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ABSTRACT

In this work we extend approximate aggregation methods in time discrete linear models to
the case of time varying environments. Approximate aggregation consists in describing some
features of the dynamics of a general system involving many coupled variables in terms of the
dynamics of a reduced system with a few number of variables. We present a time discrete time
varying model in which we distinguish two time scales, By using perturbation methods we
transform the system to make the global variables appear and build up the aggregated system.
The asymptotic relationships between the general and aggregated systems are explored in the
cases of a cyclically varying environment and a changing environment in process of
stabilization. We show that under quite general conditions the knowledge of the behavior of the
aggregated system characterizes that of the general system. The general methed is also applied
to aggregate a multiregional time dependent Leslie model showing that the aggregated model
has demographic rates depending on the equilibriumn proportions of individuals in the different
patches.

KEYWORDS: Approximate aggregation, population dynamics, time scales, strong
ergodicity, cyclic environment.

1. INTRODUCTION

As a consequence of the intrinsic complexity of many ecological systems,
modeling biological systems implies dealing with models involving a large number of
variables. For example, a community is a set of several interacting populations.
Populations themselves are not homogeneous but are composed of many individuals
of different ages or in different stages. These stages can correspond to size, genotypes,
phenotypes, spatial patches, individual activities, etc. Populations are then subdivided
into several subpopulations. Therefore, when modeling ecological systems we are
faced to a complexity which partly arises as a consequence of the internal structure of
populations.

A first approach to modeling is to try to manage this complexity directly by
building a mathematical model which describes the biological system in detail. This
has the advantage of including the complexity of the system in the model, but it leads
to models with a large number of variables, which are difficult to handle
mathematically. Mostly one must use computer simulations which involves dealing
with restrictions, generally unknown, concerning robustness of solutions with respect
to parameters and initial conditions.
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The contrary approach consists in constructing models that involve a small number
of variables, which frequently results in ignoring the internal structure of the
population. Populations are then considered as entities and described by a single
variable, frequently the total population or density. Associated to this simplification is
the assumption that the internal structure of populations is not relevant for the system
and therefore can be neglected, i.e., the total system can be approximated by a reduced
system. However, this assumption is hardly ever justified and simplified models are
used with little or no argumentation regarding the approximations and simplifications
needed to build the model.

The use of variables aggregation for treating models represents a compromise
between these two approaches. We deal with systems that are complex in the sense of
having a large number of variables, and make use of the existence of different time
scales (i.e., of biological processes which take place with characteristic times very
different from each other) to introduce approximations that allow to substitute the
global system by a reduced system that resembles at least some of the properties of the
original system. We will refer to the fast process as fast dynamics while the slow
process will be denoted by stow dynamics. The use of averaging and perturbation
methods in a rigorous way allows one to carry out an approximate aggregation of the
global system into an reduced aggregated system which is governed by a small
number of slowly varying global variables. Here the term “approximate aggregation”
is used to distinguish it from “perfect aggregation”, which stands for the exact
replacement of the original system by a condensed system and that can only be
achieved in very special cases (Iwasa ef al., 1989). Besides providing a simple version
of the original system, aggregation techniques allow to study the interaction terms
between the slow and the fast dynamics which have important ecological significance.

Approximate aggregation has been widely studied in the context of time
continuous systems with different time scales for both linear and density dependent
models {(Auger, 1989; Auger er af., 1993; 1994; 1996).

The aim of this work is to perform variables aggregation in a time discrete model
in which the conditions of the environment are changing through time. We will
therefore deal with a system of difference equations with non constant coefficients.

Time discrete models are widely used in population dynamics and are particularly
well adapted for the study of the life cycle of populations (Caswell, 1989). For
example, the Leslie model (Leslie, 1945; Logofet, 1993) describes an age structured
population at discrete times. When reproduction occurs periodically each year, the
Leslie model, characterized by the so called Leslie matrix, provides the density of each
one of the age classes at consecutive generations.

However, the Leslie model does not account for the internal structure of
populations. Discrete models for the study of general class structured populations,
which are the scope of variable aggregation techniques, can be constructed in a
manner analogous to the Leslie models, but they result in projection matrices that, in
the general case, are square non-negative matrices (Leftkovitch matrices) (Leftkovitch,
1965).

Aggregation in discrete models has the difficulty of including in the mode! the two
time scales which, unlike the time continuous case, it is not straightforward, which
forces to model the fast and the slow dynamics by two different matrices. Previous
contributions in the linear case are those of Sanchez et af (1995) and Bravo et al.
(1995) in which two time discrete models are proposed and aggregated for the time
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invariant case. In the first model the projection interval coincides with the
characteristic time associated to the fast dynamics, whereas in the second the
projection interval is that of the slow dynamics. In both cases it was proved that under
certain conditions the dominant eigenelements of the general system and of the
aggregated system coincide to a certain order. These two models have also been
extended to deal with the density dependent case (Bravo ef al. 1997; in press).

In this work we extend the second model in the linear case to account for the case
of a time varying environment. In particular, we will deal with the cases of cyclically
varying environment and of an environment in process of stabilization.

The basic ideas behind our approach to approximately aggregate the original
system are: 1) to approximate (bounding the error we commit) the original system by
another one (auxiliary system) in which the fast dynamics has reached an equilibrium
(in the case this equilibrium exists) and 2} to collapse this auxiliary system into a
reduced system in such a way that some of the characteristics of the former (in
particular asymptotic behavior) can be exactly inferred from those of the latter.

Periodic environment models are relevant because of the pronounced seasonal
periodicities in many environments. If environmental differences between years are
negligible in comparison with difference between seasons, projection models with a
time step shorter than the annual cycle naturally appear to vary in a periodic fashion
(MacArthur, 1968). The literature offers different approaches to the study of these
medels. The classical one (Skellam, 1967), which is the one we will follow, is based in
transforming the original system into a time invariant one considering the length of a
cycle as the projection interval.

The case of environmental variation tending to stabilization has not been addressed
with profusion in the literature, but it responds to important biological considerations.
Indeed, environments do not constantly maintain its characteristics, but are frequently
subjected to perturbations caused by different incidental climatological conditions
such as prolonged droughts or rains, extreme temperatures, etc., which induce
perturbations in the vital rates of the population. If we suppose that these perturbations
do not alter the equilibrium characteristics of the environment and that the
environment progressively regains equilibrium, we might wonder whether, in the long
run, the system is independent of those incidental perturbations and depends only of
the equilibrium vital rates. Because of the resemblance with the time invariant case,
we could also think that under certain conditions the system is strongly ergodic, i.e., it
has a fixed asymptotic population structure independent of initial conditions (Cohen,
1979), and its growth is asymptotically exponential. Moreover, we would like to know
when that population structure and asymptotic exponential growth are those
corresponding to the case when the environment constantly has the equilibrium
characteristics. Most of the mathematical results behind this subject are proposed by
Seneta (1981).

Section 2 proposes a linear time discrete model which distinguishes time scales in
the general case of varying environment and gives a criterium to build the aggregated
system, The fast dynamics is supposed to be, for all times, an internal and conservative
process for each of the groups (as it is the case for migration, activity changes, etc.)
and to have an asymptotic equilibrium distribution among the corresponding
subgroups. The aggregated system is shown to have a structure that can easily be
related to that of the slow dynamics. In fact, the entries of the matrix that represents
the aggregated system are obtained as a linear combination of those that correspond to



276

the slow dynamics, being the coefficients of the combination functions of the
equilibrium distribution of the fast dynamics. This general case is also particularized
to the case of a multiregional Leslie model (age and patch structured population) in
which migration can be considered a fast process in comparison with demography. In
this case the demography for the microsystem is given by a block Leslie matrix. Upon
aggregating we have that the matrix that represents the aggregated system is a classical
Leslie matrix.

Section 3 presents an introduction to the general treatment for cyclical linear
systems and establishes as well the relationships between the microsystem and the
aggregated system when the environment varies in a cyclical fashion. We show that
under wide conditions, if the separation between the time scales of the slow and fast
dynamics is sufficiently high, the asymptotic population structure of both systems is
cyclical. Besides, both the asymptotic population structure and growth rate for the
above mentioned systems can be related in a approximate way (being the
approximation perfectly quantified and depending on the separation between the two
time scales).The results are also particularized to the formerly mentioned case of an
age and patch structured population.

Section 4 has the same structure as section 3, but in this occasion we address the
case of an stabilizing environment. In the first place we give sufficient conditions for a
general system to exhibit strong ergodicity (tendency towards a fixed population
structure independent of the initial conditions) and an exponential asymptotic growth,
We also show that under certain assumptions, a sufficient separation of the fast and
slow time scales guarantees that both systems are strongly ergodic, and their
corresponding asymptotic population structure and growth rate can be related in a
precise way as a function of that time scales separation.

2. A DISCRETE MODEL WITH DIFFERENT TIME SCALES

The model we propose is a generalization of the linear discrete model considered
in Sanchez et al. (1995) in which we want to allow the parameters of the model to be
time dependent.

The General System

We suppose a stage-structured population in which population is classified into
stages or groups attending to any characteristic of the life cycle. Moreover, each of
these groups is divided into several subgroups that can correspond to different spatial
patches, different individual activities or any other characteristic that could change the
life cycle parameters. The model is therefore general in the sense that we do not state
in detail the nature of the population or the subpopulations. In order to illustrate the
model and the results, we shall particularize our study to the case when the groups
correspond to age and the subgroups characterize the spatial location of the
individuals.

We consider the population being subdivided in q populations (or groups). Each
group is subdivided in subpopulations (subgroups} in such a way that for each
i=1,2,..q, group i has N, subgroups. Therefore, the total number of subgroups is
N=N+N+.+ N,

We will denote by x/ the density of subpopulation ; of population / at time #, with
i=12,..,qgandj=12,..N; . Inorder to describe the population of group { we will use
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’
i : i, N, . s
vector X, =(x,’,],x,'f,---,x,', i ) €R"',i=12,..,q, where T denotes transposition. The

composition of the total population is then given by vector
T
ro_.T T
Xn=(f,’, JE2 X0 ] eR"Y.

In the evolution of the population we will consider two processes whose
corresponding characteristic time scales, and consequently their projection intervals,
are very different from each other. In order to include in our model both time scales
we will model these two processes, to which we shall refer as the fast and the slow
dynamics, by two different matrices.

We shall choose as the projection interval of our model, that corresponding to the
slow dynamics, i.e., the time At elapsed between times » and n + 1 is the projection
interval of the slow dynamics. In Bravo ef /. it is proposed and analyzed a model in
which its projection interval coincides with that of the fast dynamics.

In principle, we will make no special assumptions regarding the characteristics of
the slow dynamics. Thus, for a certain fixed projection interval the slow dynamics will

be represented at time » by a non-negative projection matrix M, R¥*N which in

this context is usually referred to as Leftkovitch matrix and which we consider divided
into blocks M(n), 1 £ij € ¢. We have then

My Mp(m) - My (n)

M. = M2:1(”) sz(”) Mz?(ﬂ)

Mql(n) Mq2(n) qu(n)

where each block M,(n) has dimensions ¥, X N; and characterizes the rates of
transference of individuals from the subgroups of group j to the subgroups of group i

at time . More specifically, for each m = 1,2,...,N; and each / = 1,2,..,,N,, the entry of
row m and column ! of My(n) represents the rate of transference, at time n, of
individuals from subgroup / of group j to subgroup m of group i.

As far as the fast dynamics is concerned, we suppose that it is for each group
i=1,2,...q, internal, conservative for the total number of individuals and with an
asymptotically stable distribution among the subgroups. Besides, we will suppose that
the characteristics of the fast dynamics can be considered constant over each of the
time intervals [, n+ 1),

Therefore, if we consider a fixed projection interval (which will be small in
comparison with that chosen for the slow dynamics), the fast dynamics of group ¢ will
be represented, during the time interval [, n -+ 1), by a regular stochastic matrix (i.e., a
primitive stochastic matrix) P{rn) of dimensions N; x N,. The matrix P, which
represents the fast dynamics for the whole population during that interval is then

Pn = d'!ag(Pl (Kt), P2(")= R Pq (n)) (2)

Since matrices P,(») are regular stochastic, they all verify that their spectral radius
is 1 and that they have positive Perron right and left eigenvectors given by v;(r) and e
respectively, where e; = (1,1,...,1)" has dimensions N; x 1. We then have

P(nv,(m)=v(n) ; e’ P(m=e! 3)
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Besides, we normalize vi(#) so it is a probability vector, that is, (vi{n), e} = 1.
Therefore, if group / were governed constantly and exclusively by the fast
dynamics given by matrix P«(n), it would have an asymptoticaily stable distribution
given by the positive probability vector v,(n).
The Perron-Frobenius theorem assures that the matrix that characterizes the
asymptotic behavior of the fast dynamics of group 7 at time » is

P(m) = lim BEG) = (v, )|+ | v,() = v (m)e]

and, therefore, the asymptotic behavior of the fast dynamics for the whole population
is given at time 7 by matrix P, = diag(P,(), B,(n), -, B, (n)).

We define also matrix V, = diag(vi(n), v2(n),...,v,(#)), that will be used in the
subsequent sections and which admits the following interpretation. If we have a non-
negative vector of RY that indicates the total number of individuals included in the
different groups and it is multiplied by V,, we obtain a vector of &, which gives how
these individuals would be asymptotically distributed among the subgroups, if the
systemn were governed exclusively by the fast dynamics corresponding to the interval
[mrt+1).

As we have said before, the projection interval of the mode! is that corresponding
to matrices M,. We then need to approximate the effect of the fast dynamics over a
time interval much longer than its own. In order to do so we will suppose that during
each interval [#, n + 1) matrix P, has operated a number £ of times, where £ is a big
enough integer that can be interpreted as the ratic between the projection intervals
corresponding to the slow and fast dynamics. Therefore, the fast dynamics will be

modelled by P¥ and the proposed model will consist in the following system of N
linear difference equations that we denote as “microsystem” or “general system”;

Xrr+1 = MnP:Xn (4)

The Aggregated Model

In this section we will approximate the microsystem (4), consisting of ¥ variables
(microvariables) associated to the different subgroups, by an aggregated system (or
macrosystem) of g variables (global variables), each of them associated to one group.

We define the global variables by

yf, = x,’,l +:c,',2 +---+x,’;N" y i=12,-9

which indicate the total number of individuals in each of the groups at the
corresponding time.
These global variables, that we represent by vector Y, € R, can be obtained from

vector X, by multiplying by matrix U = a’z’ag(e]T ,€5 ., eg ), that is

Yn=(yll'rs"'ay;t{)=an (6)
The following Lemma states some properties of matrices P,,P,,V, and U that will
be frequently used through the paper.



279

LEMMA 1. Matrices P,,P,,V, and U verify, for all n :
a) “r:'l Pn = PnFn = 1_)ni);1
5 PV,=PV,=V,

¢) UP,=U;UV,=1;P =V,U

If in the general system (4) we multiply by matrix U
UX,. = UM,PX, )
we get the global variables in the first member, but we do not obtain an autonomous
system on these variables.
If system (7) were autonomous on the global variables, it would have been an
example of what is called perfect aggregation (Iwasa er al, 1987), which is only
possible in very particular cases. In fact, what the possibility of perfect aggregation

indicates is that the study of the original system can be simplified with just a better

choice for the state variables, and so it is the global variables which best describe the
system under consideration.

In order to simplify the general system we then resort to approximate aggregation.
For this we consider an auxiliary system (that we will call non-perturbed system),
which approximates the behavior of the general system and that is susceptible of being
petfectly aggregated. This auxiliary system is the result of considering the
microsystem in the case that fast dynamics has reached its asymptotic equilibrium, i.e.,

XM+| = Mnﬁnxn (8)
This system approximates the microsystem in the following sense; since

lim Pf =P and M,P* =M, P, +M,(P' —P,) we can consider matrix M,P* as
et

being a perturbation of matrix M,,P,.

In order to show that (8) can be perfectly aggregated let us muitiply both members
by matrix U

UX,,; =UM,P X, =UM,V,UX,
and then we obtain the aggregated system
Yo =M, Y, ©
where matrix M, € R¥*? is given by M,, = UM, V,, and has the form

ef My (mvi(n) e Mip(m)vy(ny - e My, (n)v,(n)

W, | M) e Mp(mva(m) - My v, ()| 0
eMa(vi(n) egMp(nva(n) - egMy,(n)v,(n)

Therefore we have that for each time » the clement of row / and column ; of the
matrix of the aggregated model is e?nMU(n)vJ-(n)=)I.mJM,;',’-”(n)vJ",-(n) which is a
weighted linear combination of the coefficients of the slow dynamics at time »
corresponding to the transference from group j to group i. Notice that the weights are
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given by the equilibrium distribution of the fast dynamics at time ». ( M ff!(n) denotes

the element of row m and column [ of M,{#) and vj(n) the /-th component of v{x) ).

The following sections will be devoted to the study of the relationships between
the different systems defined above in the hypothesis of cyclically varying
environment and stabilizing environment.

The following lemma, which is a trivial consequence of (10} and of the fact of
vectors v,{#) and e; being positive for all / and »n, allows us to relate the structure of
matrices M,, and M,,,

LEMMA 2. For all n, M,, is a nonnegative matrix in which the element of row i and
column j of M, is non-zero if and only if matrix M 4(n) is not zero.

Notice from this last result that the pattern of non-zero elements in M,, coincides
with the pattern of non-zero blocks M ,{») for the slow dynamics.

An Age-patch Structured Model with Fast Migration

In order to illustrate how the proposed model and the aggregation procedure would
work in a special case for the fast and slow processes, we will consider an
multiregional Leslie model, i.e., an age-structured population where we distinguish
several different spatial patches in every age class. Therefore, two biological processes
govern the evolution of our model, demography and migration. These kind of models
have been frequently treated in the literature (Caswell, 1989; Logofet, 1993) although
not with the approach of distinguishing different time scales in those two processes.
On the contrary we shall show that, as is usually the case in nature, migration can be
considered a fast process with respect to demography.

We suppose that there are g age classes and that for each age class ¢ individuals are
spread out in V; spatial patches among which they may migrate,

Keeping the notation of the preceding section we denote by x. the number of
individuals of age 7 in the j-th spatial patch at time », with i=1,2,....gand j= 1,2,.. N,
We suppose also that the migration for individuals of age 7 is represented at time » by
a primitive matrix P,(#). Since migration conserves the total number of individuals for
each group we have that Pi{(z) will be an stochastic matrix and therefore the fast
dynamics meets the requirements of the last section. Each vector v{r) gives the
equilibrium distribution corresponding to the migratory process for group i at time x.

Demography will be represented by a generalized Leslie matrix in the following
way:

—'F F e F_ F 1

M (5 M) - My, (n) 5122 25”1) q(])(") q(gn)
R I I I
My (7)) My(n) - My, () 0 0 ] :1(”) 0

i q- J

where F.(n) = [Fi(m)]e R"VY i= 1, q; S;(m=[S{{m]e RV "N i=1,.4-1
and where the coefficients are divided into two classes as in the classical Leslie model.
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Fertility coefficients; F},(x) = transference coefficient from spatial patch /and age
i to spatial patch & and age 1 during interval [m, # + 1). k= 1,..N' ; I=1,..N; ;
i=1..4. :

Aging coefficients: S;,(n) = transference coefficient from spatial patch / and age /
to spatial patch % and age i + 1 during interval {n, n+1). k= 1. .N""; —1, LN

+1 .
i=1,..,4-1. These coefficients must verify the consistency condition Zk=l Su(n
<l

According to (13}, the aggregated system will have the form of a classical Leslie
matrix:

A A foa) f()
5(n) 0 0 0

M,=| 0 s5(n) 0 0
L 0 0 Sq_‘(n) 0

where we have:
Fertility coefficients at time n : fi(m) = ef‘F,-(n)v,-(n), i=1,..,q.
Survival coefficients at time n: s,(n) =e., S,(Wv,(n), i=1,.,q—-1.

Notice that a) fi(») is a weighted linear combination of the fertility coefficients of
group / at time n being the weights the coefficients of the equilibrium spatial
distribution among the different patches for the migration of group i. Something
analogous holds for s;(#) . b) lemma 2 assures that £i(») is different from zero if and
only if matrix Fi(n) is. In the same way, s{(») is different from zero if and only if
matrix S;{(n) is. We see, then, that matrix M, retains the structure of the non-zero

blocks M {n) of M,.

3. CYCLICALLY VARYING ENVIRONMENT

In this section we shall develop results that allow one to approximate the
asymptotic behavior of the general system given that of the aggregated system in the
case of a cyclically varying environment, that is, in the case where we have matrices
M, and P, verifying P,., = P, and M,, = M,., for all » where T is the period of the
cyclical variation.

The General Approach

The literature offers several techniques for the study of discrete models
2,0 = Anzn (1 ])
with cyclical variability. The classical approach (Skellam, 1967; Caswell, 1989),
which is the one we shall use in our subsequent development, is to study the system at
times separated by T units considering products of matrices of length 1. Other
approaches to the study of discrete systems with cyclical variability are those of
Tuljapurkar (1985) and Gourley and Lawrence (1977), that although have some
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advantages regarding information extraction from the life cycle, are not well suited for
our aggregation techniques.

Following Skellam, for each s € {0,1,...,7—1} and all m = 1,2,... we have from
system (11)

Lor(milys = Ajr 1 A AZ e (12)
and, if we define B, = Awi ... Auy A, 1S
Zot(melyr = Bz, e (13)

so we can study the population at times s, s + 7, s + 21... considering matrix B, , which
is independent of 2, making use of the time invariant theory. Therefore, if we assume
B, has an strictly dominant eigenvalue [, , then y, gives the asymptotic growth rate per

L
T time steps of the population (and so (u,)7 is the asymptotic growth rate per time

step). For this analysis to be consistent, it must be p, (and the rest of the eigenvalues of
B,) independent of the ebservation points, that is, Lo = -+ = [1._, = W independent of s.

This is of course the case, since By, B ,...,B,_, are products of the same factors in
cyclical permutation and therefore all have the same characteristic polynomial (Hom
& Johnson, 1985, page 53). Concerning the stable population vectors, it is trivial to
show that if w, is a probability normed eigenvector of B, associated to | (and therefore
the structure of the population at times s -+ m7 is asymptotically given by w,) then for
any s’ (lets say s > s5) wo = Avs-Am A is eigenvector of B, (not necessarily

normalized) associated to | and, consequently, the population at times 5 + mt
asymptotically has the direction of w,.. Notice that it is w., = Uw, , so we have that
the population structure is asymptotically cyclic with a period not greater than .

It is important to take into account that even though B, , B, ,..., B, have the same
eigenvalues including multiplicities, the irreducibility or the primitivity of one of the
B; does not imply the irreducibility or primitivity of the rest.

As a result of the above discussions we can study system (12) without loss of
generality by just choosing s € {0,1,...,7—1} (for example s = 0) and then dealing with
system (13).

Asymptotic Relationships for the Macro and Micro Models

We will now apply the above technique to treat the aggregated, auxiliary and
original systems constructed in the last section for the case of a cyclically varying
environment. We have then as an starling assumption;

H1. Matrices M, and P, are periodic with period 1.

In the first place we will set out the equations that govern these systems taking as
time step that corresponding to a cycle.

Let us consider s = 0 (for any other s the treatment would be absolutely analogous).
The microsystem {4} can be put in the form;

X(m+1)f = C(k)xm‘r (14)
where C(k) is given by
C(k)= M, ,Pr ... M{PEMgPy . (1s)

In a similar way we have for the auxiliary system (8)
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Ximenye = C'X,,; (16)
with
C’'=M,_P,_,...M;PM,F, (17
in order to shorten the notation we will define
B=M_,P._,.. M{PM,
so we have C’ = BB,.
Finally, the aggregated system (9) referred to a cycle has the form
Yimsiye = C Yong (18)
where the global variables are those defined in (6) and matrix C € R"* {s given by
C =M, MM, =UM,_V,_;...UM,V, = UC'V,UBV,
where we have used lemma 1 in the last two equalities.

The purpose for this construction is to characterize the asymptotic behavior of the
general system at times multiple of 7 (i.e., at times of the form m1 with m
asymptotically large) supposed the asymptotic behavior of the aggregated system is
known. We will proceed as follows. In the first place we will relate the spectral
properties of matrices C’ and C, which will yield the relationship between the
asymptotic behavior of the auxiliary and aggregated system. Later, by considering
C(k) as a perturbation of C', we will compare the asymptotic elements of both
matrices, which will relate the behavior of the auxiliary and original systems.

The foilowing proposition relates the spectral properties of matrices C" and C.

PROPOSITION 1. Matrices C’and C verify:

a) det(Al, —C)= AN-a det(Al, — C); in particular, the dominant eigenvalues of
both matrices, together with their respective multiplicities, coincide.

b) If v and | are, respectively, right and left eigenvectors of C associated to L #0
then BVor and U’ | are respectively right and left eigenvectors of C’ associated to A.
Proof. See appendix.

For our study we make the following assumption:

H2. C has a simple and strictly dominant eigenvalue 1 (necessarily positive), with
associated right and left eigenvectors r and 1, respectively.

Recall that the incidence matrix of a non-negative matrix A is a matrix G{A) of the
same dimensions as A given by G(A); =1 if4;> 0 and G(A); = 0 if4,;=90. Two non-
negative matrices A and B of the same dimensions are then said to have the same
incidence matrix {and we will denote it A ~ B) when both matrices have their non-zero
elements in corresponding positions. The properties of irreducibility, reducibility,
primitivity, etc., of a non-negative matrix A are functions only of the incidence matrix
of A and not of the actual values of its non-zero elements.

Of course, a sufficient condition for C to meet H2 is that C is primitive. In the
frequent case that all M, and all P, have the same incidence matrix (i.e., M, ~ M, and
P, ~ P, for all # and '), a necessary and sufficient condition for C to be primitive is

that any of the M,, {and therefore all of them) is primitive. From proposition 2 we
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have that M,, is primitive if and only if M, is “block primitive”, i.e., the non-zero
blocks Mj(#) are distributed in a primitive pattern. In the case that the M, are Leslie

matrices with not necessarily the same incidence matrices, Keller (1980) and Taylor
(1985) give sufficient conditions for the irreducibility and the primitivity of the
product in terms of the incidence matrices of each of the factors.

Then, if the aggregated system (9) has a noun-negative initial condition Y., its
asymptotic behavior at times multiple of t© will be given by

lim Y2 i (EJMYO =<—1’Y—°>r
m—yoo Ju”’ m—yool LI (!’ r)

Using proposition 1, we have for the auxiliary system (8):

PROPOSITION 2. If Hi and H2 hold, then for any non-negative initial condition X,
system (8) verifies:

lim L = lim
n—3oo 'u_ Mool

4 LLUX
(C] x0=< °)ti{,r
u (L) p
Proof. Since  is simple and strictly dominant eigenvalue for C with associated right
and left eigenvectors r and 1 we have from proposition 1 that p will be simple and

strictly dominant eigenvalue for C’ and B Vor and Ul associated right and left
eigenvectors. Then

, U'LX
lim e llm{CJ XO=M-BVOr=
o g e (U1, BV,r)

(0x) | fLux,)

(Luvyr) " (Lpr)

Let us now study the asymptotic behavior of the microsystem (4). For #=0,1,...,7—1
let us consider the eigenvalues of P, ordered by decreasing modulus (notice that the
eigenvalues of P, are the union of those of the different Py(n))

= () == 2 () > R ()] 2. 2 Ay ()

as we wanted to prove.

and let
o> max{t, O}y O} | (s - 1)) (20)

, 1.e., o is any real number greater than the modulus of the “subdominant” eigenvalues
of Py,...,P. . Then we have:

PROPOSITION 3. If | *| is any consistent matrix norm in the space of real matrices
N x N then

lct -] =o(0*) when k-5
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Progf. See appendix.

Notice that since | A4+ | < 1, then o can be taken smaller than one and therefore this
last result guarantees that C(k) can indeed be considered a small perturbation of C’ for
large £.

We will now rclate the dominant spectral elements of matrices C(k) and C”. In
order to do so we make use of the theorem stated in the appendix.

PROPOSITION 4. For sufficiently high k , matrix C(k) has a simple and strictly
dominant eigenvalue [y that can be expressed in the form

(UTI, (ot - MV, r)

. +o(a™) = p+ ofor*)
(U LMV, r>

Hy =+

Besides, associated to |\« there are right and left eigenvectors that can be written in
the form

BV,r+o(a*)
U7 1+ o(c®)
Proof. See appendix,

As a consequence of the preceding results, the population vector of the
microsystem (4) will have an asymptotic behavior (for times multiple of 1) related to
that of the aggregated system by the following proposition.

PROPOSITION 5. Given Hl and H2 hold, system (4) verifies, for k (big enough) and for
any non-negative initial condition X, :

m I, UX
lim = 2 = i {@] X, :< 0)lls*.v(,r+ o(c)
m—vo (#k)m m—see| ULy (l, !‘) H

where o, is any number verifving (20),

Proof. From proposition 4 we have

(UT1+ o), xo)

im 7L = BV, ¢
no ()" (UTI + o(er*), BV, + o(a* )>( o+ ole ))
_ {(LUXo)+ of@) ) -
R (KT (BVor+ o)) =
= [QU—XO) + oot )](BV0r+ o(a* )) = <—I’Ui0)l BV,r+ o(ct*)
Lur Lr u

Forany s € {0,1,...,7-1} we therefore have
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lim Eﬂi}":— = M s—l M()PO
e (i) )"

1, UX '
) ( (l l‘)0>-,Zi-M‘ L) MgPYBVpr + o(ar®)

Notice that the asymptotic behavior of the microsystem can be inferred from that
of the aggregated system.

Cyclically Varying Demography and Migration

In order to illustrate the above results, we shall study the system proposed in
section 2.3.(slow demography and fast migration) in the case that both demography
and migration are periodic functions of time, being 7 the period. For all » and all i =
l,...q is then P{n+1) = Pn) ; Fi(n+17)=Fin), k=1, N I=1,., N and
Su(n+71) = Su(m), k=1,..N"";I=1,.,N.

For simplicity we make the following assumptions that, as it is immediate to
check, will be sufficient conditions for H2 to hold:

1) The incidence matrix for the demography is constant through time, i.e., M, ~
M., for all # and #". Therefore, if a vital rate is non-zero initially it remains non-zero
subsequently,

2) There is at least a non-zero coefficient in the last age class, that is, F,{») = 0 for
all » and, besides, there exists j such that m.c.d.(j,q)=1 and there is at least a non-zero
fertility coefficient in age class j (i.e., F; {n)# 0 for all n ).

3} For all the age classes there is at least a non-zero survival coefficient, i.e., Si{n)
#0foralli=1,..,g—1andall n

Thus, the results developed in this section are valid for our age and patch
structured model. Therefore, the aggregated model will have an asymptotic cyclical
behavior with period 1. Let us suppose that the asymptotic growth rate for a cycle in
the aggregated model is p and that the population structure at times mt (with m large)
is given by the direction of vector r. Then, our results show that the original model
will also have an asymptotic cyclical behavior with period T and that the asymptotic
growth rate (for a cycle) and population structure for this system will be A + ofot”) and
BVrto(o) respectlvely In this way, we can approxlmate the asymptotic behavior of
the microsystem given that of the aggregated system is known. The higher £ is, i.e.,
the higher the ratio between the characteristic times of demography and migration is,
the more accurate the approximation will be,

4. STABILIZING ENVIRONMENT

This section deals with the treatment of the systems (43, (8) and (9) in the case in
which the environment has a temporal variation that tends to stabilization.
We have then as a starting assumption that M, and P, evolve in the way that there
exist matrices M and P such that
limM,=M; lim P, =P
h—yea n—doo
Obviously, matrices M and P would represent the slow and the fast dynamics for the
general system in the stabilized environment, that is, for asymptotically large time.
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The General Approach

In the first place, we shall address ourselves to the problem with a general system
of the kind

Zan1 = Anzn (2])

where z, € R” and A, is a sequence of non-negative (not necessarily converging)
N x N matrices. Iz, # 0 is the population vector at time p 2 0, we obviously have for
all m 2p, Zn = Ayt ... Apni A, Z, and, therefore, in order to study the asymptotic
behavior of (21} we have to deal with infinite backwards products of non-negative
matrices.

Let us denote by ||*|| the l-norm in R” that is, if 2= (21 , 22 ,... zv )" is | z]| = |z +
z2| + ... + |zal. Then, the total population of system (21} at time 5 is [|z,|| and the
population structure at time # will be given by -"—z—"

Let us define a measure of asymptotic growth rate for system (21). In the time
invariant case with constant matrix A (where we suppose that A is primitive) we use

as measure of growth rate the dominant eigenvalue A of A | since we have that for any

ey - « . LY .
non-zero initial condition z, is lim &% = lim
i—yo0 |Znu H—yo0

varying case we might wonder whether there exists a positive number J1 such that for

" = A. Similarly, in the time

2y,

"= i and then define the asymptotic growth rate as . It is clear

allzo# 0 is lim|z,

=3
that in the general case (when there are no additional restrictions upon the sequence
A,) neither the population structure of (21) will converge nor there will be any [
verifying the condition above.

Let us consider now the case when the sequence A, converges to a (necessarily
non-negative) matrix A. Intuitively, we could think that, since for sufficiently large
time matrices A, are as close to A as desired, the asymptotic behavior of the system
might only depend on the characteristics of matrix A, being therefore independent of
1) the actual sequence A, and 2) the time p where we consider the population starting
to evolve. Moreover, we could think that (21} might asymptotically behave as the
following system

2, = Az, 22)

i.e., (21) would asymptotically behave as if the environment were constant and equal
to the equilibrium environment and so we could ignore the deviatiens from this
equilibrium. In that case, if we suppose that A is primitive with dominant eigenvatue A
and probability normed associated eigenvector v, system (21) would have, for any
non-zero population vector at time p, an asymptotic growth rate and population
structure given by A& and v respectively.

Notice that besides convergence, some restrictions on A, are easily seen to be
necessary for the above results to hold. Indeed, if sequence A, were such that at some
time mo the population vector became zero, it would remain to be zero for all
subsequent times, not being therefore independent of the sequence A,

As a matter of fact, we shall show that if sequence A, is such that, a) independently
of the initial time p and the initial condition z,, the population vector can never
become zero and b} matrix A is primitive, then all of the above conjectures are true,
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The property by which the structure of solutions of (21) tend to approach a
constant vector independently of the initial time and the (non-zero) initial condition, is
referred to as strong ergodicity. In the case of deterministic environments, this concept
has almost exclusively been used to designate the tendency towards a fixed population
structure for a constant environment, what follows as a corollary of the Perron-
Frobenius theorem (Cohen, 1979a). Seneta (1981) extended the concept of strong
ergodicity to account for the case of non necessarily constant environments, and gave
both necessary and sufficient conditions for it to hold.

The study of asymptotic growth rates in variable environments has been addressed
to by many authors in the context of stochastic environments (see for example
Tuljapurkar er ai., 1980; Cohen, 1979b among others). The case of deterministic
varying environments has been investigated by Thompson (1978) and Artzrouni
(1985) for age structured populations and not necessarily converging vital rates.

Let us introduce some concepts that will be useful to deal with strong ergodicity. A
non-negative matrix A is said to be column-allowable (row-allowable) if it has at least
a non-zero element in each one of its columns (rows). Notice that an irreducible matrix
is both row and column allowable. It is easy to verify the validity of the following
propositions:

a) A is column-allowable if and only if for all non-negative x # 0 is Ax 0.

b) forallp 20andall » 2 p is A, ... A+ A, column-allowable if and only if for all
nz0is A, column allowable.

These propositions can be interpreted in the following way. It is a necessary and
sufficient condition for the population of (21) to be always different from zero
(independently of the initial time p and the non-zero population vector z, at time p)
that all the matrices A, be column-allowable. Therefore, in the following we restrict
our attention to sequences of environmental conditions represented by column-
allowable matrices.

We are ready to introduce in the next theorem the two main results that
characterize the asymptotic behavior of (21). The first is due to Seneta (1981) and
deals with the strong ergodicity of (21), while the second, which follows as a corollary
of the first, characterizes the asymptotic growth rate of (21).

THEOREM 1. Let A, n 20 be a sequence of N X N non-negative and column-allowable
matrices that converge to a primitive matrix A with dominant eigenvalue \ and
associated probability normed eigenvector v . Then for all p 2 0 and all 7, # 0 is ||z, ||
# 0 and
a) lim Z, - An"'ApHApzp -
e [, ”A"'"AP“APZP"

An+lAn ree Ap+]Apzp|| _
Ay A A
Proof. Result a) is due to Seneta (1981, pag 96). To obtain result b} lets consider

lim = lim
el s

l |
" = lim
Ay |

A

. || n-f-l" .

5 lim = lim
) ||Zn|| ri—soe

Zy

An+]z'n T Zy i
= lim|A, . 2 =
n—yo0

. . Z,
lim A, lim —%
e T psee ||an|

Z,
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since the norm is a continuous mapping. Now, using lim A,,, = A and lim 2. =v
el w5
we have
. zn<1-l||
lim "Z " ""A"”"IH"HZ"L
n
1
for v is a probability normed vector. lim | z,|" = A follows from the classical result by
H—yoc
1
which if 4, is a sequence of positive numbers and lim P exists then lim A7 =
R—3oa H—poa
fim JasL
nes B,

Asymptotic Relationships for the Macro and Micro Models

In the remaining of this section we will study the property of strong ergodicity and
the asymptotic growth rate for the systems (4), (8) and (9) defined in the preceding
sections,

Our general assumptions for this section are:

H3. the sequence of matrices M, that characterizes the slow dynamics converges to
a certain matrix M.

H4. for each i = 1,...,g, the sequence of matrices P{») corresponding to the fast
dynamics of group i converges to a primitive matrix Pi(ee).

Due to the continuity of the eigenvalues as a function of the entries of the matrix,
the spectral radius of P{=s) is 1 for each i Moreover, taking limits in (3) when # —o

we have BTP,-(W) = e?l, i.e., the limit matrix P4=<) is also stochastic.
Since P;(=o) is primitive we have then
lim P () = P(eo) = v .7
ke —300
where v, is the right eigenvector of Pi(==) associated to eigenvalue 1 and normalized so

that ||v,[| = 1. Therefore, if we define P = diag(P (c0),Pa(o),...,P (),
P= diag(P,(=), Py (=), ...,E (o)), and V = diag(v,, v1 ,..., v,) we trivially have

lim P, =P (23)
H—yoo
lim P¥ =P (24)
k—oe
P=VU (25)
Uv=i, (26)

As a consequence of both H4 and the continuity of the eigenvalues and
eigenvectors of P{#n) we have the following Lemma.
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LEMMA 2.
a} Sequence V, converges and lim V, =V
H—yoo
b} Sequence P, converges and lim P, = P

oo
Proof. a) From theorem 1 (Appendix I) we have that the normalized eigenvectors
associated to a simple eigenvalue are continuous functions of the entries of the matrix,
and therefore, for each i = 1,2,...,g lim P,(n) = P,(e<} implies lim v,(n)=v, and
R-3o00 N—yoa

therefore is lim V, =V.b) lim P, = lim V,U= VU =P.

N—yoo R—yoo h—yoo

The above results guarantee that the sequence of matrices that represents the
aggregated system M, = UM, V, converges to matrix M = UMYV, which obviously
can be interpreted as the matrix that describes the aggregated system for the stabilized
environment.

We now introduce two hypothesis that will guarantee that the aggregated system
meets the conditions of theorem 1 and is therefore strongly ergedic.

H5. Matrix M is primitive. Let A be the (algebraically simple) dominant eigen-
value of M and let r be the probability normed right eigenvector associated to A.

H6. For all n, M, is column-allowable. Using lemma 2 we have that this condition
is equivalent to the following one: for each » and for each group j, there exists i such
that M,(n)# 0, that is, the slow dynamics allows, at every instant, the transition from
any group j to at least another group (possibly also group ;). Recall that H6 assures
population never becomes zero if it is not initially zero,

In this conditions we have as a direct application of theorem 1:

PROPOSITION 3. Let the aggregated system (9) verify hypothesis H3 to H6. Then, for
each p 2 0 and for each non-zero condition Y, at time p , we have for the aggregated
system.

Y,
lim o =
o]
Y W
il = -

In order to relate the spectral properties of matrices M and MP (which represents
the auxiliary system for the stabilized environment), we make use of the following
proposition.

PROPOSITION 4. Matrices MP and M verify:

a) det(Aly~MP) = A" det(\l,~ M), in particular, the dominant eigenvalues of
both matrices, together with their respective multiplicities, coincide.

B) If r and | are respectively right and left eigenvectors of M associated to A # 0
then MVr and U’ are respectively right and left eigenvectors of MP associated fo \.

Proof. The proof is absolutely analogous to that of proposition 1 just replacing P,
by P,Bby M, C’ by MP and C by M.
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We shall now give a necessary and sufficient condition for matrix MP to be
primitive in terms of the characteristics of the asymptotic slow dynamics.

PROPOSITION 5. Suppose H3 to H6 hold. Then:
MP is primitive if and only if M is row-allowable

Proof. We know M is primitive; let A be its (simple) dominant eigenvalue and let
r and lbe its positive right and left eigenvectors. We now apply the following theorem
(Berman ef al.,, 1979, pag 42); A non-negative square matrix A is irreducible if and
only if the spectral radius of A is simple and is associated to positive right and left
eigenvectors According to proposition 4, A is the spectra) radius of MP and besides it
is simple, strlctly dominant and has associated right and left eigenvectors given by
MVr and U’ L. Notice that given a p051t1ve vector z, Az is positive if and only if A is
row-allowable. Therefore, since V and U’ are row-allowable and r and 1 are positive,
MP is irreducible (and consequently primitive, for A is strictly dominant) if and only
if M is row allowable.

Therefore, we make an additional hypothesis that will guarantee that matrix MP is
primitive.

H7. Matrix M is row-allowable. This can be interpreted by saying that,
asymptotically, the slow dynamics verifies that, fori = 1,2,...,g and j= 1,2,..., N, there
exists at least one allowed transition towards subgroup j of group /.

Then the asymptotic behavior of the auxiliary system is given by the following
proposition.

PROPOSITION 6. Lets suppose hypothesis H3 to H7 hold. Then M, P, is column-

allowable for all n. Moreover, for each p 2 0 and for each non-zero condition X, at
time p , we have for the auxiliary system (8):

X, MvVr
lim
=[] vi]
lim [X"+l|=lim
]
Proof Matrix M,,P, has the form
M, B(m MB(n - Mlq_ ()
MP = Mzﬁ(”) Mzz?z(”) MZ(; (n)
MuR() MpB(n) - M, q(n)

H6 together with lemma 2 implies that, f_(zr each j= 1....,q and each #, there exisis i=
i(j,n) such that M,{n) = 0 and, since the P,(#) are positive matrices, then My{(m)P,(n}
has at least a positive row, and consequently M, P, is column-allowable. Proposition

4 guarantees that MP is primitive and then the result follows as a direct application of
theorem 1.
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Let us proceed to the study of the asymptotic behavior of the microsystem (4). This

system is represented, for the stabilized environment, by matrix MP* = lim M, P¥_ In
1—yo0

the first place we relate the incidence matrices of the original and perturbed systems
for all times # as well as asymptotically.

PROPOSITION 7. There exisis a positive integer ko such that for all k 2 Iy we have:

a) for all nis M,P, ~ M, P*

b) MP ~MP*

Proof. Let i be fixed. Since Pi(n) is primitive for all # and so is P(ee), we know
(Horn & Johnson, 1985, pag 520) that for all & > N,-2 - 2N, +2is P,k(n) > 0 and
P/ () > 0. Taking into account that P{(eo) and P.{(x) are positive matrices, if we
choose ko= N2 — 2Nmy + 2, Where Nme = max{N, Mg} we have that for all k= &,
,all fand all nis P,(n) ~ PX(n) and P,(s) ~ P¥(o0). Therefore, for all k= ko is P ~ P*
and P, ~ P! forall n, so is MP ~ MP* and M, B, ~ M, P¥ as we wanted to show.

Notice that this proposition, together with hypothesis H3 to H6, guarantees that for

sufficiently large &, M, P® is column-allowable and MP* is primitive (recall that the

primitivity ot non-primitivity of a non-negative matrix only depends on its incidence
matrix and not on the actual values of its non-zero entries).
We now consider matrix MP* as a perturbation of MP in the following way

MP* = MP + M(P* - P)
and make use of perturbation theory.

Let us consider the eigenvalues of P ordered by decreasing modulus (notice that
the eigenvalues of P are the union of those of the different P(e<))

1= 2y == Ay > g 22 A
and let
B> |4l @7

i.e., B is any real number greater than the modulus of the greater “subdominant”
eigenvalue of the P{e) {notice that § can always be taken smaller than 1), Then we
have

PROPOSITION 8. If | *|| is any consisient matrix norm in the space of real matrices
N XN then

||M(P”‘ -ﬁ)u = o(B*) when k— e

Progf. The proof is absolutely analogous to the first part of proposition 3 where we
showed M,(Pf~P,) = o(a" ), k —eo, replacing M, by M, P, by P and P, by P.

We are now ready to characterize the asymptotic behavior of system (4) in terms of
that of the aggregated system (9}
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PROPOSITION 9. If hypothesis H3 to H7 hold there exists ko such that for each k = fy we

have: a) forall nis M nP,f column-allowable. b) for each p 2 0 and for each non-zero
condition X, at time p, the microsystem {(4) verifies

i X, MVr

+ o(ﬁk
w=[x] v
lim"X—"HM:lim|X k= oo
]

where P is any number verifying (27).

Proof. a) From proposition 6 is M, P, column-allowable and therefore, using

proposition 7, we have that for all # and all £ greater than a certain %, is M, P
column-allowable too.

b) We know from proposmon 6 that MP is primitive. Therefore proposition 7
guarantees that for & 2 &, is MP* also primitive. We have as well (proposition 8) that A
and MVr are the spectral radius of MP and an associated right eigenvector
respectively. A reasoning similar to that of proposition 4 {based in the perturbation
theorem 1) yields that for all £ greater than a certain &, , matrix MP* has a simple and
strictly dominant elgenvalue A + o(BY associated to which we have the right
eigenvector MVr + o(B) Therefore, setting ko = max{k, ,k2} we have that for all
k = ky theorem 1 guarantees

X MVr--o(f¥)  Mvr
WWMMHWW

|| o

]

i}

+o(f"), koo

lim

as we wanted to prove.

Stabilizing Demography and Migration

We shall now illustrate the results of this section showing how they could be
applied to the case of the model proposed in section 2.3 under the hypothesis of time
variable demography and migration tending to an equilibrium. We have then that all

the fertility and survival coefficients approach a limit, i.e,, F,,:,(n) = B k=1,..N;
H—bree
I=1,.,N;i=1l..gand Si(n) = S}, k= 1., N I=1,.,N;i=1,.,q -1
h—reco

Besides, for all / = 1,...,g the migration matrices Pi{n) converge to some primitive
matrix Pi(= ) (so that H3 and H4 hold).

It is easy to check that sufficient conditions for H5 to 7 to be verified are:
a) For all times, and also in the limit, the internal survival coefficients for all

patches and for all ages are non-zero, i.e., Sj(n) # 0 and S,’f #0foralla, iand/.
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b) For all times, and also in the limit, the internal fertility coefficients for all

patches for the last age group are non-zero, i.e., S (n) # 0 and S =0 foralln, i
and /.

¢) Asymptotically there exists at least a non-zero fertility coefficient for an age i
(i-e., Fi =0 ) such that m.c.d(i,g) = 1.

The above assumptions guarantee that all the results developed in this section are
valid for our slow demography-fast migration model. Then, independently of the
initial time p = 0 where we consider our biological system starting to evolve and
independently of the non-zero initial population vector X, , the aggregated system will
asymptotically have a fixed growth rate and a fixed population structure. Let us
suppose that the asymptotic growth rate for the aggregated system is A while the
asymptotic population structure is given by vector r . Then, the original system will
also have an asymptotically stable growth rate and a population structure, that are
given by A+ o(BY) and r + oY respectively. As in the case of a eyclically varying
environment, the greater the ratio between the characteristic times of demography and
migration is, the more accurate the approximation of the asymptotic features of the
microsystem will be.

5. CONCLUSION

The method here developed allows one to aggregate a time varying complex
system with two time scales to obtain a reduced time varying aggregated system that
shows, in the cases of cyclical and stabilizing temporal variation explored, similar
asymptotic features to those of the general system. Besides, the parameters of the
aggregated system can be easily expressed as functions of the slow dynamics and of
the equilibrium proportions of individuals corresponding to the fast dynamics. In this
way, it is possible to study how changes in the fast dynamics affect the dynamics of
the aggregated system.

In future contributions we plan to extend the study of aggregation in time varying
environments to more general kinds of temporal variation. In particular, it would be
appealing to study whether the weak ergodicity of the aggregated system (tendency of
the system to forget its past, see Cohen (1979a)} translates to the general system,

In our model we have supposed the fast dynamics to be a conservative process
(migration, activity changes, etc.). It would be interesting to explore whether this can
be generalized to account for more general fast dynamics. For example, in the context
of population genetic models the gene changes are usually slow in comparison to the
demography of a population {Charlesworth, 1980}. So we might be interested in
knowing how the age structure of a population affects the genetic material of the
individuals, considering models in which the fast dynamics correspond to the
demographic process.
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APPENDIX

Proof of proposition 1. a) 1t is trivial to show that B, is a projector over the
subspace in R spanned by the columns of V, , so Im P,® ker P, = R” and
dim(Im PB)) = ¢, dim(ker B,) = N — g. Therefore, if K is a matrix whose columns
constitute an arbitrary base of ker P, then the columns of (V, | K) are a basis of R".
The expression X of operator C’ = BP, respect to this base will therefore be X =
(Vo] Ky' = BE, (Vy| K). Since UV, =1, and UK = UB,K = 0 we have that (V,| K)™

= (%J where U’ is an appropriate matrix, Therefore

Ul = U\ o= Cc o
X=| = BF(V; |K)=| — |[[BRV,|0)= —
(U’] (Vo | K) (U’]( o Ve 0) (U’BR) 0}
where we have used C = UC’V,. Since C’ and X are similar they have > the same
characteristic polynomial and we have det(Aly — C") = A" det(AI, — T) as we
wanted to prove.

b) We know Cr = Ar=# 0, i.e. UBVor =Ar # 0 so it must be BVor # 0 . Besides
C’BV,r = BE,BV;r = BV,;UBV,r = BV,Cr = ABV,r
so BVyr is right eigenvector of C” associated to A.
We alsoknow I'C =410, ie., 1" UBVo=AI %20, s0it mustbe 'U 20 . Then,
multiplying on the right by U we have I'UBV,U = M'U, i.e., Y UBP, = 1'UC’ = AFU
as we wanted to prove.

Proof of proposition 3. We first show that for all # = 0,1,... is M,,(P,f -—l_’n) =

o(c), k —eo. Let us fix » and consider a Jordan canonical decomposition of P,
Eigenvalue 1 is simple and strictly dominant for each of the P,(») and is associated to
right and left eigenvectors v{#) and e, Therefore, we have that for matrix P,
gigenvalue 1 is strictly dominant, semi-simple and has multiplicity q . Besides the
columns of V, and the rows of U are bases of its associated right and left eigenspaces
respectively. Since UV, = I, we have that a Jordan decomposition of P, with
eigenvalues ordered by decreasing modulus will have the form:

P, =(V,|V,)diag(1,, H)(%]

where V; and U’ are appropriate matrices and H corresponds to Jordan blocks

associated to eigenvalues dy(#) ,..., Ax(r) (of modulus strictly less thaner) . Therefore
taking into account that P, = V,U is

— , . U
Pi =P, +(V,|V;)diag(, H"‘)[—l—]—,J

50
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k% k
Mn(Pn Pn) = Mn(vn | V;)dlag 0,[1;,_J [E]

ot U’

and taking limits k£ —e we have M,,(P,f - l_’,,) = 0(0l"), k e, Therefore we have

C(k) =My P_y... MPf MR} =
= (MT—I_PT—] + O(Ofk )). . ‘(Mlﬁ + O(ak ))(M()T)E) + O(O,’k )) =
=M,_P,_,.. M{BM,PB, + o(c") = C" + o(c*)

as we wanted to prove.
Below we state the main result about matrix perturbation that is used in this work
(see Stewart, 1990).

THEOREM 1. Let A be a simple eigenvalue of a matrix A of dimensions N x N with
associated right and left eigenvectors, X, and x; , respectively. Let A =A + E be a
perturbation of matrix A, and | * || any consistent matrix norm in the space of matrices
N XN . Then

a) there exists a unique eigenvalue A of A such that :

. g
/1=,1+%;"—L+0(||E]|2]

b) associated to A there exist right and left eigenvectors %, and X, respectively
such that:

¢) for small enough |E|, A is the only eigenvalue of A in a certain
neighbourhood of ) (therefore, if A is strictly dominant for A, so will be A for A).

Proof of proposition 4. We know C(k) = C’ +E with E = C(k) - C’ = o(c¢") by
proposition 3. Therefore using theorem 1 we have that for sufficiently large & , C(k)
has a strictly dominant and simple eigenvalue 1 in the form

(UTI, (cth) - C’)MOVOr) ool
o

Hp=p+ ”
(U 1 M0V0r>

associated to which there are right and left eigenvectors in the form BVor + O(o(0y)
and U1 + O(o(c)) respectively. Since O(o(cty) = oo™ all we have to do for the
(UT L{Ctk)-C )M, V, r>

proposition to hold is to show that = o(c) which is immediate

(UTI,MQV,,r>
since C(k)— C’ = o(o") and the scalar product is a continuous function.



