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Abstract

An extension of a model studying the population dynamic consequences of intra-individual variability in behavior
is presented. Individuals can adopt three different tactics: hawk, dove and bully. We consider a population of
individuals that compete for some resources. The same individual experiences the different tactics in his life and it is
assumed that the game is played at a fast time scale in comparison to population dynamics. This fast part of the
model is coupled to a slow part, which describes the growth of each sub-population. By use of aggregation methods,
we obtain an equation governing the total population at the slow time scale. This equation is a logistic one whose r
and K parameters are related to the payoff of the tactics. The model is applied to the case of domestic cat
populations. Results show that the highest population density corresponding to urban environment is reached when
all individuals are bully. We also obtain a gradient from rural to urban environments, respectively corresponding to
aggressive to non-aggressive individuals. The results of the model are consistent with empirical data: high-density
populations of domestic cats are mainly bullies, whereas low-density populations are mainly hawks. © 2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction

There has been an increasing awareness of the
importance of individual heterogeneity in life his-

tory process to population dynamics. Models that
explicitly reflect individual differences in age, size,
and stage, have led to many advances in our
understanding of how individual variability influ-
ences the dynamics of the whole population
(Leslie, 1945; Lebreton, 1981; Metz and Diekman,
1986; Caswell, 1989).

Variability within one individual (both pheno-
typic plasticity and learned behavioral change)
represents another important topic (Hayes and
Jenkins, 1997). Some kinds of animals and some
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types of behaviors are modified by experience
(learning), and also because individual character-
istics change with time like body size. Males may
adopt one tactic when they are young, or small,
or socially subordinate, and another tactic when
they are older, larger and dominant (Caro and
Bateson, 1986). The tactic adopted may also de-
pend on encounter event. As weight is generally
important for the outcome of a fight, a male may
adopt different tactics according to the relative
size and strength of the male opponents, i.e. at-
tack and fight or avoid the physical confronta-
tion. Examples of behavior changing over time is
widespread in mammal’s taxa like, e.g. domestic
cat Felis catus (Liberg, 1981), elephant seals
Mirounga angustirostris (Haley et al., 1994), red
deer Cer6us elaphus (Clutton-Brock et al., 1982),
pronghorn Antilocapra americana (Byers and
Kitchen, 1988) or gray squirrels Sciurus carolinen-
sis (Koprowski, 1993). The population level con-
sequences of such plasticity in behavior has rarely
been investigated in population dynamical models
(Nisbet et al., 1989; Yoshimura and Clark, 1991;
Clark and Yoshimura, 1993; Bjornstad and
Hansen, 1994). This is due to the difficulty of
dealing with complex models, and also because
intra-individual behavioral variability has been
too recently recognized as being an important
task in population biology (Hayes and Jenkins,
1997; Holmes and Sherry, 1997).

Auger and Pontier (1998) presented a new ap-
proach of population modeling that can be used
to investigate the influence of intra-individual
variability in behavior on population dynamics.
This approach is based on the coupling of a game
model describing encounters at a fast time scale
(e.g. the day) to a model describing the popula-
tion dynamics at a slow time scale (e.g. the year).
The model has been applied to the populations of
domestic cat (Felis catus). While the results were
in good agreement with empirical data, the game
dynamics incorporated only two behavioral tac-
tics and was too simple to account for all tactics
that might be adopted by individuals. The aim of
the present study is to incorporate in the original
model more tactics. The present paper is thus a
complement to the study of Auger and Pontier
(1998).

The paper is organized as follows. In Section 2,
we describe the main features of domestic cat
populations. In Section 3, we extend the original
model of Auger and Pontier (1998) to three tac-
tics. In Section 4 a single equation governing the
total population is constructed, which allows a
clarifying study of the consequences of the model.

2. Population biology of domestic cats

The spatial and social organization of the do-
mestic cat is subject to considerable flexibility.
This flexibility is dependent on environmental fac-
tors such as food availability and habitat patchi-
ness (Liberg and Sandell, 1988; Pontier, 1993). In
rural areas where food is regularly distributed,
cats live at low density (less than 200 cats/km2) in
large slightly overlaping home-ranges. They are
aggressive and fight for monopolizing food and
mates (Liberg, 1981; Pontier and Natoli, 1996).
The issue of fighting, at least in males, is largely
influenced by their phenotypic features (Liberg,
1981). Age, experience, physical condition, body
size, are all important variables in determining the
behavioral tactic adopted by a cat at each encoun-
ter event (Liberg, 1981; Yamane et al., 1996). A
low number of males, mostly the dominants suc-
cessfully reproduce and their individual reproduc-
tive success is high (Say et al., 1999). In contrast,
when food and shelters are clumped and locally
abundant as in urban areas, cats live at very high
densities (more than 2000 cats/km2) in multi-
male–multifemale groups in small and largely
overlaping home-ranges. Males in the group form
a linear dominance hierarchy (Natoli and De
Vito, 1991) based on age and size (Say et al.,
1999). Cats are much less aggressive but defend
their social position against any challenger. All
members of the social group defend the common
territory and may react aggressively towards any
intruder (Natoli, 1985; Natoli and De Vito, 1991).
There is no physical competition among males
during the breeding season (Natoli and De Vito,
1991). A tactic consisting in monopolizing the
access to a receptive female is no more possible
due to the strong pressure of other cats. As a
result, several males copulate with the same fe-
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male at each oestrus period and a high rate of
multiple paternity is found (Say et al., 1999). The
reproductive success of dominant males is lower
than in rural populations but higher than low
ranking males (Say et al., 1999 and unpublished
data).

3. Model of a population structured in hawk,
dove, and bully individuals

3.1. Fast part: hawk-do6e-bully game

We assume, as in the article by Auger and
Pontier (1998), that males frequently encounter
each other and compete for resources (food or
mates). This process is going on at a fast time
scale compared to the long term evolution of the
population. We assume that three behavioral phe-
notypes, hawk (H), dove (D) and bully (B) are
present within the population. Hawk individuals
are always aggressive. Dove individuals are not
aggressive and they never escalate. Bully individu-
als start by escalating but retreat if opponent
escalates. These three behavioral phenotypes are
assumed to be achievable to all individuals, what-
ever their genotypes. Individuals may choose
these alternative tactics according to the conspe-
cific encountered (physical strength, dominance
rank of the opponent).

Let us denote xH, xD, and xB the proportions of
hawk, dove and bully males, with xH=nH/n,
xD=nD/n and xB=nB/n, where nH, nD and nB are,
respectively, the number of hawk, dove and bully
males, and n=nH+nD+nB the total population.
We call x the vector (xH, xD, xB)T, where uT

means the transpose of vector u.
Let A be the 3×3 matrix representing the

payoff. Then the payoff of tactic I against tactic J
is aIJ, for I, J�A={H, D, B}; the payoff to tactic
I against population x is �J�AaIJxJ= (Ax)I; and
the payoff to population x against itself is
�I�AxI(Ax)I=xAx.

We are using as A the following classical H-D-
B payoff matrix (Zeeman, 1981; Maynard Smith,
1982):

A=
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where G is the gain, C is the cost of injuries
resulting of fightings between aggressive
individuals.

The game dynamics, played at the fast time
scale, is written according to the replicator equa-
tions, Hofbauer and Sigmund (1998), based upon
the main hypothesis that the rate of growth of
those playing tactic I is proportional to the ad-
vantage of I. By suitable choice of time scale we
can write:

Á
Ã
Ã
Ã
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Ä

dxH

dt
=xH((Ax)H−xAx)

dxD

dt
=xD((Ax)D−xAx)

dxB

dt
=xB((Ax)B−xAx)

(2)

These equations assume that an individual com-
pares the gain of each pure tactic to the average
gain. If a tactic leads to a larger payoff than the
average one, the proportion of individuals of the
population using this tactic is increasing. Replica-
tor equation (Hofbauer and Sigmund, 1998) can
thus conveniently be applied to solve the optimal
proportions of individual tactics within the popu-
lation; see also Cressman (1992) and Mesterton-
Gibbons (1992) for game dynamics models.

The analysis of system (Eq. (2)), (Zeeman,
1981), in D={x�R3:xI]0,�IxI=1}, under a rea-
sonable constraint (GBC) give us the existence of
single point attractor, (G/C, 0, 1−G/C)T, which
essentially determine the asymptotic behavior of
solutions. Thus, we have a globally stable equi-
librium, the polymorphism of G/C hawk and
1−G/C bully tactic.
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3.2. Slow part: demography

Each individual changes its tactics at a fast
time scale according to the opponent. For each
sub-population (H, D and B), the slow part
which describes the growth of each sub-popula-
tion is composed of two terms, a linear growth
term and negative quadratic terms taking into
account the issue of each type of encounter
event (HH, HD, HB, DH, DD, DB, BH, BD,
BB). Individuals are assumed to encounter at
random. Thus, negative terms are proportional
to the products of sub-populations involved in
each encounter event. The growth of each sub-
population is described as follows:
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where r is the linear growth rate of each sub-
population. As we have assumed that individu-
als frequently change tactics, H, D as well as B
individuals contribute to the growth of each
sub-population leading to the same linear
growth term in system (Eq. (3)). The ratio three
indicates that the new born individuals are ini-
tially equally distributed among the three types
of individuals. The negative terms take into ac-
count the long term effects of encounters be-
tween individuals playing the same or different
tactics (kIJ, I, J�A) on the growth of the popu-
lation. The parameters r and kIJ are all non-neg-
ative.

3.3. The complete model

The complete model describes the sub-popula-
tion Hawk, Dove, and Bully dynamics. It is ob-
tained by coupling the two parts presented
above:
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where o is a small parameter taking into account
the two different time scales involved in the sys-
tem. The first terms in the rightmost side of
system (Eq. (4)) represent the fast part, game
dynamics, while the second terms are the slow
part, demography dynamics. It must be noted
that the fast part keeps invariant the total popu-
lation n, i.e. game dynamics is responsible for
the variation of the proportions of hawk, dove,
and bully individuals but not of the total den-
sity. G represents the gain when an individual
accesses to the resource and we assume r to be
proportional to G.

r=aG (5)

where a is a positive parameter which represents
the conversion rate of the resource into biomass.
Interactions between individuals have negative
effects on the long term growth of the total
population. The parameters kIJ are assumed to
be proportional to the difference between the
gain G that individuals would get if they had
free access to the resource and the gain that
they really obtain at the occasion of a given
encounter, i.e. the coefficient of the game ma-
trix, A= (aIJ), associated to this particular en-
counter event. The parameters kIJ of the model
are thus the following ones:

kIJ=b(G−aIJ), for I, J�A, (6)

where b is a positive parameter which can be
thought as an encounter rate. To give an example,
when a hawk individual encounters a dove indi-
vidual his payoff is G and the parameter kHD

equals zero, i.e. that particular encounter has no
negative effect on the growth of its subpopula-
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tion; in contrast, if a dove individual encounters a
hawk individual its payoff is zero and then kDH=
bG, i.e. dove individuals have no access to re-
sources which has a negative effect on the growth
of their subpopulation. Substitution of the payoff
matrix coefficients in (Eq. (6)) leads to:

kHH=
1
2

b(G+C) kHD=0 kHB=0

kDH=bG kDD=
1
2
bG kDB=bG

kBH=bG kBD=0 kBB=
1
2
bG

(7)

We assume that the encounter rate depends on
the gain and cost values as follows:

b=g
G
C

(8)

where g is a positive constant. The interpretation
of Eq. (8) is based upon the two following
statements:
� if the gain is increasing it is more attractive to

attempt to get it and thus the encounter rate is
also increasing; and

� if the cost is increasing the risk from fights
grows and consequently the encounter rate
decreases.

4. Aggregated model for the total population

From the complete system (Eq. (4)), we apply
aggregation methods to obtain an aggregated
equation, i.e. a single differential equation govern-
ing the total population size n, and only depend-
ing on n. Aggregation methods permit to reduce a
large system of equations involving different time
scales into a smaller system with a few global
variables. The method is based on perturbation
technics (Hoppensteadt, 1966; Auger and Rous-
sarie, 1994; Auger and Poggiale, 1995, 1996).

The aggregation of the complete model consists
in supposing that the fast dynamics, game dynam-
ics, has already attained its equilibrium, (G/C, 0,
1−G/C)T, so we can make the following substi-
tutions in system (Eq. (4)):
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and then by adding up the three equations we
obtain:
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that is
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which is a logistic type equation with carrying
capacity
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g
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The rightmost side of last equality expresses the
carrying capacity K in terms of the equilibrium
proportion of hawk individual G/C which we
denote xH*, and so we can write:

K=
2a

g(1+xH* )xH*
(11)

As in Eq. 16 of the model in Auger and Pontier
(1998), the carrying capacity is a decreasing func-
tion of the hawk proportion in the population.
But high density population (large K) is now
associated to bully individuals instead of dove
individuals and low density population (small K)
is associated to hawk individuals. Another impor-
tant difference comes from the fact that the carry-
ing capacity is now inversely proportional to
(1+xH*)xH*. As xH* � (0,1) then K� ((a/g), �),
which makes possible a large domain of carrying
capacity values. This is an important improve-
ment because in the previous model the carrying
capacity could only vary by a factor two.
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5. Discussion and conclusion

Our aim was to draw some conclusions about
the effect of some kind of behavioral interactions
on population dynamics with domestic cat popu-
lations in mind. The relationship between the
equilibrium density of a population and its degree
of aggressiveness which was established for the
model taking into account two tactics, hawk and
dove (Auger and Pontier, 1998), has been general-
ized to the hawk-dove-bully game. We obtained
the same relationship between the carrying capac-
ity K and the hawk proportion, as in the classical
hawk-dove game (Auger and Pontier, 1998), but
the relationship occurred with a hawk-bully poly-
morphism instead of a hawk-dove polymorphism.
Dove individuals disappear from the population.
It must be noted that the results at low density
remain unchanged in spite of the supplementary
tactics considered (bully): individuals are always
hawk at low density. This is in good agreement
with observations: individuals are aggressive and
defend their access to resource (food and mates)
at low densities in the rural environment. The
prediction that individuals are mostly dove at
high density as it was found for the hawk-dove
model (Auger and Pontier, 1998) is not realistic in
the case of domestic cat populations. Individuals
are much less aggressive at high densities (Natoli
and De Vito, 1991). A number of case contests
are solved without resort to physical violence at
all. However, individuals in a group defend their
social position by fighting with any challenger.
They can also challenge the upper dominant indi-
vidual. These two behaviors could be identified
with bully tactic. They also drive away unknown
intruders from the common territory. This may
explain why hawk tactic persists within urban
populations. Including bully tactic into the origi-
nal model gave rise to a new qualitative predic-
tion, which is more consistent with available
empirical data. The results of the present model
remain, of course, theoretical and have to be
tested. Our model assume that individuals will
choose among tactics according to the payoff for
winning and the cost due to fight. When the
payoff is large compared to the cost then individ-
uals adopt a hawk tactic (rural environment)

whereas when the payoff is low compared to the
cost then individuals are all bully (urban environ-
ment). Determining quantitatively this ratio in
both types of populations (rural and urban) is
likely to be difficult in domestic cat. However, Say
et al. (1999) showed that the reproductive success
of dominant males is lower in high density (ur-
ban) than in low density (rural) domestic cat
populations. It is likely that the cost due to fight-
ing also differ between the two kinds of popula-
tion. Once defeated, individuals in the urban
populations loose not only their social rank but
also their priority to access to the resource. Find-
ing another resource may be difficult because the
distance among favorable patches may be high
and cats may have to cross many heavily traffic
roads (Pontier, 1993). Moreover an immigrant is
not accepted by members of a social group (Na-
toli, 1985; Natoli and De Vito, 1991; Say et al.,
1999). Such difficulties do not exist in the rural
environment where food is evenly distributed
(Liberg, 1981). Loosing a fight beyond the cost
due to injury may have a larger effect on lifetime
fitness of individuals in the urban than in the
rural environment.

As we have shown in this work, the aggregation
method provides an efficient tool for describing in
a relatively simple way the dynamics of a popula-
tion whose individuals adopt different behavioral
tactics in their life, the probability of adopting
one tactic depending on density. The technique
for analyzing the influence of intra-individual
change in behavior on population dynamics we
present here offer several advantages: (i) it takes
into account different time scales appropriate to
describe biological phenomenon (the day for be-
havioral interactions versus the year for popula-
tion dynamics) (ii) it permits to explore several
types of behaviors (e.g. foraging, breeding tactics),
and different models for describing population
dynamics, in regard to the population and situa-
tion being modelled. This requires to accumulate
detailed information on numbers and density in
populations monitored over long periods (Caro
and Bateson, 1986). We have used this approach
for domestic cats, but this technique is relevant
for many taxa and a large variety of situations.
We believe that the influence of intra-individual
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variation in behavior on population dynamics is a
biological important issue that deserves further
theoretical and empirical research.

In our future work, we will deal with both intra-
and inter-individual variation in behavior due to
genetic differences (Caro and Bateson, 1986). Some
individuals may adopt alternative behavioral tac-
tics for life because of genetic differences. Genetic
change is observed in concomitance with density
change in domestic cat populations (Symonds and
Lloyd, 1987; Pontier et al., 1995). There is also
convincing evidence for genetic variation in behav-
ior in domestic cat (Pontier et al., 1995, 1998). Cats
carrying the orange allele may behave aggressively
whatever the ecological conditions, while non-or-
ange individuals have a more flexible behavior:
either aggressive at low density, or social at high
density. The frequency of the orange allele is very
low (less than 10%) or even absent in urban
environments, while it can reach high frequencies
in the rural environment (up to 30%; Lloyd and
Todd, 1989; Pontier et al., 1995). Our approach
would permit to incorporate genetic and environ-
mental influence in behavioral variation within and
among individuals to further analyze the persis-
tence of orange allele with density change. Next,
our work will extend the results of the simplest
population dynamical model to sex- and age-struc-
tured populations.
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