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Abstract

In the present paper, the annual spawning migration of adults is introduced into a model, describing the Salmo
trutta population dynamics in a hierarchically organized river network (four levels and 15 interconnected patches)
model based on previous work. The model describes simultaneously demographic and migration processes taking
place at different time scales: migrations of individuals between patches at a fast time scale (e.g. the week or the
month), the annual spawning migration of adults and the demography at the slow time scale of the year. The S. trutta
population is sub-divided into three age-classes (young of the year, juveniles, and adults). We used a Leslie-type
model, coupled with a migration matrix associated with the annual spawning process, and a second migration matrix
associated with fast movements of individuals between patches throughout the year. All demographic and migratory
parameters are constant, leading to a linear model governing 45 state variables (15 patches× three age-classes). By
taking advantage of the two time scales and using aggregation techniques for the case of discrete time models, the
complete model was approximated by a reduced one, with only three global variables (one per age-class) evolving at
the slow time scale. Demographic indices were calculated for the population, and a sensibility analysis was performed
to detect which parameters influence the most model predictions. We also quantified how modifications of the river
network structure, by channels (change in connections between patches) or dams (patch deletion), influence the global
population dynamics. We checked that the strategy of annual spawning migrations is actually beneficial for the
population (the asymptotic population growth rate is increased), and that dams may have a more detrimental effect
on the whole population dynamics than channelling. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In earlier contributions (Charles et al.,
1998a,b), we showed that the use of variables
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aggregation methods seemed a good compromise
in modelling ecological system dynamics. Indeed,
in such complex systems, numerous processes run
at different time scales, involving either several
species with different developmental stages, a sin-
gle species implied in several actions (as breeding
or feeding), or even both. Auger (1989) initiated
such studies, coupling various processes at differ-
ent time scales, in the framework of continuous
time models. Aggregation methods were further
developed and applied for linear as well as den-
sity-dependent models in the field of Ecology
(Auger and Benoı̂t, 1993; Auger and Roussarie,
1994; Auger and Poggiale, 1996, 1998; Michalsky
et al., 1997; Auger and Pontier, 1998; Bernstein et
al., 1999). The aim of aggregation methods is to
construct the aggregated model that summarises
the dynamics of the complex one simplifying thus
their analytical study. Aggregation methods are
based on the main idea that the aggregated model
must reflect at one and the same time the slow
and the fast dynamics of the general system.

In recent years, such methods were also imple-
mented with discrete time models (Sánchez et al.,
1995; Bravo de la Parra et al., 1995, 1997; Bravo
de la Parra and Sánchez, 1998; Sanz and Bravo de
la Parra, 1998, 1999). Indeed, discrete time models
are widely used in population dynamics, as they
are particularly well adapted to study the life cycle
of most of populations (Caswell, 1989). For ex-
ample, the Leslie matrix model (Caswell, 1989;
Logofet, 1993) describes an age-structured popu-
lation, and provides growth dynamics of the pop-
ulation density at successive generations.

The purpose of this study is to include the
annual spawning migrations in the dynamics of a
brown trout population (Salmo trutta), previously
modelled with aggregation techniques in the case
of discrete time models (Charles et al., 1998a,b).
The population is sub-divided into three age-
classes and located in an arborescent structure of
four levels and 15 patches (called the reference
river network). Based on the Leslie matrix model,
some studies have dealt with such complex models
designed as multi-regional Leslie models (Lebre-
ton and Gonzales-Davila, 1993; Lebreton, 1996).
However, unlike these works, here we considered
that (1) the population can develop in each patch;

(2) all individuals can migrate from one patch to
another according to some rules; (3) both pro-
cesses (demography and migration) take place at
two different time scales (Charles et al., 1998a,b).
Reproduction taking place once a year, demogra-
phy considered at the scale of the year represents
the slow dynamics. Individual movements corre-
spond to the fast process, at the scale of a week
for example.

The causes of decline or extinction in fish popu-
lations are generally multifaceted, but often fall
into three categories: overfishing, introduction of
new species and stocking with hatchery fish, or
habitat degradation due to the impact of human
activities on rivers (Wootton, 1990; Hicks et al.,
1991; Hindar et al., 1991; Nehlsen et al., 1991).
Modelling is then a convenient tool to describe
and understand fish population dynamics. Some
recent models have been developed to describe
these phenomena, especially with salmonids (El-
liott, 1985; Davaine and Beall, 1992, 1997; Ratner
et al., 1997; Sabaton et al., 1997; Jarry et al.,
1998; Shuter et al., 1998; Gouraud et al., 1999),
but always at a small spatial scale involving a
single stream (one patch) and without considering
a time scale faster for migration than for demog-
raphy. Nevertheless, fishes, and S. trutta is a good
example, generally migrate to achieve their life
cycle: especially for reproduction once a year
(Ovidio et al., 1998), or frequently for habitat or
food searching. Even if homing behaviour is de-
scribed for brown trout population, few studies
have been performed to quantify either the pro-
portion of returning adults into their natal stream,
or the in-stream mortality during this spawning
migration (Jarry et al., 1998; Ovidio et al., 1998).
Other authors described individual movements of
a brown trout population at fast time scales in
food searching (Gowan et al., 1994). All of this
emphasises the necessity to study population dy-
namics at the scale of the river network (Propst
and Stefferuld, 1997), by taking into account de-
mography and spawning year migration coupled
with fast individual migrations.

In our study, demographic and migration pro-
cesses are supposed to be density-independent and
all parameters are constant. The general model we
propose evolves at the time scale of a year (corre-
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sponding to demography), and couples a (45×
45) Leslie-type matrix with two migration ma-
trices. The first one operates numerous times
during the year to describe fast movements of
individuals between patches, the other one is asso-
ciated with the annual upstream migration of
adults for spawning. By applying the variables
aggregation method, this general model is reduced
into an aggregated system with only three global
variables (one per age-class). The demographic
parameters of the aggregated model are constant
and expressed in terms of the corresponding
parameters of the general system, weighted by the
equilibrium proportions of individuals in the dif-
ferent patches. These equilibrium proportions are
the result of the fast migration process.

From the aggregated model, classical demo-
graphic indices (as asymptotic population growth
rate, stable age distribution, etc.) were derived,
and the model sensibility to different parameters
was evaluated. In particular, we first looked at the
effect of the upstream annual spawning migration
on the trout population dynamics, and then we
tested different scenarios in spawning behaviour,
to point out the best strategy as a trade-off be-
tween proportions of adult migrants and the in-
stream mortality during migration. Finally, we try
to quantify how modifications of the river net-
work structure, by channels (change in connec-
tions between patches) or dams (patch deletion),
influence the global population dynamics (Hegge-
nes, 1988). In fact, channelling is not supposed to
change the connectivity between patches, but to
reduce both the quality and the amount of fish
habitat. In our model, the impact of channels was
considered as extreme as possible, i.e. all habitats,
including spawning grounds, were suppressed in
the impounded patches. The impact of dams was
also considered as extreme, all patches upstream
from the dams being deleted from the river
network.

2. Biological framework

Biological data are those used in previous stud-
ies (Charles et al., 1998a,b). For more clarity of
the new results, we will partly recall the biological
framework.

2.1. The ri6er network

The reference river network can be schematised
as on Fig. 1a, levels 4 and 1 corresponding to the
top and bottom ends of the network. Individuals
can develop in each patch and migrate between
patches, according to rules indicated on the
graph. At level n, all patches are equivalent and
the river network considered here is symmetric
and dichotomic (other configurations would be
possible). Migration rates depend on the age-class
and the arborescence level.

Fig. 1. (a) Schematic graph of the arborescent structure repre-
senting the reference river network, with four levels and 15
patches. Parameters ai, bi, gi and āi, b( i ḡi are, respectively, the
direct and the reverse migrations rates for each age-class
through the river network. (b) Changes in connections by
dams between levels 3 and 4. Some patches (here patch 8 only)
are disconnected from the main network. (c) Changes in
connections by channels between levels 2 and 4. The demo-
graphic process becomes impossible in some patches (here in
patch 4), and new migration rates appear (di and d( i, in the
present case; oi and ōi when channels directly connect levels 1
and 3).
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Table 1
Individual fecundity of each age-class of the S. trutta popula-
tion, at the different levels in the reference river networka

JuvenileYOY fecundityLevel Adult fecundity
fecundity

1 00 f/a3

00 f/a22
03 0 f/a

4 0 0 f

a a describes the fecundity gradient: a=2 according to
expert advice. f is the YOY number per female per year:
f=265 according to Baglinière and Maisse (1991).

into lakes and/or demographic parameters can
largely be modified), we only focused on what
happens downstream in the river network. We
considered dams either between levels 3 and 4, or
between levels 2 and 3. Indeed, between levels 1
and 2, only one dam can be inserted in a realistic
way, and we could not quantify the effect of an
increase in the number of dams.

Channelling (Fig. 1c for example) between lev-
els n and (n+2) consists in forbidding the demo-
graphic process in the patch of the intermediate
level (n+1). New migration rates are thus intro-
duced between levels n and (n+2) (see Appendix
A). We considered that channels could be inserted
either between levels 2 and 4 (with new migration
rates di and d( i), or between levels 1 and 3 (with
new migration rates oi and ōi).

We studied effects on the overall fish popula-
tion dynamics of a gradual increase in the number
of dams (up to eight between levels 3 and 4, or
four between 2 and 3), or channels (up to four
between levels 2 and 4, or two between levels 1
and 3).

2.3. Biological data

The brown trout population (S. trutta) is subdi-
vided into three age-classes: Young Of the Year
or YOY (0+ ), juveniles (1+ ) and adults (\1+ ).
Only adults can reproduce and the mean age of
adult death is not known a priori. Survival rates
from age i to age i+1 and fecundity (number of
YOY per female per year) depend on the arbores-
cence level, and the gradient of survival rates
depends on the age-class (Tables 1–3).

The fecundity, denoted by f afterwards, is esti-
mated with a unit sex ratio (1:1) as the product of

Table 2
Individual survival rate of each age-class of the S. trutta
population, at the different levels of the reference river
networka

Adult survivalLevel JuvenileYOY survival
survival raterate rate

1 s3s2/as1/a
3

s1/a
22 s2 s3/a

s2/a s3/a
2s1/a3

s2/a
2s14 s3/a

3

a s1, s2 and s3 are optimal survival rates for each age-class:
s1=0.07; s2=s3=0.4 (Baglinière and Maisse, 1991). The
parameter a is the same as in Table 1: a=2.

2.2. Modified ri6er networks according to
connections

Two kinds of changes in connections inside the
river network were considered. Dams (Fig. 1b for
example) reduce to zero, direct and reverse migra-
tion rates between some patches, while other mi-
gration rates are left unchanged. As the upstream
effects of a dam (in the disconnected patches)
cannot be quantified (upper patches can change

Table 3
Individual proportions of each age-class of the S. trutta population, at the different levels of the reference river network (Baglinière
and Maisse, 1991)

Level Proportion of YOY Proportion of juveniles Proportion of adults

4 43.71 45
40352 12

3 33 18 16
4 51 2 0.3
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the egg number per female per year by the egg-to-
YOY survival rate. It is estimated in the most
favourable environmental conditions (level 4) in
which parameters determining the egg-to-YOY
survival rate (substrate composition, level of O2

supply, predation risk, Rubin and Glimsäter,
1996) are optimal. The decrease in fecundity with
the arborescent level is thus the consequence of
the degradation of the hatching and first stage
developmental conditions from level 4 to 1. This
gradient is then roughly approached by a parame-
ter a (Table 1).

YOY survival rate is optimal at level 4 (up-
stream), while that of adults is the best at level 1
(downstream). For juveniles, we considered that
they survive better at level 3 (Table 2). The
parameter a represents the effect of the river
network structure on demographic parameters. By
way of simplicity, we did not distinguish a various
effect on survival rate and fecundity (a=2 in
both cases). Moreover, the lack of relevant bio-
logical data did not allow estimation of such a
difference.

The numerical values chosen for all demo-
graphic parameters are those estimated by Baglin-
ière and Maisse (1991) in the Scorff watershed
(Brittany). They correspond to means, but S.D.s
were not available and their precision could not
be quantified (Tables 1 and 2).

Concerning the migration process, spatial mix-
ing being supposed to go faster than demography,
individuals of the different age-classes spread over
among patches, according to proportions varying
with the arborescence levels. These proportions
are given in Table 3.

3. Modelling process

3.1. The complete model with annual spawning
migrations

For convenience, the basic methodological
framework developed in Charles et al. (1998a,b) is
partially summarized.

We denote:
� nj

i(t) the number of individuals aged i on patch
j at time t, with i=1,2,3 and j=1…15;

� n� t= (n� t1,n� t2,n� t3)T a vector of dimension 45 corre-
sponding to the total population at time t,
where n� ti = ((n1

i (t),…n15
i (t))T describes the inter-

nal structure of the age-class i at time t (super-
script ‘T ’ denotes transposition).

Migration rates of the age-class i, as defined in
Section 2.1, form a column stochastic matrix of
dimension 15, Pi, and the 45×45 matrix P=
diag{P1,P2,P3} represents the complete migration
process. The construction and the expression of
matrix Pi are detailed in Appendix A.1. Let t be
the fast time interval corresponding to migrations.
As all migration rates remain constant, the migra-
tion model is linear and can be written as follows:

n̄t+1=Pn̄t (1)

The demography is considered density-indepen-
dent and, therefore, it is defined by means of two
kinds of constant transition coefficients (their nu-
merical values are given in Table 1), as in the
standard Leslie model:
� f j

3: fertility of adults (age-class 3) on patch j
(only adults are able to reproduce, juveniles
being still immature);

� s j
i: survival rates of age-class i in patch j, i=1,

2, 3 (s j
3 is not equal to zero as the exact age of

death is not known).

If we define the matrices F3=diag{ f1
3…f15

3 }
and Si=diag{s1

i …s15
i }, we finally get the follow-

ing generalised Leslie matrix to describe the com-
plete demographic process at the slow time scale:

L=

Á
Ã
Ã
Ã
Ä

0 0 F3

S1 0 0
0 S2 S3

Â
Ã
Ã
Ã
Å

(2)

The expression of the diagonal matrix F3 is
based on the hypothesis that adults in patch j
reproduce only in patch j. Hence, at the slow time
scale of demography, the model is linear and is
simply:

n� t+1=Ln� t (3)

In our new model, the specific migration of
adults just before breeding is taken into account
by first decomposing the matrix L as follows:
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L=

Á
Ã
Ã
Ã
Ä

0 0 0
S1 0 0
0 S2 S3

Â
Ã
Ã
Ã
Å

+

Á
Ã
Ã
Ã
Ä

0 0 F3

0 0 0
0 0 0

Â
Ã
Ã
Ã
Å

=S+F

(4)

Then, as the annual spawning migration only
affects fecundity, by calling P% the corresponding
matrix and assuming that individuals enter their
natal tributaries before breeding, we get:

L%=S+FP% (5)

As detailed in Appendix A.2, P%=diag{I,I,P%3}
where P%3 is a function of v, the proportion of
individuals going to level 4 in order to breed, and
of b, the in-stream mortality rate induced by
migration from one level to the upper one. The
proportion of migrating fishes unrolls according
to a top-down gradient of factor ã (ã"a). The
in-stream mortality rate is set to zero for individu-
als going downstream.

When b=0, individual number must remain
invariant; there are no spawning migrations, but
the spatial mixing is still active, which implies (see
Appendix A.2):

v
�

1+
1
ã
+

1
ã2+

1
ã3

�
=1 (6)

At the slow time scale, the model finally reads:

n� t+1=L%n� t with L%=

Á
Ã
Ã
Ã
Ä

0 0 F3P%3
S1 0 0
0 S2 S3

Â
Ã
Ã
Ã
Å

(7)

At last, by considering the demographic time
interval as the projection interval to describe the
coupled demographic and migration processes,
the general model combines models (1) and (7). It
consists of the following system of linear differ-
ence equations (Sánchez et al., 1995; see also
Charles et al., 1998a,b for an application):

n� t+1=L%Pkn� t (8)

where k is a large integer signifying that the
migration process acts a large number of times
during one single time unit of the demographic
one.

3.2. The aggregated model with annual spawning
migrations

Let Nt
i be global variables defined as total

numbers of individuals in each age-class. They are
invariant for the fast dynamics, and read as
follows:

Nt
i = %

15

j=1

nj
i(t) (9)

If we denote 1 the row vector of dimension 15
with all entries equal to 1, we have Nt

i =1n� ti and
Na t=Un� t where U=diag{1,1,1} of dimension
(3×45) is the aggregation matrix.

The vector Na t= (Nt
1,Nt

2,Nt
3)T represents the to-

tal population vector of dimension 3, whose com-
ponents are the total number of individuals in
each age-class.

The fast dynamics is internal for each age-class
and, for every fixed value of the global variables,
asymptotically leads to equilibrium, i.e. to certain
constant proportions of each age-class in each
patch. We denote n j

�i the fast equilibrium frequen-
cies for the age-class i in patch j ; their numerical
values correspond to the individual proportions of
each age-class in each patch, which are given in
Table 3. As detailed in Appendix A.1, the fast
equilibrium frequencies can be expressed in terms
of migration ratios.

We define the (45×3) matrix P( c=
diag{n*1,n*2,n*3} with n*i= (n1

�i,…,n15
�i )T. For ev-

ery i=1, 2, 3, the stochastic matrix Pi is primitive
(Pi

6\0) and then the vector n*i of equilibrium
frequencies is nothing but its eigenvector associ-
ated to the eigenvalue 1 and normalized so that
�i

j=1n j
�i=1. Hence, lim

k��
Pk=P�=P( cU (Bravo de

la Parra and Sánchez, 1998).
The general model (Eq. (8)) can be approxi-

mated by the following aggregated model, which
governs the global variables at the slow time scale
of demography (Sánchez et al., 1995):

Na t+1=L( %Na t with L( %=UL%P( c (10)

All biological processes involved in this model
being density-independent, the matrix L( % is a
Leslie-type matrix with constant transition coeffi-
cients, leading to the linear model (Eq. (10)):
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L%( =

Á
Ã
Ã
Ã
Ä

0 0 F( 3(a, f,6 j
3*,ã,v,b)

S( 1 0 0
0 S( 2 S( 3

Â
Ã
Ã
Ã
Å

(11)

The entries of the matrix L( % of the aggregated
model are functions of the fast equilibrium fre-
quencies (i.e. of the migration ratios), as well as of
the demographic and spawning parameters:

S( i= %
15

j=1

1Sin*i

and F( 3 is a combination of a, f,6 j
�3,ã,v,b.

We have then collapsed the original complete
system (Eq. (8)) into an aggregated system (Eq.
(10)) with only three state variables, one per age-
class.

3.3. Analysis of the aggregated model

The aggregated model (Eq. (10)) is a good
approximation of the complete model (Eq. (8)) as
soon as k is great enough, as demonstrated by
Bravo de la Parra et al. (1995) and Sánchez et al.
(1995). In Charles et al. (1998a), we illustrated
with simulations the fact that the dominant eigen-
values of both models are similar for a k value
greater than 12 (a patch change at least once a
month). Thus, the population dynamics of S.
trutta can entirely be characterised from model
(Eq. (10)), with respect to the asymptotic growth
rate and the asymptotic age-structure.

The matrix L( % is a primitive matrix of constant
coefficients, thus Perron-Frobenius Theorem ap-
plies (Caswell, 1989) and the dominant eigenvalue
l( %1 of L( %, with the corresponding right eigenvector
w%1, completely determines the asymptotic proper-
ties of the population growth.

The asymptotic growth rate l( %1 and the stable
population structure w%1 describe the long-term
dynamics of the population. The growth rate l( %1 is
also related to the intrinsic rate of increase r=
ln(l( %1).

Some other demographic indices can be calcu-
lated from the demographic matrix L( % (Caswell,
1989):
� The left eigenvector v%1, associated with the

dominant eigenvalue l( %1, gives the age-specific

reproducti6e 6alues, i.e. the contribution of each
age-class to the future reproduction; v%1 com-
prises for each age-class the amount of future
reproduction, the probability of surviving to
realise it, and the time required for the off-
spring to be produced.

� The net reproducti6e rate corresponding to the
expected number of offspring by which a new-
born individual will be replaced by the end of
its life, i.e. to the renewal rate of each age-class,
is given in our case by:

R0= %
�

i=1

F( i 5
i−1

j=1

S( j

=F( 3S( 1S( 2(1+S( 3+S( 3
2+S( 3

3+…)=
F( 3S( 1S( 2

1−S( 3

(12)

� The generation time, that is the mean age of the
parents of the offspring produced by the popu-
lation at the stable age distribution, can be
calculated as follows:

T= %
�

i=1

il( %(− i)F( i 5
i−1

j=1

S( j=3l( %1(−3) F( 3S( 1S( 2

1−S( 3

(13)

Another important part of the study of the
aggregated model is the sensiti6ity analysis, which
consists in investigating how results might depend
on changes in the matrix coefficients. Such
changes represent variations in the life cycle, and
may be of great interest in measuring how impor-
tant vital rates are to population dynamics, or in
evaluating the effects of errors in estimation. Such
an analysis makes possible for example to define
sampling procedures, in order to enhance the
accuracy of the parameter estimation. According
to Caswell (1989), the sensitivity of l( %1 with re-
spect to a coefficient aij is defined as:

sij=
(l( %1
(aij

=
6%1iw %1j

�w1,v1� (14)

where v%1 and w%1 are, respectively, the left and
right eigenvectors associated with l( %1, 6%1i and w %1i

corresponding to their coordinates.
By applying Eq. (14) to the aggregated matrix

L( %, we obtain:
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sF( 3
=
6%11w %13

�w%1,v%1�, sS( 1
=
6%12w %11

�w%1,v%1�, sS( 2

=
6%13w %12

�w%1,v%1� and sS( 3
=
6%13w %13

�w%1,v%1�
It is noteworthy that the sensitivity of l( %1 to

changes in aggregated global parameters
(F( 3, S( 1, S( 2, S( 3) is proportional to the sensitivity
of l( %1 to changes in optimal parameters
(f, s1, s2, s3). In fact, global and optimal parame-
ters are proportional, and for example:

S( 1=
s1

a3 n1
*1+

s1

a2(n2
*1+n3

*1)

+
s1

a
(n4

*1+n5
*1+n6

*1+n7
*1)

+s1(n8
*1+n9

*1+n10
*1+n11

*1+n12
*1+n13

*1+n14
*1

+n15
*1)=s1×C

where C=
n1

*1

a3 +
1
a2(n2

*1+n3
*1)

+
1
a

(n4
*1+n5

*1+n6
*1+n7

*1)

+ (n8
*1+n9

*1+n10
*1+n11

*1+n12
*1+n13

*1

+n14
*1+n15

*1)

Hence, we obtain:

sS( 1
=
(l( %1
(S( 1

=
(l( %1

((s1×C)
=

1
C
(l( %1
(s1

=
s1

S( 1

ss 1
(15-1)

In the same way

sS( 2
=

s2

S( 2

ss 2
, sS( 3

=
s3

S( 3

ss 3
and sF( 3

=
f

S( 3

sf (15-2)

The study of the sensitivity of l( %1 to spawning
migration parameters ã,v,b has also been per-
formed by calculating partial derivatives of l( %1
with respect to each parameter, according to val-
ues selected within a biologically realistic range of
variation.

3.4. Analysis of changes in connections

When connections are modified between
patches in the reference river network, all demo-
graphic indices of the global population are
affected.

In the case of dams, we suppose in fact that
some patches are disconnected from the main
river network, with null migration rates towards
these patches, but without modifying other migra-
tion rates. Hence, individuals of each age-class are
distributed with new fast equilibrium frequencies,
and global demographic parameters change.

In the case of channelling, the demographic
process is considered as impossible in channelled
patches and new migration rates are introduced.
Proportions of each age-class in each patch are
then modified, leading to new global demographic
indices.

Appendix B gives some guidelines to build up
matrices P (fast migration matrix) and P% (annual
spawning migration matrix) in the case of dams
or channelling.

In this work, we studied the effects of changes
in connections on the global population dynam-
ics, when annual migrations of adults just before
reproduction are taken into account. We used the
same method as detailed in Charles et al.
(1998a,b), but on the basis of model (Eq. (10)).

In both cases of dams or channelling, changes
in connections modify the aggregated matrix L( % of
model (Eq. (12)), and new demographic indices
can be estimated. We paid particular attention on
the new population growth rates denoted by l( %1,C,
that we compared with l( %1,Ref corresponding to the
reference river network.

4. Application to the brown trout S. trutta

4.1. Modelling global population dynamics

All simulations were performed with Mathe-
matica 3.0.1™ software. The numerical values we
used for demographic parameters (matrix L) and
individual proportions of each age-class at each
level (matrix P( c) are those given in Tables 1–3.

4.1.1. Choice of parameters ã, v and b (matrix
P%)

There is a good evidence that in many salmonid
populations, individuals can home accurately to
their natal stream in order to spawn (Wootton,
1990) and for some migratory anadromous popu-
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Fig. 2. Relationship between v, the proportion of returning
individuals to their natal tributaries during spawning, and ã,
the factor characterizing the gradient in returning individual
proportions. The more realistic values of v and ã are, respec-
tively, 0.9 and 10.

(b) was fixed at 0.1 on the basis of the 0.1–0.2
range used by Ratner et al. (1997) for the in-
stream mortality of returning spawners of chi-
nook salmon (Oncorhynchus tshawytscha).

Hence, from Eq. (6), we get ã=10. This value,
imposed by the conservation relationship (Eq.
(6)), signifies that 0.09% (v/ã3) of mature individ-
uals will return breeding to level 1 (see Appendix
A.2), which corresponds to the observation that
most of adults will breed in the upper level of the
river network (level 4). The parameter ã might be
considered as a measure of the intensity of hom-
ing behaviour.

The possible range of values for ã correspond-
ing to an v value around 0.9 is very large (Fig. 2).
For example, when v varies between 0.855 (0.9−
5%) and 0.945 (0.9+5%), then ã varies from 6.9
(10−31%) to 18.2 (10+82%). Hence, a total
variation of 9.5% on v involves a total variation
of 163.7% on ã.

4.1.2. Global demographic indices
The aggregated matrix corresponding to the

global aggregated model (Eq. (10)) reads as
follows:

L( %=
Á
Ã
Ã
Ã
Ä

0 0 185.171
0.0497 0 0

0 0.268 0.27095

Â
Ã
Ã
Ã
Å

All classical demographic indices calculated
from L( % are summarized in Table 4, in particular,
the asymptotic population growth rate is l( %1=
1.447. All these results corroborate what is ob-
served in real systems. For example, a generation
time equal to 3.34 years broadly corresponds to
the mean age of the most fertile trout, which
reproduce for the first time in their third year of
life (Baglinière, pers. commun.). It must also be
highlighted that the annual spawning migration
appears really beneficial for the global population
dynamics of S. trutta. Indeed, in a previous model
(Charles et al., 1998b) without this phenomenon,
the asymptotic population growth rate was set
around 1.04. In the present case, this value is
increased to 1.447, what allows to quantify, in
terms of global population growth, the benefit for

Table 4
Demographic indicesa characterizing the global population
dynamics in the reference river network

Aggregated matrix L( %

=

Á
Ã
Ã
Ã
Ä

0 0 185.171

0.0497 0 0

0 0.268 0.27095

Â
Ã
Ã
Ã
Å

l( %1=1.447Asymptotic population
growth rate

Stable age distribution w %1= (95.96 3.29 0.75)
Reproductive values 6%1= (1.0 29.1 157.4)
Net reproductive rate R0=3.4
Generation time T=3.34 years

sF( 3
=0.0017 sS( 1

=6.403Sensitivities
sS( 2

=1.120 sS( 3
=0.258

a Calculated according to Caswell (1989) from the aggre-
gated model (Eq. (10)).

lations, fewer than 5% of the returning fish get
lost (Quinn, 1984). The homing behaviour in
brown trout was widely accepted but it was
poorly documented for spawning (a reference is
given in Stuart, 1957). More studies dealt with the
accurate return of displaced brown trout to their
initial home range after artificial displacement
(Halvorsen and Stabell, 1990; Armstrong and
Herbert, 1997). Consequently, we fixed the pro-
portion of returning individuals to their natal
tributaries v at 0.9. The mortality rate during
spawning migration from one level to the upper
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individuals to return breeding into their natal
tributaries.

4.1.3. Sensiti6ity analysis
Table 4 also provides results of sensitivity anal-

ysis on global parameters. With respect to the
optimal demographic parameters (Eqs. (15-1) and
(15-2)), we obtain:

sF( 3
=0.0024[sf=0.0017

sS( 1
=9.018[ss 1

=6.403

sS( 2
=1.672[ss 2

=1.120

sS( 3
=0.381[ss 3

=0.258

The sensitivity of l( %1 to s1 is very strong com-
paratively to other parameters, which indicates
how important the estimation is of this parameter.
Hence, a decrease of 5% in s1 leads to a decrease
of 1.6% in l( %1, while a decrease of 5% in s3 leads to
a decrease of only 0.35% in l( %1.

This strong sensitivity of l( %1 to s1 and the rela-
tively high value obtained for l( %1 (1.447) suggest a

Fig. 4. (a) Sensitivity of the asymptotic population growth rate
(l( %1) in the whole river network, with respect to the factor ã
characterizing the gradient in proportions of adults returning
to their natal tributaries in order to breed, for b varying
between 0.05 (upper curve) and 0.30 (lower curve). (b) Sensi-
tivity of the asymptotic population growth rate (l( %1) in the
whole river network, with respect to the in-stream mortality b

of returning adults during spawning, for ã varying between 6.9
(upper curve) and 18.2 (lower curve).

Fig. 3. Asymptotic population growth rate (l( %1) in the whole
river network, with respect to (a) the YOY survival rate s1,
and (b) the factor a characterizing fecundity and survival
gradients.

probable over-estimation of s1. Fig. 3a shows how
l( %1 varies versus s1, between 0.01 and 0.14 (twice
the observed value 0.07). For example, with s1=
0.035 (0.07/2), we get l( %1=1.171 a value closer to
1, but over the whole range of its realistic values
(0.01–0.14), the overall variation in l( %1 is approxi-
mately 55%.

Another important parameter is the factor a of
the fecundity and survival gradients, which has
arbitrarily been fixed to 2 according to expert
opinion (Persat, pers. commun.). As shown in
Fig. 3b for example, a decrease of 5% in a leads to
an increase of 1.6% in l( %1, and if a varies in the
whole range of realistic values (1–3), the total
variation in l( %1 is about 31.8%.

Fig. 4 shows that l( %1 is influenced by spawning
migration parameters ã and b. On a general point
of view, l( %1 seems less sensitive to these parameters
than to the demographic ones (especially s1). The
above mentioned variation of 163.7% on ã leads
to a variation of 1.4% on l( %1, if the in-stream
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mortality equals 0.1 (Fig. 4a). Nevertheless, the
effect of ã on l( %1 decreases when b increases. For
b=0.1, any optimal value for l( %1 can be observed,
but, when b=0.3, the relationship between l( %1
and ã exhibits an optimum for a particular of ã
(lower curve on Fig. 4a).

We also remark that the sensitivity of l( %1 to b

(Fig. 4b) is almost the same whatever ã in the
range 6.9–18.2, which corresponds to the range
[v−5%; v+5%]. Hence, with b=0.095 (0.1−
5%), l( %1=1.455, and when b=0.105 (0.1+5%),

then l( %1=1.439, i.e. a variation of 9.5% on b

involves a variation of 1.1% on l( %1. In the same
way, the previous variation of 163.7% on ã corre-
sponds to a variation of 1.4% on l( %1.

Consequently, once the proportions of return-
ing individuals (v) are determined, the gradient
factor ã is fixed (Eq. (6)), and the choice of the
in-stream mortality b slightly influences the final
population growth rate (l( %1).

4.2. Effects of changes in the ri6er network

When changes in connections are introduced,
the new population growth rate becomes l( %1,C (see
Appendix B, for modifications in migration ma-
trices). In order to compare this value to the
reference one (l( %1,ref), we can calculate a relative
variation in l( %1 as follows:

Dl( %1=
�l( %1,ref−l( %1,C

l( %1,ref

�
×100 (16)

Fig. 5a shows how an increasing number of
dams affects the asymptotic population growth
rate. When dams are inserted between levels 3 and
4, the maximum variation in l( %1 is 22.4%, but
when dams are inserted between levels 2 and 3,
the global population can quickly go to extinc-
tion, and the maximum variation in l( %1 can reach
47.2%. Thus in the worst case (four dams between
levels 2 and 3), the global trout population ex-
hibits a growth rate 47.2% lower than the maxi-
mum (0.765 instead of 1.447).

From Fig. 5b, channels seem almost not to
affect the global population dynamics. With chan-
nels between levels 2 and 4, an unexpected slight
increase in l( %1 can even be observed, the maximum
value of l( %1 being 1.562 (7.9% more than the
reference value 1.447). In the worst case (two
channels between levels 1 and 3), the global trout
population is affected very little, as the variation
in l( %1 is only 5.8% at the maximum.

Even if both kinds of changes in connections
cannot be compared, as their effects inside the
river network are different (patch deletion for
dams, new migration rules for channels), it seems
more detrimental for the population to insert
dams than channels. For example, only one dam
between levels 2 and 3 but two channels between

Fig. 5. (a) Effect on the asymptotic population growth rate
(l( %1) of an increasing number of dams, either between levels 3
and 4, or between levels 2 and 3. (b) Effect on the asymptotic
population growth rate (l( %1) of an increasing number of chan-
nels, either between levels 3 and 4, or between levels 2 and 3.
Filled circles (	) correspond to simulations obtained with
model (Eq. (10)); open circles (�) were obtained with a
previous model without annual spawning migrations (Charles
et al., 1998b). Surrounded points correspond to a same relative
variation of 5.8% in the asymptotic population growth rate l( %1.
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levels 1 and 3 (surrounded points on Fig. 5a,b)
lead to the same variation in l( %1 (5.8%).

All these results confirm the tendency we
showed with our previous simple model (Charles
et al., 1998b). For example, an increase in the
number of dams leads both models to a decrease
in l( %1 (Fig. 5, comparison between black and white
points). Moreover, the ‘advantageous’ effect of
channels is reinforced, as the slight increase in l( %1
becomes obvious with the model including the
annual spawning migration.

5. Conclusion

The model presented here makes it possible to
describe the brown trout population dynamics in a
hierarchical river network, by coupling individual
migration at a fast time scale, with annual spawning
migrations and demography at the scale of the year.
The overall population dynamics appeared obvi-
ously reinforced by including spawning migration,
a commonly admitted but rarely demonstrated
statement. The proportion of individuals returning
into their natal tributaries strongly determines the
whole population dynamics, while, for a given
value of this parameter, the others (the migration
mortality and the top-down migration gradient)
affect very little the predictions of the model.

However, if the introduction of the spawning
migration behaviour provided a fundamental in-
crease of the population dynamics, the sensitivity
analysis revealed that, in this model, the parameters
of this behaviour influence more slightly the asymp-
totic population growth rate than the demographic
parameters, especially the YOY survival rate.

Indeed, calculated values of population growth
rate appeared rather large and biologically unreal-
istic. Numerous factors might explain these obser-
vations, but, according to the sensitivity analysis
and the biological background of fish population
dynamics, YOY survival rate must be the most
important determinant. Indeed, s1 values are sus-
pected to be highly variable and strongly dependent
on environmental conditions. For example, under
gravel, survival rate of eggs may vary from 20 to
80% for brown trout in the Scorff watershed
(Baglinière, pers. commun.). In the same way, the

YOY survival is actually hard to estimate because
it does not usually exceed 5% and deals with fishes
too small to be correctly sampled.

Our modelling principle also makes possible to
evaluate both qualitatively and quantitatively the
relative effects of some changes in the connections
of the river network. Such an approach might be
a convenient tool to help in decision making, for
example to improve water-body management, or to
preserve some endangered species.

Further developments are considered on the
basis of a previous study on the effect of density-de-
pendence on the population dynamics (Charles et
al., 1998a). Indeed, we are now intending to extend
our model by taking into account either physical
parameters (like temperature, discharge and other
habitat parameters) with their effects on both
migration and vital rates, or chemical water quality
and its possible effects especially on survival rates.
Such developments in modelling brown trout pop-
ulation dynamics might lead us to use some recent
contributions in variables aggregation methods
(Bravo de la Parra et al., 1999). For example, some
tools are now available to deal with temporal
variations of the environment (Sanz and Bravo de
la Parra, 1998, 1999).
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Appendix A. Matrices associated with migration
processes

A.1. Migration matrix associated with the fast
migration process

Only the migration process is studied here. We
denote t the fast time associated with migrations.
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The complete system of 15 difference equations
describing migrations for one age-class can be

written as follows:

System (1) can be rewritten with the matrix Pi as

follows:

n� t+1
i =Pin� ti (A2)

where the stochastic matrix Pi reads:

Thus, at equilibrium nj
i(t+1)=nj

i(t)=nj
�i, we

obtain with

6 j
�i=nj

�i, %
15

j=1

nj
�i:

Á
Ã
Ã
Ã
Ã
Ã
Í
Ã
Ã
Ã
Ã
Ã
Ä

61
*i=

1
Di

62
*i=63

*i=
1
Di

ai

āi

64
�i=65

�i=66
�i=67

�i=
1
Di

ai

āi

bi

b( i

68
*i=69

*i=610
*i =611

*i =612
*i =613

*i =614
*i =615

*i =
1
Di

ai

āi

bi

b( i

gi

ḡi

(A4)

with

Di=1+2
ai

āi

+4
ai

āi

bi

b( i

+8
ai

āi

bi

b( i

gi

ḡi

Hence, 6 j
�i values being known from individual

proportions given in Table 3, we can estimate
numerical values for migrations ratios.

A.2. Migration matrices associated with spawning
migrations

We call v the spawning migration rate of adults
upstream just before reproduction, and b the
extra ‘in-stream’ mortality during spawning from
one level to the upper one (in the reverse sense, b

is assumed equal to zero). As detailed in Section
3.1, the Leslie matrix associated with demography
reads L=S+FP%, where P% describes the migra-
tion process of adults breeding where they were
born. Our main hypotheses are: (1) The in-stream
mortality occurs before breeding; (2) After fast
migrations, adults of patch i were a priori born in
any patch of the river network according to a
top-down gradient.

P% is a stochastic block diagonal matrix of
dimension 45, written as diag{I,I,P%3} with I the
identity matrix of dimension 15. Coefficients of
matrix P%3 are the product of the returning adult
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proportion, by the surviving adult proportion
along the way followed to go to their natal tribu-
taries. For example, the coefficient (8, 1) of P%3
corresponds to individuals of patch 1 returning to
patch 8. The proportion of returning adults being
v/8 and the proportion of surviving adults along
the way followed reading 1−3b, this coefficient
writes (v/8)(1−3b).

To ensure the stochasticity of matrix P%3 (and
then of P%) when b=0, parameters v and ã must
verify:

v=
�

1+
1
ã
+

1
ã2+

1
ã3

�
=1Uv=

ã3

1+ ã+ ã2+ ã3

(A5)

The complete expression of matrix P%3 is too
long to be directly given here, but P%3 can be
viewed as the product AB of two matrices without
any biological significance:

A=diag!v

ã3,
v

2ã2,
v

2ã2,
v

4ã
,

v

4ã
,

v

4ã
,

v

4ã
,

v

8
,

v

8
,

v

8
,

v

8
,

v

8
,

v

8
,

v

8
,

v

8
"

Appendix B. How dams or channels change
migration matrices

A.1. How channels change migration ratios in
matrix P

When a channel is introduced, either between

levels 2 and 4 or between levels 1 and 3, some
migration ratios are changed (respectively called
di/d( i and oi/ōi), allowing level i to be directly
connected to level (i+2). By way of example,
here is how to calculate the migration ratio di/d( i
(Fig. 1c). The corresponding system of difference
equations describing the migration process reads:

�

n2
i (t+1)=n2

i (t)+ain1
i (t)+d( i(n8

i (t)+n9
i (t))+b( in5

i (t)− (2di+bi+ āi)n2
i (t)

�

n8
i (t+1)=n8

i (t)+din2
i (t)−d( in8

i (t)

n9
i (t+1)=n9

i (t)+din2
i (t)−d( in9

i (t)

�

(B1)

� indicates that equations remain the same as in
system (A1).

We assume that, at equilibrium, ratios between
the individual numbers at level 3 and 1 remain
equal in the reference network and in the changed
one with a channel.

From system (A1) at equilibrium, we get:

Á
Ã
Í
Ã
Ä

(eq. 1)[ āi(n2
*i+n3

*i)=2ain1
*i

(eq. 2)+ (eq. 3)[2ain1
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=2(2bi+ āi)n2
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From Eq. (B1) at equilibrium, we get:
(eq. 2)[d( i(n8

*i+n9
*i)=2din2

*i

[
n8

*i

n2
*i=

di

d( i
(B2-2)

By identifying Eqs. (B2-1) and (B2-2), we finally
obtain:
di

d( i
=

bi

b( i

ḡ

ḡi

(B3)

In the case of Fig. 1c, the new matrix P then
reads:

(B4)

with Di=1− (2di+bi+ āi)

A.2. How dams change the spawning migration
matrix

By introducing dams in the river network, some
patches are not accessible to the fishes, which
cannot breed where they were born. We assume
that these individuals will reproduce in the patch
just downstream to the dam.

For instance, if a dam is introduced between
patches 4 and 8 (Fig. 1b), individuals, which
should breed in patch 8, will reproduce in patch 4.
Matrices A and B become of dimension (14×14)
and are modified as follows:

A=diag
!v
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A.3. How channels change the spawning
migration matrix

By introducing channels in the river network
between levels i and (i+2), reproduction is not
possible at level (i+1). We then assume that
individuals, born at level (i+1), will migrate to-
wards level (i+2). As one patch of level (i+1) is
connected to two patches of level (i+2), we sup-
pose that individuals will be evenly distributed.
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For instance, with a channel between patch 2
and patches 8 and 9 (Fig. 1c), half the individuals
which should breed in patch 4, will reproduce in
patch 8, the other half in patch 9. Matrices A and
B now read:

A=diag
!v
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