1 is its strictly
dominant eigenvalue. Let us choose v = � v1 ,...,vN � and
u = � u,...,uN � right and left eigenvectors of P associated
to eigenvalue 1, which verify that they are both positive,
the components of v add up to one, v1 +... +vN = 1 and the
scalar product of v and u is 1,

uT v = u1 v1 + ⋅ ⋅ ⋅ + uN vN = 1

If the fast dynamics was the only one acting on the
population, a stable distribution among the sub-
populations would be attained. This stable structure is
represented by v. The entries of vector u are interpreted as
the relative reproductive values of the sub-populations
and we use them to define the global variable of the
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aggregated system. We denote n(t) this global variable
which is defined as follows:

n� t � = uT n� t � = �
i = 1

N

ui ni� t �

it can be interpreted as a total reproductive value of the
entire population. It is straightforward that n(t) is an invari-
ant for the fast dynamics, uT Pn� t � = uT n� t �.

To proceed to aggregate system (7) we suppose that fast
dynamics has acted for a long enough time to be at the
equilibrium structure described by vector v. This is equiva-
lent to substituting in system (7) variables ni� t � for vi n� t �,
i.e. n� t � for vn� t �. Using this substitution and multiplying
both sides of system by uT yields the aggregated system

n� t + 1 � = uT Lvn� t � (8)

which is a scalar difference equation.
If L and P are constant matrices both the general and the

aggregated systems are linear. The aggregated system is a
scalar linear difference equation whose solutions are of
the form n� t � = � uT Lv �

t n0, n0 being any initial condi-
tion. If the positive number λ = uT Lv is > 1 then solutions
grow geometrically while if λ < 1 they decay exponen-
tially to 0. In Sanz and Bravo de la Parra [39], see also
Sánchez et al. [42], it is proved that the dominant eigen-
value of matrix LPk can be expressed as λ + o� αk

�, for
α < 1, which means that the larger k is, the more alike the
full system and the aggregated one behave asymptotically.
With the same meaning it is also proved that the right
eigenvector of matrix LPk can be expressed as Lv + o� αk

�
and the left eigenvector as u + o� αk

�.
In Bravo de la Parra et al. [35] the case is developed

where the fast dynamics is dependent on the global vari-
able. To be specific, the fast dynamics is represented by a
stochastic matrix, P(n), dependent upon the population
global density. A stochastic matrix is a positive matrix
whose columns add up to 1, and it is the appropriate kind
of matrix to represent a migration process, where the total
number of individuals in the population is kept constant.
In that case we have

n� t � = �
i = 1

N

ni� t �

as the global variable, vector u is constant; in fact we could
choose it to be � 1,...,1 � ∈ �

N, and then vector v(n) repre-
sents the equilibrium proportions established by the fast
process for a population of global size n. The general
system, n� t + 1 � = LPk

� n� t � �n� t �, is non-linear as well
as the aggregated system, n� t + 1 � = uT Lv� n� t � �n� t �,
which becomes a non-linear scalar difference equation. If
there exists a fixed point, n*, of the aggregated system and

the absolute value of � d
dn� uT Lv� n �n ��

n = n*
is less than 1,

then, for k sufficiently large, there exists an asymptotically
stable fixed point, n*, of the general system which can be
expressed as Lvn* + o� αk

�, o� αk
� having the same mean-

ing as before.

The previous results, presented in the case of one popu-
lation divided into sub-populations, are easily extended,
see [35, 39, 42], to the case of p populations each one
divided into Ni, i = 1,..., p, sub-populations. Thus, the
general system has N = N1 + ⋅ ⋅ ⋅ + Np variables while
the corresponding aggregated system has p only. The
linear case has been extended to non-autonomous and
stochastic systems in Sanz [37] and Sanz and Bravo de la
Parra [38, 40, 41].

It is also possible to build the general system using as
time unit the projection interval of the fast dynamics, see
Sánchez et al. [42], Bravo de la Parra et al. [32, 33] and
Bravo de la Parra and Sánchez [34]. In that case the
general system becomes n� t + 1 � = � I − ε� L − I � �Pn� t �,
where I is the identity matrix and ε a positive small number
reflecting the ratio between slow and fast time scales. The
associated aggregated system is still (8).

4. A time continuous model
for the study of the global growth
of a population distributed
on two patches with fast migration

We consider a population of individuals that can live on
two spatial patches, a sink and a logistic source. Let n1� t �
and n2� t � be the numbers of individuals on patch 1 (the
source) and patch 2 (the sink), respectively. We assume
that individuals can migrate from patch 1 to patch 2 and
that migration is faster than demography on each patch.
k12 (resp. k21) is the migration rate from patch 2 (resp. 1) to
patch 1 (resp. 2). Figure 1 shows a schematic representa-
tion of a system of two connected patches.

The following system of differential equations describes
the dynamics of the two variables:

ε
dn1

ddt = � k12 n2 − k21 n1 � + εr1 n1�1 −
n1

K1
�

ε
dn2

dt = � k21 n1 − k12 n2 � − εr2 n2 (9)

where r1 is the growth rate and K1 the carrying capacity on
patch 1. r2 is the mortality rate on patch 2. 0 < ε < 1 is a

Figure 1. Schema of a system of two spatial patches connected by
migrations.
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small parameter. Using the fast time scale τ = t
ε allows one

to rewrite the previous system as follows:

dn1

dτ = � k12 n2 − k21 n1 � + εr1 n1�1 −
n1

K1
�

dn2

dτ = � k21 n1 − k12 n2 � + εr2 n2

In that form, it is clear that migration is going on at the fast
time scale τ and that demography corresponds to com-
paratively small terms that are of the order of the small
parameter ε. The aggregation method will now be used in
order to obtain an equation that governs a global variable
which is the total population n� t � = n1� t � + n2� t �. At
first, we must look for the fast equilibrium of the previous
system, which can be calculated by neglecting the small
terms of the order of ε and by considering that the velocity
is equal to zero. This leads to the following system of two
equations:

�k12 n2 = k21 n1

n = n1 + n2

which can be solved with respect to the variable n. We
denote the fast equilibrium with a upper star as follows:

n1
* =

k12

k12 + k21
n and n2

* =
k21

k12 + k21
n

It can be easily shown that this fast equilibrium is asymp-
totically stable. The next step consists in obtaining the
aggregated equation that governs the total population. For
this, we insert the previous fast equilibrium in the full
system (9) and then add up both equations. The aggre-
gated model reads as follows:

dn
dt =�r1

k12

k12 + k21
− r2

k21

k12 + k21
�n −

r1

K1

� k12

k12 + k21
�2

n2 + O� ε � (10)

The last equation (10) for ε = 0 is structurally stable except
in the case r1 k12 = r2 k21. So, for small enough ε > 0, it is a
good approximation of the real dynamics of the global
variable n. Two cases must be considered.

4.1. Extinction of the total population

First, let us assume that the following condition holds:
r1 k12 < r2 k21.

In that case, it is obvious that the two terms of the sum
occurring in the aggregated equation are negative for
n > 0. Consequently, any solution with initial condition n
(0) > 0 is decreasing tending to 0, which means that the
population is always becoming extinct.

4.2. Logistic growth of the total population

Now, let us assume that the unequal sign is reversed:
r1 k12 > r2 k21.

The aggregated equation, for ε = 0, can be rewritten in a
logistic form as follows:

dn
dt = rn� 1 − n

K �
where the total growth rate r is:

r =� 1
k12 + k21

�� r1 k12 − r2 k21 �

and the total carrying capacity K is:

K = K1�k12 + k21

k12
��1 −

r2

r1

k21

k12
�

Both the total growth rate r and the total carrying capacity
K are positive. Thus, the aggregated equation is a classical
logistic equation. 0 and K are the two equilibrium points.
0 is unstable and K is globally asymptotically stable for
positive initial conditions. An interesting situation can
occur when the total carrying capacity K is larger than the
local carrying capacity K1 of patch 1, the source. A simple
calculation shows that this is possible when

�k12 + k21

k12
��1 −

r2

r1

k21

k12
� > 1

holds.

By defining two parameters α =
k21

k12
and � =

r2

r1
, the

previous condition becomes � (1 + α) < 1, and the condi-
tions for extinction and logistic growth, respectively, 1 < α�
and α� < 1.

Figure 2 shows the domain of the parameter plane (α, �)
within which these conditions hold. From a biological
point of view, the case of logistic growth with K > K1 is an
interesting situation. Indeed, the patch with logistic growth
is coupled to a sink on which individuals die. However,
the total carrying capacity for the system of two patches is
larger than the carrying capacity of patch 1. At first, one
may think that the connection of the source patch with a
sink patch would maintain the total population at a lower
equilibrium than in the case of an isolated source
uncoupled to the sink. Our study demonstrates that it is not
always the case. Indeed, two processes act at the same
time:
• the migration flow from the source to the sink provokes
an extra mortality of individuals on the sink;
• the migration flow from the source to the sink also
provokes a decrease in the number of individuals on the
source leaving the source for the sink but in turn it favours
the growth of the population on the source.

These two effects play in opposite directions. The sec-
ond one favours the growth of the total population con-
trary to the first one. As a consequence, one can find a
domain of the parameters (α, �) in which the total equilib-
rium number of individuals is larger than the source car-
rying capacity.
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5. A discrete model for the study
of the influence of density-dependent
migration on the growth of a population
distributed on two patches

In this section, we consider a population that can be
distributed on two spatial patches, a source (patch 1) and
a sink (patch 2). In a discrete model, growth rates are
positive but larger than 1 for the source, r1 > 1, and smaller
than 1 for the sink, 0 < r2 < 1. We assume that a proportion
f1 of individuals (resp. f2) can migrate from patch 1 to patch
2 (resp. from patch 2 to patch 1) in the time interval
� t, t + 1 � . Migration is assumed to be fast in comparison to
demography. Figure 3 shows a schema of the processes
involved in the model.

Let n1� t � and n2� t � be population densities on the two
patches at time t. According to these assumptions, the
model reads:

�n1� t + 1 �

n2� t + 1 �
� =�r1 0

0 r2
��1 − f1 f2

f1 1 − f2
�k�n1� t �

n2� t ��
(11)

where k is an integer assumed to be high, k @ 1. Between
two time steps, migration acts k times while growth only
once. This discrete model can be rewritten in a more
condensed form as described in section (3),
n� t + 1 � = LPk n� t �, where

L =�r1 0

0 r2
� and P =�1 − f1 f2

f1 1 − f2
�

L is the growth matrix and P the migration matrix. We shall
consider two cases.

5.1. Constant proportions of migrants

In that case, the stable structure vector v = � v1,v2 � must
verify

− f1 v1 + f2 v2 = 0 and v1 + v2 = 1

so v =� f2
f1 + f2

,
f1

f1 + f2
�. As P is a stochastic matrix we

have u = (1,1), the global variable n(t) is n1� t � + n2� t �,
that is, the total population, and the aggregated linear
equation is:

n� t + 1 � =�r1 f2 + r2 f1
f1 + f2

�n� t � = rn� t � (12)

The total growth rate r is positive and is always smaller
than r1. This means that the total growth rate of the system
of a source coupled to a sink cannot have a growth rate
larger than the one of the source. Furthermore, the total
growth rate r can be either larger than 1 (the total popula-
tion grows) or smaller than 1 (the total population decays).
The result depends on the comparison of two ratios, the

migration rates ratio,
f1
f2

, and the ratio of the positive

differences between growth rates and 1,
r1 − 1
1 − r2

. The con-

dition to have a growing total population is the following:

f1
f2

<
r1 − 1
1 − r2

5.2. Density-dependent proportion of migrants

In this section, we assume that the proportion of migrants
from the source to the sink is an increasing function of the

total density, f1� n � = n
n + α, where α is a positive constant.

Then, we can calculate

v� n � =� f2� n + α �n

n + f2� n + α �
,

n2

n + f2� n + α ��
In that case, the aggregated equation reads:

n� t + 1 � =�� r1 f2 + r2 �n� t � + αr1 f2
� 1 + f2 � n� t � + αf2

� n� t � = f� n� t � �

(13)

Figure 2. Domain of the parameters plane (α, �) corresponding to
three cases: extinction, logistic growth (K < K1) and (K > K1).

Figure 3. Schema of a system of two spatial patches connected by
migrations.
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The aggregated equation is non-linear. This equation has
two fixed points, the origin and a non-trivial fixed point:

n* =
αf2� r1 − 1 �

f2� 1 − r1 � + 1 − r2

The origin is always unstable, f ' � 0 � = r1 > 1. The rel-
evant case for the non-trivial fixed point is when it becomes
positive. The condition on the parameter values for n* > 0
to hold is

1
f2

>
r1 − 1
1 − r2

and in that case n* is globally asymptotically stable. From
the results in section (3) we can conclude that the general
system possesses an asymptotically stable equilibrium n*
very close (depending on k) to

Lv� n* � n*

Figure 4 shows a numerical simulation, a cobweb graph,
of the last case.

6. Conclusion

In this article, we have presented a review of methods of
aggregation of variables for continuous and discrete sys-
tems. We have also given two original examples in popu-
lation dynamics corresponding to both kinds of models.
These simple examples clearly show how aggregation
methods can be used in concrete applications. The first
example of section 4 has shown that even in the case of a
linear fast model, aggregation can lead to non-trivial
results. Indeed, aggregating a system of two spatial patches,
a source and a sink, with fast migration, we have obtained
a system that can have a global carrying capacity which
can be larger than the one of the source patch. This result
is in a certain sense unexpected a priori because the

source patch is coupled to a sink patch which induces an
extra mortality for the population. Thus, one may expect
that the global system reaches a lower equilibrium than in
the case of an isolated source patch. This work has dem-
onstrated that under certain conditions, the opposite con-
clusion can be obtained. The second example of section 5
has shown that density-dependent migrations can make
emerge different global dynamics where the total popula-
tion stabilizes.

Incorporation of different types of internal structures of
populations, such as for example age, behaviour and
spatial distribution, leads to more and more complex
models involving an increasing number of variables and
parameters. Aggregation methods are useful tools for sim-
plifying the kind of complex systems we are faced with in
ecological modelling. Aggregating a complex system
allows one to obtain a reduced version of the model which
is a good approximation of the real system. This reduced
system can in general be more easily studied than the
initial complete model because it involves a lower number
of global variables and parameters.

Until now, aggregation methods have been used for
deterministic models. In the future, an important problem
to be studied will be to demonstrate that aggregation
methods can also be performed for stochastic models.
Interesting applications arise when considering models
including demographic or environmental stochasticity.

Several new applications must also be developed in the
future. The aggregation method is particularly suited for
the study of spatially distributed populations in a network
of patches connected by migrations. Aggregation allows
one to obtain a system of equations governing the dynam-
ics of the total population. The method was applied to a
trout fish population in a river network represented as an
arborescent set of patches. Aggregation could also be
applied to other concrete cases, such as fish population
dynamics in a lake that could be represented as a set of
connected patches of different types, with gravel, sand, or
still rocks. According to the age and the period of the year,
fishes distribute differently among the patches. Aggrega-
tion could provide information about the global popula-
tion dynamics in the long term according to different types
of environments which would correspond to different
patches and connections between them.

Aggregation methods are also very useful for the study
of the influence of different behaviours on the global
dynamics of populations. We had studied the effects of
aggressive behaviour of individuals on the global equilib-
rium of a domestic cat population [28]. An interesting
work that we intend to carry out in the future will be to
study the effects of aggressive or co-operative behaviour of
predators on the stability of a global prey–predator system.
An important goal of ecology is to understand how the
individual behaviour can influence the dynamics of the
population and the structure of the community. In that
matter, methods of aggregation of variables are useful tools
because they allow us to simplify a full model involving
individual and population dynamics, and to obtain a

Figure 4. Cobweb graph of equation (13) with particular values:
r1 = 1.8, r2 = 0.64, f2 = 0.2 and α = 5.
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reduced model that can be sometimes solved analytically.
As different fast dynamics in general lead to different
aggregated models, it is possible to understand how a
change of individual behaviour emerges at the population
and community levels.
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