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Abstract

A mathematical model for the growth of a population of ®sh in the larval stage is

proposed. The emphasis is put on the ®rst part of the larval stage, when the larvae

are still passive. It is assumed that during this stage, the larvae move with the phyto-

plankton on which they feed and share their food equally, leading to ratio-dependence.

The other stages of the life cycle are modeled using simple demographic mechanisms. A

distinguishing feature of the model is that the exit from the early larval stage as well as

from the active one is determined in terms of a threshold to be reached by the larvae.

Simplifying the model further on, the whole dynamics is reduced to a two dimensional

system of state-dependent delay equations. The model is put in perspective with some of

the main hypotheses proposed in the literature as an explanation to the massive destruc-

tion which occurs between the egg stage and the adult stage. Ó 1998 Elsevier Science

Inc. All rights reserved.
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1. Introduction

To describe the problem which motivated the present work, let us quote an
estimate gleaned in the very interesting monograph that Horwood ([1], p. 291)
has devoted to the Bristol Channel sole: ``One egg in 1±2 million will survive to
the mean age of adulthood''. The massive regulation mechanisms of the abun-
dance of many ®sh populations that have maintained most harvested species
around positive equilibrium for as long as abundance of such species has been
documented are still mostly unknown, and, at the least, subject to controver-
sies. Where, along the life history of ®sh from the egg to adult, does the huge
destruction take place? The answer to this question is probably not unique: it
depends on many factors including the species themselves, their habitat, the
temperature etc. In Leggett and Deblois [2], the main hypotheses regarding sur-
vival and death mechanisms are reviewed. This includes the Hjort critical peri-
od, see Ref. [3], the Cushing `match±mismatch' hypothesis, see Ref. [4]; the
food abundance vs. feeding success (it is not su�cient that food be present,
it is also essential that the larvae be able to catch it). None of these hypotheses
seems to be indisputably superior to the others. One could take as an obvious
statement that some of the e�ects on the survival might be tested in laboratory
experiments. However, great care must be exercised when comparing ®eld and
real data with such laboratory data. MacKenzie et al. [5] made observations
that indicate striking di�erences in ingestion rates in ®eld/laboratory condi-
tions. Regner [6] suggests that laboratory experiments so designed to test the
e�ects of currents and waves on the survival of eggs may be too harsh, com-
pared to real life conditions. It is widely admitted that most of the destruction
occurs before the ®rst feeding period, both by egg damage [6] and by predation
and cannibalism [7±10]. Starvation during the larval stage [3,11,12] is consid-
ered the other main cause of mortality. Which of these causes is dominant is
still a matter of investigation. In Ref. [2], it is reported from Bailey and Houde
[13] that ``the question of whether starvation or predation is more important as
a cause of early life mortality remains unresolved, and there may be no un-
equivocal answer because the situation may vary with species, area, and year''.

How important early mortality is, in the overall mortality, is also not re-
solved yet. Lagard�ere [14] reports a decision taken some years ago to prohibit
®shing in some bay. After ®shing was permitted again in the bay, ®shermen
were surprised to capture a high percentage of small ®shes. This suggests that
the recruitment in the juvenile stage is probably higher than generally believed.
Returning to mortality before feeding, a recent report by Dorsey et al. [10],
based on ®eld studies of eggs and yolk-sac larvae of bay anchovy, Anchoa mit-
chilli, in Chesapeake Bay concludes that more than 93% of bay anchovy daily
cohorts die within two days after egg fertilization and before larvae reach the
®rst-feeding stage. The estimates are based on the fact that eggs hatch <24 h
after being spawned, which allows to estimate the decline on a single day.
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There is, however, a lot of uncertainty on such estimates, due to the fact that
the eggs do not correspond to instantaneous cohorts, some di�usion is taking
place, and not all the places can be considered equal with respect to mortality,
which varies signi®cantly between sites and days (from 2% to 98%). Going
from samples to a general estimate requires a model. If, however, the death toll
of the pre-larval stage is as high as indicated, death at the larval stage should be
less harsh and possibly be based more on mechanisms internal to the larval
stage (density-dependence, unfavorable feeding conditions) than on predation
by other species or by more advanced stages.

Our impetus for building a model of growth and survival at the early larval
stage came as part of an actual e�ort to understand the incredible challenge re-
called at the beginning. The scenario we model is the following: early larvae are
mainly distributed in small or large patches, being themselves subpatches of
larger patches of plankton. Such patches form the upper part of the thermoc-
line, where they are stirred up by small turbulence and are then carried in en-
semble by transport, as long as they are not dispersed by `adverse' weather
conditions. Assuming favorable weather conditions, one can consider that
the success or the failure of larvae through this ®rst stage ± where they are as-
sumed passive ± depends on the abundance of the plankton environment in
which they `emerged'. An experimental justi®cation of the importance of larvae
patches is provided by O'Connell [12], who describes ®eld experiments during
which patches of starving larvae of northern anchovy, Engraulis mordax, were
collected. Incidentally, O'Connell suggests determining a `starvation ratio'
based on collections of starving larvae, as a measure of prerecruitment in the
post larval stage.

The model we propose below is essentially centered around cohorts carried
with their nutrient. It is focused on the early larval stage (passive larvae), which
we will denote (S1). According to the scenario we have in mind, the main cause
of mortality during (S1) is density-dependence. In order to study the behavior
on several years, it is necessary to model the other stages and possibly deter-
mine a renewal equation. We do this using a model for the description of
the motile larvae, the juveniles and the adults. For this part, we follow closely
the principles of a previous model for the sole (Solea solea L.) described in Ref.
[15]. Under some simplifying assumptions, we obtain a renewal equation for
the (S1) stage (that is to say, an equation which gives (S1) larvae of a given year
in terms of the larvae of the same stage of previous years). Further aspects of
the model will be presented in Section 2. We would like to underline now the
sort of model it is and what it is not, and how it compares to others. What we
come up with is a mathematical model, made up of several equations: equa-
tions describing the demography of each stage and equations describing the
food uptake of cohorts. In doing so we obtain a rather complicated family
of equations, when compared to the typical di�erential equations so popular
in the context of ®shery management, or their discrete analogues: Refs. [16±
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19]. However, we maintain a level of detail low enough to allow further analyt-
ical investigation of the equations. Such equations lead to state-dependent de-
lay di�erential equations: dynamical features of such equations have only
recently received attention. In Ref. [20], an equation of the same type as
Eq. (37) was considered, and results about oscillatory behavior and existence
of periodic solutions were obtained. Such results in the context of ®sheries
may give interesting insights on situations where uniformly good abiotic con-
ditions would prevail during a number of years or could even be adapted to
changing abiotic conditions.

It is quite a common practice in population dynamics to assume that the size
(or, weight) is governed by a di�erential equation (see, for example, Ref. [21]).
What we assume here is that the growth is a function of the age and the pop-
ulation occupying a certain volume. The latter expresses the density-dependent
e�ect on the survival, an idea which, in the context of ®sheries, goes back to
Ricker and Foerster who, in Ref. [22] write that ``density-dependent growth af-
fects cumulative mortality''. We chose the simplest form of density-depen-
dence, that is, inverse relationship to the number of larvae per unit of
volume. This is the same kind of non-linearity as in a model introduced previ-
ously by Shepherd and Cushing [23] (see Ref. [24] for a comprehensive account
of size speci®c theory of early life in ®shes). However, the Shepherd and Cush-
ing model di�ers from ours in the sense that it structures the ®sh of a same year
by weight irrespectively of the age in the year. Instead, the structuring variable
in our model is the age, not the weight. The weight (or, rather, the amount of
food ingested since the beginning of larval stage) is the factor which determines
whether or not a larva will proceed to the next stage (assuming that it has not
died from any other cause). This is the other distinguishing feature of our mod-
el: the passage from passive larval stage to the next one (active larvae) is subject
to the cumulative food uptake reaching a certain threshold value. We may also
impose a time limit T1, that is, the threshold should be reached within T1. A
threshold of the same nature is also assumed to control the passage from the
active larval stage to the juvenile stage.

Amongst other approaches, a very tempting one uses functional relation-
ships between parameters characteristic of either the ®sh (length, weight, respi-
ration, etc.) and/or environmental parameters (temperature, salinity, etc.), that
is, allometric relations [24]. Such formulae are very appealing. But, ®rst of all,
they are valid only on average, and their utilization in a speci®c example should
be subject to the study of some statistical relevance. On the other hand, such
relationships may underlie or even hide complex mechanisms. As an example,
there is a relation in Ref. [25] which shows that mortality increases with tem-
perature. This sort of correspondence may in fact underlie an indirect predator
e�ect: temperature increases growth, which in turn increases the vulnerability
of larvae to predators. Computer simulation modelling is another approach
which has been gaining popularity within the last few years in the wider context
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of population ecology [26]. Recently, a computer simulation, built on the prin-
ciple of `individual-based modelling' has been used in the study of density-de-
pendence e�ects in ®sh populations [27,28]. In such an approach, the
experimental ®eld is substituted for by an arti®cial computer world where sev-
eral hundreds (or, thousands) of ®shes are generated, the various events under-
gone by individual ®sh (encounters with prey, motion, death, etc.) are modelled
by random procedures. Each individual is given a certain number of traits (age,
weight, length,...) which are modi®ed at each run according to the outcomes of
the random procedures. Several relationships are described in terms of known
allometric relationships [24]. For example, the energy consumed in respiration
is described as a function of the temperature, ®sh length and some other quan-
tities [27]. Such simulation models are very convenient in allowing the use of
powerful and fast computer simulations, with the potential of providing insight
on the real life phenomenons. They, however, are also subject to criticisms and
should, in our opinion, not be considered as a substitute to all other forms of
modeling. One of the de®ciencies is that they tend to be too complicated to al-
low the sort of qualitative study that mathematical models give. They are based
on a number of empirical relationships and probability processes, which entail
uncertainties on the value and the signi®cance of the results.

Our approach is individually based as in the DeAngelis et al. [27]: ideally, we
would like to decompose the whole life of a ®sh into a superposition of elemen-
tary actions, elicited by physical or biological processes. This work is a ®rst step
in this direction. The main tool in our investigations is mathematical analysis
of our model. We believe that such an analysis may still give interesting results
that, in particular, cannot be reached by simulation techniques. Let us brie¯y
describe the contents of the next sections. As mentioned above, the main focus
of the paper is on the early larval stage, starting just after the yolk-sac has been
consumed and until the larva becomes active. We denote (S1) the early stage
(passive larvae). Section 2 is devoted to the presentation of the model: the main
part consists of equations describing the dynamics of the (S1) stage interacting
with the dynamics of the food present in the unit of volume. Equations of the
population in all of the other stages are also given. Section 3 deals with the re-
newal equation associated with the model. Section 4 focuses on a simpli®ed
model. A short discussion is given in Section 5.

2. Description of the model

Since we are not considering spatial e�ects here, we assume that the species
has a uniform distribution with respect to space and we normalize the number
of individuals of every stage to the number per unit of volume.

The structure of the model is the same as the one described in Ref. [15] for
the sole of the Bay of Biscay. This latter model was derived from ®eld data and
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the information taken notably from Refs. [29,30]. We denote B�t� the density of
eggs laid per unit of volume at time t. Throughout the paper, t will denote the
chronological time starting from the ®rst day of the reproduction period of a
given year. The number of eggs laid within the interval t1; t2� � in a unit of vol-
ume is

R t2
t1

B�t� dt.
In Ref. [15], it is assumed that eggs are immediately transformed into larvae

which start to move both in the water column and horizontally. Here, L�a; t�
will denote the corresponding density of motile larvae:

R a2

a1
L�a; t� da will be

the number of such larvae with age between a1 and a2; per unit of volume.
An additional stage is introduced between the eggs and the motile larvae, the
(S1) larval stage. The state variable for this stage is the function n1�a; t�; the
density with respect to age per unit of volume. The two stages (J) (juvenile)
and (M) (mature) are left unchanged, with the only restriction that they also
are supposed to depend only on age and time.

We will now describe the passage through (S1). In doing this, we have to
consider the food eaten by individuals in this stage from the beginning (en-
trance in (S1)). We assume that the passage to the next stage is subject to
the condition for any individual to have eaten a certain amount of food Q1

(threshold model). We denote q1�a; t� the amount of food eaten up to time t
by an individual entered in (S1) a units of time earlier. We also assume that
there is an upper limit T1 to the time that an individual can spend in (S1). In-
dividuals which have not acquired the amount Q1 of food past time T1 will die
or never reach the next stage.

We denote N1�t� �
R T1

0 n1�a; t� da; the population in stage (S1) which is sus-
ceptible to enter the next stage, at time t (per unit of volume). The variation of
ingested food is governed by the following equation with zero boundary and
initial conditions:

o
oa

q1�a; t� � o
ot

q1�a; t� � K1

N1�t� � C1

;

q1�0; t� � 0;

q1�a; 0� � 0;

�1�

K1 is the quantity of food ¯owing into the species habitat per unit of volume,
per unit of time. (For simplicity, K1 is considered to be a constant and corre-
sponds to the period when the phytoplankton is blooming.) C1 represents the
food (converted into a number of individuals) taken per unit of volume by con-
sumers other than (S1) stage. Limitation of food due to density is modeled in
the simplest possible way, assuming that the quantity of food available is
shared in equal parts by all the individual occupying the same volume at time
t. This is the interpretation of the term K1=�N1�t� � C1�; which also incorpo-
rates a saturating e�ect in the case of low density. We assume implicitly that
the S1 larvae who will not reach the next stage because they are still in S1 after
age T1 do not in fact compete for food. An implicit assumption underlying the
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expression of the density dependence is that individuals of stage (S1) eating a
speci®c food are not competing for this resource with other stages. The boun-
dary condition q1�0; t� � 0 is justi®ed by the fact that age zero is the period
when the individual has exhausted its yolk sac and has not eaten anything from
the environment, yet. The initial condition q1�a; 0� � 0 is justi®ed by the fact
that t � 0 is the ®rst day of the reproduction period of a certain year. Note that
q1�a; t� does not satisfy Eq. (1) for all a; t > 0: In fact, there is no individual in
stage (S1) with age a in this stage larger than t, for it is a basic assumption of
the model by Arino et al. [15], that larvae of a year do not survive as larvae the
year after.

So, q1�a; t� has no meaning for a > t or can just be assumed to equal zero in
this region of the �a; t�-plane.

Integrating Eq. (1) along the characteristics lying in the region t > a yields

q1�a; t� �
Z t

tÿa

K1

N1�r� � C1

dr; t > a: �2�
Eq. (2) combined with the existence of the threshold Q1 allows the compu-

tation of the time spent in (S1) in terms of the exit time. Throughout the paper,
t is said to be an exit time (from a given stage) if there is a non-zero fraction of
the population of that stage going at time t to the next stage. According to the
assumption made here, a condition for t to be an exit time from the passive lar-
val stage is that q1�T1; t� > Q1.

Proposition 1. For every exit time t; the time spent in (S1) is the number a1�t�
de®ned by

q1�a1�t�; t� � Q1: �3�
The function a1 is such that t ÿ a1�t� is increasing on its domain. The domain of
a1, the set of exit times, is, each year k, a union of intervals t0

ext�k�; t1
ext�k�

� �
; where

t0
ext�k� (respectively t1

ext�k�� is the lowest (respectively, the highest) exit time out
of (S1), at year k. For convenience, we will say that a1�t� � �1, when t is not an
exit time. So, instead of referring to the domain of a1, we may as well use the set
of times t at which a1�t� < �1.

Proof. Suppose t is an exit time. This implies that for some a > 0, a < T1, we
have q1�a; t� � Q1: The function a! q1�a; t� is increasing. So, the above
equation has at most one solution for a given t. So, if t is an exit time, there is
one and only one number a1�t� such that Eq. (3) holds. One can di�erentiate
a1�t� with respect to t: In view of formulae (2) and (3) one obtains

a01�t� � ÿ
oq1�a1�t�; t�=ot
oq1�a1�t�; t�=oa

� ÿN1�t ÿ a1�t�� ÿ N1�t�
N1�t� � C1

�4�

from which we obtain
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1ÿ a01�t� �
N1�t ÿ a1�t�� � C1

N1�t� � C1

> 0: �5�
So, the entry and the exit times are in monotonically increasing relationship.
Given that the reproduction takes place each year k within a period
k; k � t1� � the domain of a1, during each year k, lies in an interval
t0
ex�k�; t1

ex�k�
� �

where t0
ex�k� is the solution of the equation: t ÿ a1�t� � k; and

t1
ex�k� is the solution of t ÿ a1�t� � k � t1. �

We will now introduce another fundamental assumption of the model. We
already said that in order for an individual to complete its stay in stage (S1),
it is necessary that it has eaten a quantity Q1 of food within a maximum time
T1: We consider that the time that an individual can spend in (S1) is distributed
according to a probability law. This hypothesis is an attempt to take into ac-
count individual resistance to ¯uctuation of food capacities. For example,
one can imagine that a fraction f , 06 f 6 1 of individuals have the ability of
surviving a slow growth and completing stage (S1) by the time T �large after en-
tering (S1) while the other (1ÿ f � fraction die or will never leave (S1) if they
have not eaten the quantity Q1 by the time T �small; T

�
small < T �large. More generally,

we assume there exists a function f � f �a� such that, of N individuals of age a
in (S1) which have not eaten the quantity Q1 of food yet, the fraction
N � f �a� da will die or lose the ability to go to the next stage within the age
interval �a; a� da�:

In terms of the function f �a� and the past residence time in (S1), a1�t�, we
can derive an equation for the density n1:

o
oa

n1�a; t� � o
ot

n1�a; t� � ÿf �a�n1�a; t�; 0 < a < a1�t�; t > 0;

n1�a; 0� � 0;

n1�0; t� � B�t�:
�6�

From the de®nition of a1�t�, we have

n1�a; t� � 0 for a > a1�t�: �7�
In Eq. (6), the condition n1�a; 0� � 0 expresses the fact that at t � 0, no in-

dividual is in stage (S1). The condition n1�0; t� � B�t� means that the recruit-
ment in stage (S1) at time t is made of all the eggs produced at that time.
Two simpli®ed assumptions are needed for this: (1) No mortality of eggs is ac-
counted for from birth to arrival in (S1). (2) Eggs produced at a given time en-
ter the (S1) stage simultaneously. The right-hand side of the main equation in
Eq. (6) is the mortality rate in (S1). We point out that the model accounts only
for mortality due to the stochastic failure to complete (S1) stage in time. Other
causes of mortality such as predation by adults are not considered. We will
now determine the entrance in the motile larval stage. We have the following
expression.
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Proposition 2. For the cohorts entering the (L) stage (for which a1�t� < �1),
we have

L�0; t� � �1ÿ a01�t��n1�a1�t�; t�: �8�

Proof. The formula is obtained by applying a book-keeping principle to those
(S1) larvae which are susceptible to enter the next stage, that is to say, at a time
t where a1�t� < �1, their number �N1�t� is given by

�N1�t� �
Z a1�t�

0

n1�a; t� da:

By di�erentiating this formula, we obtain

�N 01�t� � n1�a1�t�; t�a01�t� �
Z a1�t�

0

o
ot

n1�a; t� da;

�N 01�t� � n1�a1�t�; t�a01�t� ÿ n1�a; t�� �a1�t�
0 �

Z a1�t�

0

f �a�n1�a; t� da;

�N 01�t� � ÿn1�a1�t�; t��1ÿ a01�t�� � n1�0; t� ÿ
Z a1�t�

0

f �a�n1�a; t� da:

The quantity ÿn1�a1�t�; t��1ÿ a01�t�� is the ¯ow out and B�t� � n1�0; t� the ¯ow
in, yielding formula (8). �

2.1. Dynamics of larvae

We stress the fact that the function L�a; t� is connected to the motile larval
stage, which we denote (L). We have the following:

oL�a; t�
oa

� oL�a; t�
ot

� ÿlL�a�L�a; t�;
L�a; 0� � 0;

L�0; t� � �1ÿ a01�t��n1�a1�t�; t�; L�0; t� � 0 if a1�t� � �1:
�9�

The condition L�a; 0� � 0 corresponds to the assumption that no motile larva is
present in the beginning of the year; lL�a� is the mortality rate in the larval
stage.

Denoting w�a; t� the size gained, since the moment they entered the (L)
stage, until time t, by larvae whose age in that stage at time t is a, and g the
size growth law as a function of the temperature and g

��t� � g�T�t��, where
T�t� is the temperature at time t, we have

ow�a; t�
oa

� ow�a; t�
ot

� g
��t� � g�T�t��: �10�

So,
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w�a; t� �
Z t

tÿa
g
��s� ds; w�0; t� � 0: �11�

We suppose that g
�

is a positive continuous function. We exclude the possibility
of time regression in size. Hence, size grows e�ectively during the larval stage
period and we can evaluate the age of a larva reaching the threshold value
w � w�; either in terms of the birth date or in terms of the moment where
the larva reaches this size. It is this last function which is given by the relation
(11). We denote by a��t� the unique function for which we have
w�a��t�; t� � w�:

2.2. Dynamics of juveniles

The larvae that enter the juvenile phase at time t are those of age a��t�. Their
density, with respect to time is given by the following formula.

Proposition 3. Denote by J�a; t� the density of juveniles of age a at time t per unit
of volume. Then,

J�0; t� � �1ÿ a�0�t��L�a��t�; t�: �12�

Proof. We can express the variation of the population in the (L) stage in two
manners as in the case of the (S1) population in Proposition 1. We de®ne
N2�t� �

R a��t�
0 L�a; t� da. N2�t� is the total number of motile larvae at time t. We

compute N 02�t� in two ways. On the one hand, we have

N 02�t� � ÿ�1ÿ a�0�t��L�a��t�; t� � L�0; t� ÿ
Z a��t�

0

lL�a�L�a; t� da; �13�
this formula is obtained by di�erentiating the integral expression of N2�t� and
using Eq. (9).

On the other hand we have

N 02�t� � L�0; t� ÿ J�0; t� ÿ
Z a��t�

0

lL�a�L�a; t� da; �14�
this formula is obtained by balancing the input and output rates and the mor-
tality rate.

Comparing the expressions (13) and (14) of N 02�t� yields the desired formula
for J�0; t�. �

The dynamics of the juveniles is determined by the following equations:

oJ�a; t�
oa

� oJ�a; t�
ot

� ÿlJ �a�J�a; t�;
J�a; 0� � J0�a�;
J�0; t� � �1ÿ a�0�t��L�a��t�; t�;

�15�
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where J0�a� is the distribution of juveniles at the year of reference (zeroth year)
supposed to be known, J�0; t� is the initial value given by Proposition 2 and
lJ �a� is the density of mortality rate of juveniles of age a:

2.3. Dynamics of adults

The adult stage starts when individuals become susceptible to participate in
the reproduction. We make it start arbitrarily m years (m � 2 in the case of the
population of sole) after the beginning of the juvenile stage. We will take into
consideration only those of the juveniles becoming adults. We then obtain the
following relation of transfer from juvenile stage to adult stage:

M�0; t� � J�m; t�: �16�
The dynamics of adults is described by the equations

oM�a; t�
oa

� oM�a; t�
ot

� ÿlM�a�M�a; t�;
M�a; 0� � M0�a�;
M�0; t� � J�m; t�;

�17�

M0�a� is the distribution of adults at the year of reference (zeroth year) sup-
posed known.

2.4. Production of eggs by adults

It is given by

B�t� �
Z �1

0

b�a; t�e�a�M�a; t� da; �18�
where b�a; t� is the proportion of adults of age a at time t who are in position to
give eggs. e�a� is the number of eggs laid by adults of age a. Now, we are in
position to derive the renewal equation and deduce the mathematical model de-
scribing the life cycle of the species.

3. The renewal equation

From now on, we will assume that a1�t� < �1 for all t. This corresponds to
the favorable environmental conditions that we mentioned in the Introduction.
In this case, �N1 � N1.

Using the method of characteristics, we solve the equation governing the
evolution of the population in the (S1) stage. It yields

n1�a; t� � exp�ÿ R a
0

f �r� dr�B�t ÿ a� for a < t;

0 for a > t:

�
�19�
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We integrate Eq. (8), using the method of characteristics

L�a; t� � exp ÿ R a
0

lL�r� dr
ÿ ��1ÿ a01�t��n1�a1�t�; t� for a < t;

0 for a > t:

(
�20�

Replacing n1�a1�t�; t� by its expression given in Eq. (19), we obtain

L�a; t� �
exp ÿ R a

0
lL�r� dr

ÿ ��1ÿ a01�t��exp�ÿ R a1�t�
0

f �r� dr�B�t ÿ a1�t��
for a < t;

0

for a > t:

8>>>><>>>>: �21�

Solving the equations of the juvenile stage in the same manner, we have

J�a; t� � �1ÿ a�0�t��L�a��t�; t�exp ÿ R a
0

lJ �r� dr
ÿ �

for a < t;

exp ÿ R t
0
lJ �r� dr

ÿ �
J0�aÿ t� for a > t:

(
�22�

Inserting the expression of L�:; :� given by Eq. (21) in the expression (22), we
obtain

J�a; t� �

�1ÿ a�0�t�� exp ÿ R a
0

lJ �r� dr
ÿ �

exp ÿ R a��t�
0

lL�r� dr
� �

�1ÿ a01�t�� exp�ÿ R a1�t�
0

f �r� dr�B�t ÿ a1�t��
for a < t;

exp ÿ R t
0
lJ �r� dr

ÿ �
J0�aÿ t�

for a > t:

8>>>>>>><>>>>>>>:
�23�

Solving the equations describing the adult stage by the method of characteris-
tics, we have

M�a; t� � exp ÿ R a
0

lM�r� dr
ÿ �

M�0; t ÿ a� for t > a;

exp ÿ R t
0
lM�r� dr

ÿ �
M0�aÿ t� for t < a:

(
�24�

So, by the relation of transfer from the juvenile to the larval stage, we have

M�a; t� �

exp ÿ R a
0

lM�r� dr
ÿ ��1ÿ a�0�t ÿ a��exp ÿ R m

0
lJ �r� dr

ÿ �
�exp ÿ R a��tÿa�

0
lL�r� dr

� �
exp�ÿ R a1�tÿa�

0
f �r� dr�

��1ÿ a01�t ÿ a��B�t ÿ aÿ a1�t ÿ a��
for t ÿ a > m;

exp ÿ R t
0
lM�r� dr

ÿ �
exp ÿ R tÿa

0
lJ�r� dr

ÿ �
�J0�mÿ t � a�
for 0 < t ÿ a < m;

exp ÿ R t
0
lM�r� dr

ÿ �
M0�aÿ t�

for t < a:

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

�25�
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Thus, if we replace M�a; t� by its expressions in Eq. (25) in the formula of B�t�
giving the egg production we deduce that

B�t� �
Z tÿm

0

U�a; t; a1�t ÿ a��B�t ÿ aÿ a1�t ÿ a�� da�H�J0;M0��t�
for t > m �26�

where

U�a; t; a�:�� � exp ÿ
Z a

0

lM�r� dr

� �
�1ÿ a�0�t ÿ a��

exp ÿ
Z m

0

lJ �r� dr

� �
exp ÿ

Z a��tÿa�

0

lL�r� dr

� �
�1ÿ a0�:��

exp ÿ
Z a�:�

0

f �r� dr

� �
b�a; t�e�a�; �27�

H�J0;M0��t� �
Z �1

t
b�a; t�e�a�exp ÿ

Z t

0

lM�r� dr

� �
M0�aÿ t� da

�
Z t

tÿ2

b�a; t�e�a�exp ÿ
Z t

0

lM�r� dr

� �
exp ÿ

Z tÿa

0

lJ �r� dr

� �
J0�mÿ t � a� da �28�

and a1�t� satis®esZ t

tÿa1�t�

K1

N1�r� � C1

dr � Q1 �29�

with

N1�t� �
Z a1�t�

0

exp ÿ
Z a

0

f �r� dr

� �
B�t ÿ a� da: �30�

Hence, the model describing the life cycle of the population of ®sh considered
here is given by the system of equations

B�t� �
Z tÿm

0

U�a; t; a1�t ÿ a��B�t ÿ aÿ a1�t ÿ a�� da�H�J0;M0��t�
for t > m;

N1�t� �
Z a1�t�

0

exp ÿ
Z a

0

f �r� dr

� �
B�t ÿ a� da;

Q1 �
Z t

tÿa1�t�

K1

N1�r� � C1

dr;

�31�
where U and H are given by formulas (26) and (27).
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The model we have derived is complicated. The model can be simpli®ed by
disregarding the stages other than (S1) and establishing a direct connection
from (S1) to the ®rst generation to which (S1) contributes, r units of time later.
This means that, from the production of eggs of a given year, we are just taking
into account those laid by the adults laying for the ®rst time this given year.
The possibility to discriminate this production is substantiated by ®eld obser-
vations, made on ®sh species that migrate to spawning areas, such as the sole,
showing that the older ones tend to arrive earlier in the spawning areas and lay
eggs earlier. So, by restricting B�t� to part of the reproduction season, one can
assume, with of course some uncertainty, that this fraction of the new born has
been laid by the adults of the ®rst adult age class (31).

4. A simpli®ed model

We assume that we can determine the eggs of a given year directly in terms
of the passive larvae that survived some years earlier. This is a crude assump-
tion which, however, may ®nd some justi®cation in some cases: for example,
for the anchovy of the Bay of Biscay, it is known that most of the reproduction
which takes place near some of the estuaries is due to the one-year class. So, in
this case, there is a strong relationship between the eggs of a given year and
those of one year later [31]. The simpli®ed model reads

�B� ÿ!r ��S1��
" r units of time #

t � r
 ÿ

�32�

We assume the simplest type of relation:

B�t � r� � k�t�N1�t�: �33�
Replacing B�t� by its expression in Eq. (33) in the equation of N1�t� in Eq. (31),
we obtain

N1�t� �
Z a1�t�

0

exp ÿ
Z a

0

f �r� dr

� �
k�t ÿ r ÿ a�N1�t ÿ r ÿ a� da; �34�

coupled with the equationZ t

tÿa1�t�

K1

N1�r� � C1

dr � Q1:

If we suppose that k�t� � k � constant, we have the simpli®ed model

N1�t� �
Z a1�t�

0

exp ÿ
Z a

0

f �r� dr

� �
kN1�t ÿ r ÿ a� da;Z t

tÿa1�t�

K1

N1�r� � C1

dr � Q1;

�35�
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which can be written in the form

N1�t� � k
Z t

tÿa1�t�
exp ÿ

Z tÿa

0

f �r� dr

� �
N1�aÿ r� da;Z t

tÿa1�t�

K1

N1�r� � C1

dr � Q1:

�36�

One can di�erentiate equations in system (36) and obtain

N 01�t� � kN1�t ÿ r� ÿ �1ÿ a01�t��exp ÿ
Z a1�t�

0

f �r� dr

� �
kN1�t ÿ r�

ÿ k
Z t

tÿa1�t�
f �t ÿ a�exp ÿ

Z tÿa

0

f �r� dr

� �
N1�aÿ r� da;

a01�t� �
N1�t� ÿ N1�t ÿ a1�t��

N1�t� � C1

:

�37�

4.1. A few considerations regarding the model

Eq. (37) is a system of delay di�erential equations in which one of the de-
lays, a1�t�, is itself a solution of an ordinary di�erential equation whose coef-
®cients are functions of the state. In short, one calls such an equation a
state-dependent delay di�erential equation, although this denomination covers
a wide variety of situations. Such equations can be found in the literature, as-
sociated with a wealth of applications. See, for example, Ref. [32] for a short
survey of applications. Usually, the state-dependent delay is motivated by phe-
nomenological considerations: in Ref. [33], such a delay is justi®ed as a re-
sponse of the maturation processes to density-dependence. We want to
emphasize the fact that it is not the way that this occurs in our model. The
main cause for state-dependent delay is the threshold condition (3). The inv-
estigation of mathematical properties of such systems is relatively recent. For
equations of the type (37), the only results we are aware of are those in Ref.
[20]. With some simpli®cations, we may consider system (37) as a model valid
over several years. Thus, the study of long term behavior of system (37) may
give information about the behavior of a ®shery over years. This requires
the study of mathematical properties of system (37), which is currently under-
taken and will be presented elsewhere. Here, we will restrict ourselves to a few
simple considerations.

First of all, looking at the equation veri®ed by a1�t�, we note that the vari-
ations of the sign of a01�t� are related to rather long-lasting changes of the den-
sity of (S1) stage, that is, it is not su�cient that the density goes down for the
competition pressure to go down immediately; it is necessary that the down-
wards movement lasts for a period of the order of the duration of the (S1)
stage.
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Let us next examine some special situations where the analysis of (S1) is fa-
cilitated and however allows to draw interesting conclusions. Using the in-
equality

K1

N1�t� � C1

6 K1

C1

�38�
in relations (2) and (3), one arrives at

a1�t�P Q1C1

K1

;

which gives a lower bound to the duration of the early larval stage. In terms of
T1, we obtain the following:

T1 P
Q1C1

K1

: �39�
Inequality (39) provides an easy-to-interpret condition for the survival of lar-
vae through the (S1) stage.

We now examine the situation where N1�t� � C1: In this case,

q1�a; t� ' K1

C1

a; �40�
that is to say,

a1�t� ' Q1C1

K1

' a1: �41�
So, in this case, the duration of (S1) is constant. Assuming for simplicity that

f �a� � f one can deduce from Eq. (6) an estimate of the probability of recruit-
ment into the active larval stage, from the egg stage:

L�0; t�
B�t ÿ a1� ' exp ÿ f Q1C1

K1

 !
: �42�

Formula (42) shows the following: in the case N1�t� � C1, that is, when the (S1)
larvae are in relatively low abundance in the plankton, and at the same time the
food share is large enough, then the death process during the (S1) stage is es-
sentially the natural mortality. The situation changes if we assume that the (S1)
larvae are relatively abundant or/and the food share is low. Further conse-
quences could be drawn from further investigation of the model.

5. Discussion

We have described a model for the growth and survival of a population of
®sh in the early larval stage. The model ®ts, in principle, species for which the
larval stage is pelagic. It is in the line of a previous model for the sole of the bay
of Biscay, described in Ref. [15], but we may also think of the anchovy. The life
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history of the ®sh is divided into ®ve stages: eggs, passive larvae (S1), active lar-
vae (L), the juveniles (J) and the adults (M). Each stage but the ®rst one is
structured by the age (in the stage). The exit from the two larval stages is sub-
ject to the accumulation of a threshold amount of food eaten in each of the
stages. We have introduced a density-dependence e�ect during (S1), assuming
essentially that animals occupying a given volume tend to share the food inside
the volume equally. This last assumption is certainly not correct. One should
probably take into account the age of the individuals. Modifying the model ac-
cordingly is not a problem. For an easier presentation, we limited ourselves to
the equal share model. We derived a renewal equation and, using a short-cut
path from the end of the (S1) stage to the next generation of eggs (as shown
in (32)), we presented a simpli®ed version of that equation, that is, a system
of two state delay di�erential equations. As far as we know there is no example
of such a system in the literature. The study of the system is out of the scope of
the paper. A similar system was considered recently by Arino et al. [20]. In the
introduction, we have supplied a brief comparison with other approaches.
However, a quantitative comparison, based on how our model ®ts data, is pre-
maturate.

For the time being, the main issue is theoretical: what is the level of detail
necessary and su�cient for a model to have a chance of being useful? We be-
lieve that models should incorporate as much biology, demography, and
oceanography, as they can bear. This was the idea followed in Ref. [15]. The
present work is a continuation of the latter paper, concentrating on the passive
larval stage.

Let us now discuss the conditions under which the description of the (S1)
stage is valid. In the introduction, we mention a scenario: mild steady weather
conditions which favor the production of well mixed patches of plankton inside
which the main mechanism controlling early larvae growth is the presence of
other larvae and possibly other species with which they have to share the food.
As long as such conditions prevail, one can neglect spatial e�ects; one also ne-
glects predation. In fact, we consider that predation has already taken e�ect
and the relative density of (S1) larvae in the plankton is rather low. What, if
the weather conditions were worsening? It is then a common belief that bad
weather conditions over a certain period of time tend to disrupt plankton
patches. Early larvae having not yet completed the (S1) stage may then ®nd
themselves in a poor environment and have a high risk of starving to death.
We have not included this catastrophic event in our scenario. We are presently
working on how to model such events.

Let us brie¯y comment on the model in its whole. A distinguishing feature of
the model is that besides the egg stage, we divide the life cycle of the ®sh into a
passive phase, which coincides with (S1) and an active phase, which comprises
an advanced larval stage and the juvenile and the mature stages. Whenever (S1)
should be started on is probably a matter of controversy. In his monograph [1],
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Horwood mentions that prelarvae, still in the yolk-sac stage, are starting to
feed on prey. No doubt however that there is a possibly short period during
which the larvae can be viewed as passive ®ltering systems, whose survival is
tightly dependent upon the abundance of food in their immediate surrounding.
As soon as the larva becomes active, it is able to swim in a larger area in the
quest of food. Density-dependence e�ects are then secondary, although patches
of advanced larvae and even juveniles or adults have been observed. So, the
feeding area of active larvae is signi®cantly bigger than the one of (S1) larvae,
thus their food uptake depends on the plankton availability in a larger area. So,
the instant growth rate of active larvae is somehow legitimately related to the
average plankton resource in a large area: this is the idea behind Eq. (10). Fi-
nally, the juvenile and the mature stages were described as only age dependent
processes. This, of course, is a simpli®cation: frequent observations have been
made about the relationship between the size of adults and the spawning period
or even the spawning location [31]. This fact however does not play an essential
role in the description of the larval stage, which was the main purpose of this
work. Further consideration will be given to it in future work.

5.1. Conclusion

As a general conclusion, we comment now on the interest of such a work.
Modelling ®sh dynamics is indeed a very di�cult task. It is a highly interdisci-
plinary subject with demographic, biological and oceanographical aspects. As
yet, there is no satisfactory model. One could consider that, since it is so di�-
cult, it would be practical to forget about models. But, models are necessary
when evaluating the resources. Measurements made in the ®eld for evaluation
purposes are just samples. Models play a fundamental role when passing from
samples to life-size scale. So, it is in fact necessary to continue developing mod-
els. This should be done using all possible ways of building models. Notably,
mathematical models may play a role. However, it is crucial that model build-
ing be undertaken with the collaboration of biologists, experts on ®sh, ®sheries
and oceanography. The present work was elaborated along this line of thought.
It is a ®rst step which will be followed by further developments.
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