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ABSTRACT

Two populations are subdivided into two categories of individuals (hawks and doves). Individuals
fight to have access 1o a resource which is necessary for their survival. Conflicts occur between
individuals belonging to the same population and to different populations. We investigate the long term
effects of the conflicts on the stability of the community. The model is a set of ODE’s with four
vartables corresponding to hawk and dove individuals of the two populations. Two time scales are
considered. A fast timic scalc is uscd to describe fiequent encuuntens and fghlings between individuals
trying to monopolize the resource. A slow time scale is used for the demography and the long term
cffects of encounters. We use aggregation methods in order to reduce this model into a system of two
ODE’s only for the total densities of the two populations which is found lo be a classical Lotka-
Volterra competition model. We study different cases of proportions of hawks and doves in both
populations on the global coexistence and the mutual exclusion of the two populations. Pure dove
tactics in both populations are unsiable. In cases of mixed hawk and dove in both populations, there
is coexistence. Pure dove ot miXed hawk-dove tactics in onc population can coexist with purc hawks
in the other one when the costs of fightings between hawks are large enough.

1. INTRODUCTION

An important aspect of population dynamics is the study of the effects of different
individual tactics on the stability of the community. In this work, we consider two
populations competing for a resource which is necessary for their survival, Individuals
crcounter frequently {for example several times per day} and use classical hawk and dove
lactics (0 have an gecess o the resource (Hofbauer & Sigmund, 1988; Maynard-Smith,
1982). The hawk is aggressive in all cases. The dove avoids to fight against a hawk. As a
consequence, a hawk is the winner against a dove, But when hawks meet, they [ight and
this may induce scvere injurics and possibly their death, When doves meet, they don't fight
and one of them gets access to the resource. In the classical hawk-dove game, when the cost
is larger than the gain, a mixed situation occurs with constant proportions of hawks and
doves at equilibrium.

In this contribution two populations are considered, each one being composed of hawks
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and doves. Fightings occur between individuals of the same population but also between
individuals of the two populations. The payoff matrix is a 4x4 matrix. The winner has
access to the resource which corresponds to the gain G. This gain is assumed to be the
sanie for individuals of both populations. Intra-population costs © due to hawk-hawk
conflicts are also assumed to be the same for hoth populations. But, inter-population costs
Cy, and C,; are different. For example, if €}, > C,;, hawks of population 1 can provoke
more important injuries to hawks of population 2 than the reverse.

Furthermore, two time scales are considered. As individuals must feed every day and
need to have access to the resource frequently, we assume that the game dynamics occur
at a fast time scale. A slow time scale s used for describing the demography and the long
term effects of encounters. Thus, the model is in two parts, a fast part describing intra and
inter-population game dynamics and a slow part describing the demography and the long
term effects of encounters on the growth of the populations.

This model is composed of four ODE’s governing the hawk and dove subpopulations
of the two populations. Aggregation methods are used in order to reduce the dimension of
4 system of ODE’s (sece Iwasa er al, 1987, 1989). In this article, we use aggregation
methods based on perturbation technics which allow us to get a system of ODE’s for the
total densities of populations at a slow time scale (see Auger & Roussarie, 1994). This
method takes into account the hierarchical structure of the system {Auger, 1989) and has
been used in the context of population dynamics for time discrete models (Bravo de la Parra
el al, 1995; Sanchez et al, 1995} as well as for time continuous models (Auger &
Poggiale, 1995, 1996). In this work, the aggregated model is found to be a classical Lotka-
Volterra competition modei. The aim of this article is to study the effects of different
proportions of hawk and dove individuals, at the fast equilibrium, on coexistence or
exclusion of the populations in the long term. To start with, let us present the general
model.

2. THE GENERAL MODEL

We consider a community of two populations each of them being struciured into two
subpopulations corresponding, respectively, to individuals using bawk (H) and dove (D)
tactics. It is assumed that individuals compete for a resource. Competitive interactions exist
between individuals of the same population (intraspecific competition) and between
individuals of the two populations (imerspecific competition). At each particular encounter,
the gain of the game corresponds to the access to the resource. Individuais frequently
change tacties from one encounter to the next. Thus, according to different encounters, the
same individual can use hawk or dove tactics. The general model is composed of two parts,
the {ast part which describes the change of sirategy and the slow part which describes the
long-term effects of the conflicts on the growth of the sub-populations.

2.1 Fast part: game dynamics

As the winner of a game has an access to a unique resource, we assume that the gain
(5 is identical for ail individuals of both populations. The fast part of the model describes
the game dynamics and corresponds to a classical H-D> game matrix A :
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We also assume that the costs C due to injuries of hawks conflicts are identical within
both populations. Asymmetry comes from different costs incurred when a hawk encounters
another hawk of the other population. Let Cy, (resp. C,q} be the cost when a hawk of

population 1 (resp. 2) fights against a hawk of population 2 (resp. 1), Let ntf and nf be

respectively the hawk and dove sub-populations of population a, o = 1,2. n,, is the total

population «, i.e, n, = n: + nf. Let le and xlD (resp. sz and xz‘D ) be the proportions

of hawks and doves in the total population 1 (resp. Z):

o e e D
le = ..__1_.., x;’ = .ﬁ_, xlD = _l, xZD = (2)
nl nz nl ﬂz
The next set of differential equations describes the change of the H and D proportions:
H
dx T T
1 H H D H_ D H D H D H_ D 3
— © ((l,O,O,O)A(xl ) ) - (11 1 ,O,O)A(xl IS ) ) (3a)
dx” T Ty (3b
D H D H D H D H D H D
—-‘-i-;— = X, ((O,I,0,0)A (xl Ky Xa sV } - (xl »X1 ,O:O)A(xl »X1 Py Ko )a ( )
dx)! T N G
H H D_H H D H D H D
Ti = Xy ((0,0,I,O)A(xl X1 Xo sy ) - (O:OJQ oo )A(xl X1 WXy WXo ) )r ( C)
&’  p H D_H_D\T W\, H_D_H_DT| (3d)
2
T X3 ((0,0,0,I)A(x] A1 Ay Xy ) - (0,0,r, Xy )A(xw Hy Xy Xy ) ) (

Each individual changes tactics at a fast time-scale and thus compares the different
tactics in its life. System (3) describes the dynamics of the proportions of individuals using
the different strategies. These equations are the classical replicator equations (Hofbauer &

Sigmund, 1991). The proportions of individuals of population 1 playing H, i.e.le,
increases when the payoff of an individual always using strategy H is higher than the

average payoff of an individual playing H in the proportion le and D in the



324

. b
proportion x; .

I

H D u
One must note that x; +x, = 1 and x, +x; = 1. Consequently, system (3) reduces

to two equations (4):

.adf. = 2 (1-x)(26-Cx=C,y),

] 2 (4)
dy _y

G = Y (1-y)(26 -Cy-C,yx),

= 2( X y = Cpyx)

. . H H
im which x = x; and y = Xy .

2.2 Slow part: growth of the sub-populations

For each sub-population (7 and D) of any population, the slow part is composed of two
terms, a lincar growth term and ncgative quadratic terms taking into account long term
negative effects of encounters, The growth of each sub-population is thus described as
follows:

H
dn; T W D H O H HH (10 H D (5-a)
= =M - KAy R Ry gy Kty By - Ryy By Ry,
dt 2
dnn ( )
1 r Dif D H D DD DH D H D DD 5-b
= onyp =k o ng = kgnag =k gyt - ke,
dt 2
ant!
- r H H H HD H D H H H HD H D 5
= ony = kyny g = kg g =k n, = kg g ny <)
dt 2
dnP
y _F o, DoH 00D oH D oD O D (5-d)
T_Enz_ s My =k T = kg iy - kyyny ny .

r is the growth rate of both populations. The quadratic terms take into account the
negative effects of encounters between individuals in the same population and between
different populations.

It is also assumed that the k-parameters arc proportional to the ditference between the
gain & and the coefficient of the game mairix associated to this particular event. For
example, ng corresponds to the encounter of a hawk of population 1 with a dove of
population 2 and consequently, kféD = 8(G -a,,) where a,, is an entry of the payofl matrix
A and 0 is the proportivuality constant. By this assumption, when the playcr wins &, the
k value is equal to zerq, it has unrestricted access to the resource and this particular
encounier has no negative effects on its growth, Substitution of the payoff matric
cocfficicnts into the previous cxpressions leads to:

H 1 G+C H G+Cyy " G+Cyy (6-a)
k11’22=6( )’ kjy = 0| —0=—|s k21=5——-~2
DH DH DH DH _
ki =k =k =k = 0(G), (6-0)



325

D D D D G )
kiy =kpy=kp=k;=290 (-2-), (6-c)
HD HD HD HD -
kip = ky =k =k =0, (6-d)

2.3 The complete model

The complete model is obtained by adding the fast part (eq.(4)) and the slow part
{eq.5)). Two essential features to be taken into account are:

1) The fact that the game dynamics is fast is modelled by multiplying the rates by a
farge number,

2} Each of the subpopulations 1 and 2 is constant through time, that is fo say,
n, = constant and n, = constant. With these remarks in mind, straightforward computations
lead Lo the following systemn of equations:

H
dn
P :ni(’_;.(l—x)(ZG—Cx—Cuy)]qfeénl—sn]H(kﬁnf{+ngnlD+kgn2H+ngn2D,
' ,
(7-4)
dn?
€ ! =1y ﬁ(l—x)(EG—Cx—Cny) +ein}—enF(kﬁ”nIH+klﬁl)nf+}'clanzHmklgnD),
dr 2 2
(7-b)
dnH D
2 . - L Hi{, H H HD H H HD D
— =n2(%(1 -—y){?.G-—(_y—(,21x))+a_2..n2—snz (kﬂnl +hy n Hkpny vk, ny ),
(7-¢)
dn?
£ d2 =—n2(%(1 —y)(2G—Cy-CZIx))+E%nz—snf(kﬁ”niﬁkZ?n1D+kngn2H+k£nD),
. :

(7-d)

3. DERIVATION OF THE AGGREGATED MODELS

3.1 Asymptotic properties of the fast dynamics
The fast system is governed by the two ordinary differential equations (4). Our variables
x and y vary in the interval [0,1]. Thus, the domain of study is a square [0,1]x[0,1]. The
2(:-021)
C *

steady states are the points (0,0), (0,1), (1,0), (1,1), (fg,O), (o,%), (1,

(EG-CM 1 2WH(C-C ) 2G(C-C,))
¢ C2—C12C21 Cz‘clzczi

parameters valuks).

- Lr*,)ﬁ) inside the domain (according to
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3.2 Aggregated competition models

Let (%¥) be the equilibrium point of the fast dynamics {(4). The general form of the
aggregated model is as follows, see appendix I:

dn,
— = ra(l-an -a,m,),
! (8)
e )
— = Py (l—Can, -ty 2y},
n 2 22—y My

and we have the following expressions:

a, = _2‘:’_(C(})2 + Gl o, = 2{CHP + G),
r 2r
a,, = % (Ca(B) - GE+GFG), (9)

W} -
Uy, = E?(Cgl(x_y)+6x-Gy+G),

Now, we proceed to the following change of variables:

b
U = E(C(})2+G)n1,

5 (10
by = _(C®2+G)n2,
2r
which allows to rewrite system (8) in the normalized form (11):
du,
el ruy(1-uy-agup),
y ()
dut, R )
= = ruy(1-ty—-ay ),
a: 2 2772171
in which the competition coefficients are as follows:
. Cy,(xy)-GX+Gy+G
12 — 4
c+G
o (12)

Cy () +Gx~Gy+G
(& @2 + & '
The aggregated model is a classical Lotka-Volierra model. Censequently, (0,0), (1,0,

(0,1} and (u;, w3} are equilibrium points. The last point is defined by the following
cquations:

3 =

l=-a l-a
Wi % e (13)
1-ay,a; 1-ay,ay
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4, COEXISTENCE OR EXCLUSION IN RELATIONSHIP
TO AGGRESSIVENESS

First of all, the equilibrium point (0,0) of system (4) is never stable. This means that
two populations using pure dove tactics cannot occur. Part of the individuals of at last one
of the two populaticas must use the hawk strategy.

4.1 The case where no population is pure hawk

x=0,x~1,y=0and y =1 are nullclines. Consequently, the square [0,1]%]0.1] 1s
positively invariant and the w-limit set is an equilibrium point of this domain because the
system is competitive, for proof see page 158, (Hotbauer & Sigmund, 1991). One can
distinguish the following four cases:

a) When (x*,y*) is globally asymptotically stable, ga.s. (i.e. for any initial condition

in ]0,1[=]0,1[, the trojectory tends to (x *,y")), then the two populations always coexist (see
appendix II).

b} When (% ,0) and (O,Eg) beleng to the square ]0,1[x]0,1{, three cases can occur:

- Cp < € < Cyy and 2G<C: (2_(?,0) is g.a.s.

- Cy <« C =, and 2G<L (ﬂ,_zg,) iR gas.

- Cpy > Cand Cypy > C and 2G<C: (2(_6"’0) and (0,2_CG,) are both asymptotically
stable. A separairix divides the domain into two parts corresponding to two basins of

attraction. A calculation, given in appendix 1], shows that for the three different cases, we
have the following result:

O<ap<l, O<ay <, (14)

This mcans that the point (H:,H;) is globally asymptotically stable. The two populations
coexist in any case. In summary of this subsection, when none of the two populations is
pure hawk, they always coexist.

4.2 The case where one population is pure hawk

When (0,1 is g.4.8., the equation of population 2 in the aggregated sysiem reduces to
a logistic cquation because a,, = 0. Thus, its density tends to its carrying capacity. For
population 1, two cascs can occur, see appendix IL:

- Either C>( ; then, there exists a point (uf,u;) which is globally asymptatically stable.
Both populations coexist, Fig. 1.

- Or, C<(G ; population 1 gets extinct and population 2 goes to its catrying capacity,
Fig. 2.
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Fig.l: G =3/2,C=2,C, =1, Cy = 4. a) The fast system tends to the fixed point (1,0) which
corresponds to individuals using the hawk strategy in population 1 and the dove one in
population 2. b) Runge-Kutia simuation of the full system (7). At each time, hawk and dove
subpopulations are added to obtain the total densities. This figure shows that the two
populations cocxist.

The point (1,0) exhibits similar results.

26-C
Tn) or (

2G-C),

- When one of the equilibrium points (1, ,) is stable, according

to parameters values, the populations can either coexist or mutually exclude. We do not
make explicit these domains of the parameters.
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Fig.2, G =3/2,C=12,Cp=1,Cy =4 a)Similarly to the case of figure 1, the fast system tends
1o the fixed poimt {1,0). Population 1 is hawk and population 2 dove. b) Runge-Kutta
simulation of the full system (7). Contrary to the case of figure 1, the dove population gets
extinct.

In summary of this subsection, when one of the twe populations is pure hawk, we may
have cither coexistence or extinction of the population with hawks and doves.
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4.3 The case of all aggressive individuals

When the point (1,1) is ga.s. for system (4), i.e. when all the individuals of both
populations at the fast equilibrium are hawks, one can calculate the competition coefficients
from equations {12} of the aggregated Lotka-Volterra model as follows:

a, = Ct8 o, L Curd (15)
N Y A N o'

Consequently, in the case of all individuals beinp aggressive, four cases ocour:

a) Cp5 < Cand Cy; < C; then, 0 < @y, < 1, and 0 < ay; < 1; there is coexistence.

by Ci, » C and C,; > C; then ayy > 1, and ay; > 1; there is exclusion. There is a
separatrix. According to initial conditions, either 1 or 2 wins.

€) Cig « Cund Ty > C; then 0 < uyp < 1, and a 51 » 1; there is cxclusion, 1 wins.

d) Cj5 > Cand C,) < C; then ay, > 1, and 0< a5 < 1; thete is exclusion, 2 wins.

The conciusion of this subsection is that when all individuals are aggressive, they can
coexist only When the costs of the interpopulation conflicts between hawks are lower than
the costs within the same population. In order to coexist, interpopulation injuries must be
weaker than intra-population ones. This effect minimizes the costs globally and leads to
coexistence.

5. CONCLUSION

This work shown the following resulis:

- Two pure dove populations cannot occur.

- Two populations with both doves and hawks always coexist,

- Mutual exclusion only occurs when at least one of the two populations is pure hawk.

- In the case of mutual exclusion, the surviving population is always a pure hawk one.

In view of these conclusions, the hawk strategy has an advantage with respect to the
dove one because a pure hawk population cannot get extinct when it encounters a mxed
hawk population. However, the study of the case of alt aggressive individuals shows that
when two pure hawk populations encounter, one of them can get extinct. Thus, one can
understand that all populations are not pure hawks and that pure dove and mixed
populations can also maintain,

In this article, we have limited our study to particular situations, i.e. when all the gains
are equal and when the intra-population costs are equal for the two populations. In the near
future, we intend to continue this study and to obtain the solutions in more general cases.
The method that we have presented in this article can also be extended to more than two
tactics, to more than two populations and to density-dependent game dynamics.

APPENDIX I: DERIVATION OF THE AGGREGATED MODEL

We start with model (7).
The fast part is conservative, ie. n, = nt' + o2, o = 1,2 are constant of motion for
the game dynamics. Adding equations (7-a) and (7-b) together on the one hand; and (7-c)
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and (7-d) on the other hand, leads to two equations for the total densities 7| and ny:

dn
1 Hi,H H ,HD D ,H H ,HD D
- =t (ku"l —kyy ny —kppny —kyp "2)

D({,pH H ,D. D ,DH_H ,D_D
+ny (kn ny —kyyn ~kyg oy =kppn, ):
dn
> Hi,H H ,HD D ,H H ,HD D
S T {’%1”1 —&y my kpen kg ”2)

D{,DH H D D ,DH ¥ ,D D
1y (kn ny —kyny ~ky omy —kpm )

Then, we assume the existence of a g.a.s. fast equilibrium (%,%). To get the aggregated
model, we must replace the hawk and dove subpopulations in terms of this fast equilibriom
as follows:

H - D H - D
ny o=Xn, ap = {l-Dn, n, =ym, ny = (15,

. dn, dn
Then substitution of these expressions into the previous equations ..‘.i_l,_gz with
t t
relations (6) leads to the aggregated slow model (8) governing the total densities of the

populations:

dn;

—_—= "”1(1"‘11"1"0‘12"2)’

dt (8)
L2 1 )

= = rn(1-0,mn, -0, N, ),

ar 2 22 2171

where we have the following expressions (9) of the main text:

- O e, e D leras
o = (CF?6), ay = Z[cGY),
5 — I
Ayy = = (Cpl(F)-CF+ Gy+), (%)

b — —
oy, = E’.’.(Czl()cy)-er—qu—G).

APPENDIX II: CALCULATION OF THE COMPETITION
COEFFICIENTS OF THE AGGREGATED MODEL

The competition coefficients are given in equations {12},
As both £y are less than 1 (they are proportions), it is obvious that a5 and a;; > 0.

2G(C-Cyy) 2G(C-Cyy) )
p) ) :
c 'C12C21 C “612621

1.1 Equilibrimm point (x‘,y')=

(x*,y‘) is globally asymptatically stable when C|, < C and C,; < C. Let us define C1,
=C - aand Cyy = C ~ o + o, i.e. we firstly assume that C,; < C 5. To checkif aj; < 1,
we study the sign of 1 ~ a,,, which can be calculated as a function fler,m) as follows:
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flu,w) = (C + u,)u)? - 3d’w + 24,

Assuming a constant value of «, this is a second degree polynomial with respect to w.
The discriminant can be calculated and 18 A = a{a~-8C), which is ncgative, Conscquently,
1 - a,, is strictly positive. A similar result holds for a,, i.e, a5; < 1. Thus, the aggregated
competition model assoctated to this fast equilibrium point corresponds to a case of
coexistence.

112 Equilibrium points (%,0) and (0,%) :

when C,<C<C,,, (_,()) is g.a.s. When C < C<Cy (O )ngdS and when

Cyp > Cand Gy > C, eﬁher [ Lo _.0 or (0. ) are ds,ymptolrcal]y stable. A separafrix

—

divides the domain into two parts corrcspondmg to two basins of attraction.

Let us consider initial conditions inside the basin of attraction of (___C___ 0). To obtain the

2G

competition paramecters of the aggregated model, fet us substitute (Z-.,0) for (x,y) in
equation {12}. An easy calculation leads to the following expressions:

2G _ 2Ga+C
fp = 1 B =

As we must have that _ZCE < 1, it is obvious that 0 < @, and ay; < 1, which

corresponds to coexistence in Lotka-Volterra competition models. Consequently, for this fast
equilibrium, the two populations globally coexist. The equilibrium populations (%, f,) are
given by:
- 2y C
= Ay = s
{G+C)

This equilibrium is [ower than the equilibrium of each population alone. This is a
general result of competition models. This is obvious because costs of fightings between
individuals of the two populations have negative effects on the growth of each population,

The case of the point (O,E(ci) is identical o the previous one,

I1.3 Equilibrium points (x*,y*} = (0,1) and (1,0):

Let us consider the fast equilibrium (0,1}. To obtain the competition parameters of the
aggregated model, let us substitute (0,1} for (%) in equation {12). A simple calculation
leads to the following expressions:

2G

Ay, = ., a, =0
12 G 2t

2

As a consequence, population 2 follows a logistic growth equation and tends to its
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carrying capacity. For population 1, two cases can ocour:
-C > G :ay; < 1 and population 1 coexist.
-~ C <G :ay;> 1 and population 1 gets extinct.
A similar result holds for the fast equilibrium point (1,0).
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