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ABSTRACT
The aim of this work is to extend approximate aggregation methods for multi-time scale
systems of ordinary differential equations to time discrete models. We give general
methods in order to reduce a large scale time discrete model into an aggregated model
for a few number of slow macro-variables. We study the case of linear systems. We
demonstrate that the elements defining the asymptotic behaviours of the initial and
aggregate models are similar to first order. We apply this method to the case of an age-
structured population with sub-populations in each age classes associated to different
spacial patches or different individual activities. A fast time scale is assumed for patch
or activity dynamics with respect to aging and reproduction processes. Our method
allows us to aggregate the system into a classical Leslie model in which the fecundity
and aging parameters of the aggregated model are expressed in terms of the equilibrium
proportions of individuals in the different activities or patches.

Keywords: Discrete aggregation methods, time scales, hierarchical organization, Leslie
matrix.

Aggregation methods allow us to simplify a system involving a large number of
coupled variables. Perfect aggregation corresponds to the reduction of a large scale
system of ordinary differential equations into an aggregated system involving a few
number of macro-variables. Methods of perfect aggregation have been recently
applied in the context of population dynamics [71. In most cases, it is impossible
to realize perfect aggregation. Indeed, in order to aggregate perfectly a differential
system, it is needed that the parameters of the initial large scale system satisfy very
particular conditions. As a consequence, perfect aggregation remains unsuccessful
in most cases to which we would like to use it.



For this reason, approximate aggregation methods can be performed. In partic-
ular, it is possible to take advantage of the existence of different time scales in the
system to realize an approximate aggregation. Perturbation methods are used and
allow to aggregate the initial large scale system into an aggregated system governing
slow-varying macro-variables [1].

These approximate aggregation methods have been applied in the context of
population dynamics [2]. For example, one can aggregate competition or prey-
predator models with many sub-populations associated to different spacial patches
into a reduced system of two differential equations. This is possible when the patch
dynamics is assumed to be fast with respect to the growth and the interspecific
interactions.

The aim of this work is to extend approximate aggregation methods to time
discrete models. In the first part, we give general results about approximate ag-
gregation methods for discrete models in which different time scales are involved.
We show that when the fast system has reached an equilibrium, the large scale
system can be aggregated into a reduced system. We consider a linear model whose
dynamics is governed by the strictly dominant eigenvalue and its associated eigen-
vector. In this contribution, we show that the dominant eigenvalues of the initial
and aggregated systems are the same to the first order. It is also shown that the
eigenvectors are the same to the zero order. In the second part, we give an example
of an age structured population with activity dynamics. We assume a fast time
scale at the individual level and a slow time scale at the population level. The
aggregated system is a classical Leslie matrix model in which the fecundity and
aging rates are expressed in terms of the equilibrium proportions of individuals in
the different activities.

2. Variables Aggregation in a Discrete Linear Model

Wesuppose that weare dealing with a hierarchically organized system in the context
of natural processes whose dynamics could be described in a linear and discrete way.
The model consists of the next system of linear difference equations depending on
the little parameter f, that we call perturbed system

stands for the number of individuals in the subgroups from 1 to Ni of the group
j of the population at time n. The dynamics associated with these subgroups is



being considered the fast dynamics of the system. These subgroups could represent
different activities in each age class or else to different spatial patches.

Every matrix Ajk(€) has dimensions Nj x Nk, and we will suppose holomorphic
dependence on €.

Hypothesis (HI). The matrix A(O) associated with the unperturbed system
(€ = 0) satisfies the following conditions: Ajk(O) = 0 whenever j =I k, and Ajj(O) is
a regular stochastic matrix, that we will denote by Pj,

j = 1,... ,p.
To describe the asymptotic properties of regular stochastic matrices (see [6]),

we use the following notation:

being Vj the positive eigenvector of the eigenvalue 1 of matrix Pj that verifies
(Vj, Ij) = 1, where Ij = (1, ... , I)T, (1 x Nj), and (*, *) is the usual scalar product.

The matrix that determines the asymptotic behaviour of Pj is

Pj= lim P/=vjIJ = (vjl···lvj), j=I, ... ,p.
k-oo

This hypothesis (HI) reflects the modelization of a hierarchically organized
system, because it answers the following properties:

(a) The unperturbed system represents the internal dynamics of every group j =
1, ... ,p, i.e., the fast dynamics.

(b) The internal dynamics is conservative, that is, in absence of external interac-
tions, the total number of individuals in every group remains constant.

(c) The internal dynamics has an asymptotically stable equilibrium distribution,
represented in the group j by the vector Vj, j = 1, ... ,p.

We define now the new variables that we will call aggregated or global variables:

N;

xnj = Lxnjk, j = 1, ... ,p.
k=l

In order to obtain the linear system that will be satisfied by these new variables, we
define the next matrices, whose properties are summarized in the following Lemma
without proof:

(a) PA(O) = A(O)P = P = PP
(b) A(O)Pc = PPc = Pc



(c) UP=Uj UPc=Ipj PcU=P.

By multiplying both members of system (2.1) by matrix U,

we get the aggregated variables in the left member but we fail to obtain an au-
tonomous system. To avoid this difficulty we consider the following system of order
p:

where we are implicitly supposing that internal dynamics in every group has reached
its equilibrium distribution, determined by matrix P.

This new system is autonomous. Since P = PcU, we have

where B(e) = UA(e)Pc. Matrices B(e) depend holomorphically on e and B(O) = Ip.
The main object of this work is to get a comparison of the asymptotic behaviours

of both systems, the general system (2.1) and the aggregated system (2.2). To reach
this, it is enough to compare the dominant elements, eigenvalues and eigenvectors,
of matrices A(e) and B(e).

We will use in our task the general theory of analytical perturbation of matrices.
We summarize the main results that we will use in the Appendix, following [8] and
[3].

Lemma 2. Let A(O) be the unperturbed matrix of the general system (2.1). Then
we have

(a) The strictly dominant eigenvalue of A(O) is 1 and its algebraic multiplicity is p.
(b) 1 is a semisimple eigenvalue of A(O), and a base of its eigenspace is

(c) The eigenprojection matrix of the eigenvalue 1 is P.

In the aggregated system B(O) = Ip, and to compare the dominant elements of
A(e) and B(e), we should compare the I-groups of both. For this, we need to know
the structure of the eigenvalues and eigenvectors of matrices P A' (O)P and B' (0)
(see the Appendix).

Lemma 3. Let P(RN) be the eigenspace associated to the eigenvalue 1 of the
matrix A(O) and A the restriction ofthe operator PA'(O)P to this subspace. Then



(a) det (A - u) = det (B'(O) - U).
(b) If v E P(RN) is an eigenvector associated to the eigenvalue A, then Uv is an

eigenvector of B'(O) associated to same eigenvalue A.
(c) If wE RP is an eigenvector of B'(O) associated to the eigenvalue A, then Pew

is an eigenvector of PA'(O)P associated to the same eigenvalue A.

Let us notice that it is verified the next direct sum decomposition

and that both spaces are invariant under the operator P A' (O)P; moreover, this
operator vanishes identically on the subspace (I - p)(RN). All that means that
the characteristic polynomial of PA'(O)P verifies

where AI, ... , Ar are the eigenvalues of B' (0) with multiplicities ml, ... ,mr•

As B(O) = Ip, the I-group of B(f) is formed by all its eigenvalues. We could
now state in the following theorem the main result we were looking for, and whose
proof is a direct consequence of what we have just noticed.

Theorem 1. Let A(f) be the matrix of the general system (2.1) and let A(f)
represent the eigenvalues of the I-group. Let B(f) be the matrix of the aggregated
system (2.2) and let p,(f) represent its eigenvalues. There exists 6 > 0 such that if
0< lfl < 6, then the eigenvalues A(f) and p,(f) are classified in the (1 + fAs)-groups,
s = 1, ... , r, verifying

(a) A(f) belongs to the (1 + fAs)-group if and only if

A(f) = 1 + fAs + O(fl+(l/p.»), (f -+ 0)

where Ps is an integer that satisfies 1 :::;Ps :::;ms.
(b) p,(f) belongs to the (1 + fAs)-group if and only if

p,(f) = 1 + fAs + O(fl+(l/q.»), (f -+ 0)

where qs is a integer that satisfies 1 :::;qs :::;ms. The dimension of the (1 +fAs)-
group is ms in both cases.

(c) Ifv(f) is an eigenvector of A(f) associated to the eigenvalue A(f) ofthe (I+fAs)-
group, continuous at f = 0 and such that v(O) "10, then

(d) Ifw(f) is an eigenvector of B(f) associated to the eigenvalue p,(f) ofthe (I+fAs)-
group continuous at f = 0 and such that w(O) "10, then



Finally we make an additional hypothesis in order to get the systems (2.1) and
(2.2) having an asymptotic behaviour governed by a strictly dominant eigenvalue.

Hypothesis (H2). Matrix PA'(O)P has a simple nonzero eigenvalue J-t whose real
part is strictly greater than the real parts of the rest of the eigenvalues.

Let ti = (VI, ... ,VN)T be an eigenvector of PA'(O)P associated to J-t.

Theorem 2. If € ~ 0, I€I < 6, then matrix A(€) has a simple eigenvalue Amax(€)
modulus strictly dominant that admits the following expansion

Hm f(€) = O.
_-0+

Associated to this eigenvalue there exists a unique eigenvector of A( €) that could
be written in the following way

Moreover, B(€) has a simple eigenvalue J-tmax(€) modulus strictly dominant that
admits the following expansion

Hm g(€) = 0__ 0+

y(€) = Uti + O(€), (€ - 0).

So, the asymptotic behaviour of system (2.1) is

. Xn(€) (- ()) ( )hm (1 f( ))n = Co V + 0 € , € - 0n-+oo + €J-t + € €

and, therefore, the aggregated variables behave as follows

. UXn(€) (- ()) ( )hm ( f( ))n = Co Uv + 0 € , € - 0 .n-+oo 1+ €J-t + € €

Being that the asymptotic behaviour of the aggregated system (2.2) is

. Yn(€) _
hm ( ())n = Co (Uv+ O(€)), (€-O)

n-+oo 1 + €J-t + €9 €

we have the similarity of behaviours we were looking for.

3. Generalized Leslie Models with Individual Activities

We are going to apply the above general results to the particular case of an age-
structured population where we will distinguish several activities in every age class.
We will use the following notation:

xnji = number of individuals of age class j in activity i at time n.
p

1 :5 i :5 Nj, 1:5 j :5P, LNj = N, n = 0,1, ...
j=1



N;

X j - "'x jin -L...i n .
i=1

We suppose that the changes of activity in age class j are represented by a regular
stochastic matrix Pj (Nj x Nj), and we keep the notation of the previous section.

The transference coefficients are divided in two classes as in the classical Leslie
model:
Fertility coefficients

Fklj = transference coefficient from age class j and activity 1
to age class 1 and activity k.

k=1, ... ,N1j l=l, ... ,Nj; l~j~pj

Sklj = transference coefficient from age class j and activity 1

to age class j + 1 and activity k.

k=l, ... ,Nj+1; l=l, ... ,Njj l~j~p-l.

These coefficients verify
Fklj ~ 0 and there is some nonzero fertility coefficient of the last age class.

. N;+l .
Ski] ~ 0 for every j not all vanishing, and Ek=1 Ski] ~ 1.
We define submatrices

F1 F2 ••• Fp-1 Fp

S1 0 0 0
L = 0 S2 0 0

In our model we must reflect the two different time scales, those associated to P and
L, respectively. For that, we chose as unit time the projection interval corresponding
to P and approximate (generally, it is not possible to do that exactly) the effect of
L over that time interval, which is much shorter than its own projection interval,
by the following matrix



If L has a dominant eigenvalue Awith an associated eigenvector V, then L(f) has
fA + (1 - f) as strictly dominant eigenvalue and v is also its associated eigenvector.

We could yield then, that dynamics associated to Land L( f) have the same
asymptotically stable distribution, but L has a much greater growth rate than L(f)
because fA + (1 - f) is much closer to 1 than A.

Finally we propose the next generalized Leslie model with individual activities,

where P = diag (PI, ... , Pp).

Following the general construction of the previous section, we associate to this
system the next aggregated one

It is direct to prove that L = ULP c is a classical Leslie matrix of order p whose
coefficients are

Ii = IITFiVj, (j = 1, ,p) (fertility coefficients)

8j = 1j+1T SiVj, (j = 1, ,p - 1) (survival coefficients)

and it is in this way that the aggregated system takes account of individual activities
in every age class.

L is an irreducible matrix because fp ::j:. 0, and so, if we denote by X and v its
dominant eigenvalue and eigenvector of positive components, we have that

and so the similarity of behaviour between the aggregated system and the aggre-
gated variables of the general system is clear.

4. Conclusion

In further work, we intend to describe the individual behaviour by use of the game
theory ([4, 5)). For example, one could consider subpopulations corresponding to
different strategies. The fast system would describe the game dynamics at the
individual level. The slow system would describe the demography of the population.



In this work, the fast dynamics was linear. Interesting situations occur when
the fast system is nonlinear. We shall investigate these nonlinear cases in our future
contributions.

Appendix. General Results of the Theory of Analytical Perturbation
of Matrices

Let X be a complex linear space of finite dimension N and let T(€) be a linear
operator defined on X, that admits the following expansion

Let Ao be an eigenvalue of To (unperturbed operator) and Po its associated eigen-
projection with dim (Po) = n ~ N. The dependence of the eigenvalues A(€) of T(€)
on € is continuous and it is called Ao-group the subset of eigenvalues of T(€) that
verify A(€) -+ Ao when € -+ O.

The spectrum of operator Tl = POTlPO allows us to make a partition of the Ao-
group. Without loss of generality, we could suppose that all the eigenvalues of Tl on
PoX are different from zero and as this operator vanishes identically on (I - Po)X,
we could write

with ILi =j:. ILj if i =j:. i, ILj =j:. 0, i = 1, ... , r, ml + ... + mr = n.
The Ao-group admits a partition in r subgroups corresponding to the r different

eigenvalues ILl,... , ILr, called (Ao + €ILj)-groups, i = 1, ... , r.

Theorem 3. Let T(€) be a holomorphic perturbation of T(O) = To and let Ao be
a semisimple unperturbed eigenvalue, it exists 6 > 0 such that if I€I< 6 and A(€)
is a perturbed eigenvalue of the Ao-group of T(€), we have that A(€) belongs to the
(Ao + €ILj )-group if and only if

A(€) = Ao + €ILj + O(€l+(l/P))

where p is an integer verifying 1 ~ p ~ mj.
Also, if x(€) is a perturbed eigenvector associated to the eigenvalue A(€) of the

(Ao + €ILj )-group, continuous at € = 0 and with x(O) = Xo =j:. 0, then it is verified
that

TlXo = ILjXo .

It is simple to prove the following result about dominant eigenvalues.

Lemma 4. Let Ao be a semisimple unperturbed eigenvalue of To and modulus
strictly dominant. Suppose that ILl is the eigenvalue of Tl with the largest real
part. Then the eigenvalues of the (A + €ILd-group are modulus strictly dominant
for T(€) when € ~ 0, € -+ O.



In particular, if J.Ll is simple, the eigenvalue of T(e) that admits the following
expansion
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