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Aggregation of variables allows to approximate a large scale dynamical system (the micro-system)
involving many variables into a reduced system (the macro-system) described by a few number of
global variables. Approximate aggregation can be performed when different time scales are involved
in the dynamics of the micro-system. Perturbation methods enable to approximate the large
micro-system by a macro-system going on at a slow time scale. Aggregation has been performed for
systems of ordinary differential equations in which time is a continuous variable. In this contribution,
we extend aggregation methods to time-discrete models of population dynamics. Time discrete
micro-models with two time scales are presented. We use perturbation methods to obtain a slow
macro-model. The asymptotic behaviours of the micro and macro-systems are characterized by the
main eigenvalues and the associated eigenvectors. We compare the asymptotic behaviours of both
systems which are shown to be similar to a certain order.

KEYWORDS Approximate aggregation of variables, population dynamics, perturbations, time
scales, eigenvalues and eigenvectors analysis.

Ecological modelling deals with systems involving a large number of variables. Indeed, an
ecosystem is a set of interacting populations. Populations are composed of individuals of
different ages or in different physiological stages. Individuals do perform several activities.
For example, they search for food of different types, they take care of youngs a.s.o.
Furthermore, individuals move and can go to different sites. Thus, populations are divided
into various sub-populations corresponding to ages, stages, individual states or activities,
phenotypes, genotypes, spatial patches etc. When modelling ecological systems, we are
faced to a complexity of structures of populations.

A first solution is to build a mathematical model describing the real system in details.
This leads to a family of models involving a very large number of variables. The
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complexity of the system is included in the model. Few mathematical techniques are
available for these models which are difficult to handle. Mostly, one must use computer
simulations. Robustness of the solutions with respect to parameters and initial conditions
is in general unknown. If one wants to take into account all aspects in the same model, this
leads to a complex model involving a too large number of coupled variables.

On the contrary, many models of ecological communities only deal with a few number
of variables. This means that the structure of the populations is often ignored. The
populations are considered as entities and are described by a single variable, for example
the total population or density. This simplification implies that the effect of the internal
structure of the population is neglected. It is an assumption corresponding to an
approximation of the total system by a reduced system which has to be checked. However,
in most cases, simplified models are used and few arguments are given to justify these
models.

Our approach is halfway between these two approaches. We intend to take into account
the existence of different time scales to proceed to approximations which allow to substitute
to a large scale system a reduced model. Thus, we start with a large scale model but, we
use methods to reduce it into a simple aggregated version. Perturbation and averaging
methods allow to perform these approximations in a rigorous way and lead to a
simplification of the initial system into a reduced system which is described by few global
variables at a slow time scale. Moreover, these approximations not only provide a simple
version but also, interaction terms between the fast and slow dynamics which have
important ecological significances.

The simplified model is an approximation of the initial system and is obtained by an
approximate aggregation of variables. In previous contributions (Auger, 1989; Auger &
Benoit, 1993; Auger & Roussarie, 1994), we realized aggregations of systems of ordinary
differential equations with different time scales. In these models, time was a continuous real
variable. The aim of this work is to perform approximate aggregation in time discrete
models. A first contribution can be found in Bravo et aL (to appear) in which we described
the growth of an age and patch structured population.

Time discrete models are widely used in population dynamics and many ecological
models involve a discrete time. For example, the Leslie model describes an age structured
population at discrete times (Caswell, 1989; Logofet, 1993). The Nicholson-Bailey model
describes the dynamics of a host-parasitoid system of insect populations (Edelstein-Keshet,
1988). Time discrete models are particulary well adapted for the study of the life cycle of
different populations. When the reproduction occurs periodically each year, time discrete
models can provide the density of the populations at consecutive generations.

Most of the usual time discrete models describe the dynamics of the total density of
population. However, individuals migrate and go to different patches, they also perform
different types of activity (such as search of parasites or preys, attack, etc.) at a fast time
scale in comparison to age or stage changes or else to the overall growth of the populations
to which they belong. In order to take into account the patch dynamics and the individual
behaviour, it is necessary to subdivide the populations into several subpopulations associated
to spatial patches or to individual states. Then, one must start with a time discrete model
which describes the dynamics of many subpopulations.

In this article, we present different time discrete models with subpopulations dynamics
at different time scales. We use aggregation methods to condense this large scale model into
a reduced version. We prove that the asymptotic behaviours of the initial large scale system



and of the reduced approximated system are close enough when the two time scales are
sufficiently different. Following (Bravo et al., to appear) we show that the main eigenvalues
and the associated eigenvectors of initial and reduced systems are of the same order.

We suppose a stage-structured population, then classified into groups or stages based
on the structure of the life cycle. Moreover, each of these groups is divided into several
subgroups, that we consider as being different spatial patches, different individual activities
or any other character that could change the life cycle parameters.

Our study is general. Thus, we do not state in detail the nature of the subpopulations
which can correspond to patches, individual states or any other types of subpopulations. We
consider a set of q populations (or groups) which are subdivided into subpopulations (or
subgroups). Let xl be the density of subpopulation k of population j at time n,j = 1,...,q
and k = 1,...,Ni. N is the number of subpopulations of population j and N is the total
number of variables, i.e. of subpopulations, N = N1 +...+ N'l. We use vector Xn to describe
the total population at time n. This vector is a set of population vectors x~describing the
internal structure of each subpopulations as follows:

{.;1 -q T -j jl iNi
Xn = \xn,···,xn) where xn = (rn '···'X'n )

and (*,...,*l denotes transposition.
In the evolution of this population we distinguish between two different dynamics, a

slow one and a fast one.
The slow dynamics, for a certain fixed projection interval, is represented by a non-

negative projection matrix M, that in this context is usually called Leftkovitch matrix. Mis
divided into blocks Mij' 1 s 4j s q,

Mll M12 M1q

M=
M21 M22 M2q

...
Mq1 Mq2 Mqq

being Mij of dimensions N x N and representing the rates of transference of individuals
from the subgroups of group j to the subgroups of group i.

The fast dynamics is, for every group 4j = 1,...,q, internal, conservative of the total
number of individuals and with an asymptotically stable distribution among the subgroups.

For every group j, the fast dynamics, considering a fixed projection interval, small in
comparison with that chosen for the slow dynamics, is represented by a projection matrix
Pj' which is a regular stochastic matrix of dimensions N x N. The matrix P that represents
the fast dynamics for the whole population is then

P = diag{P v...'pq}

Every matrix Pj has an asymptotically stable probability distribution Vj that verifies the
following properties:



T - T· -where Pj is the transpose of Pj' 1j = (1,...,1) , (N'x1) and < Vj' 1j >= 1. We define

Pj = ym pf •• (V jl···lv j)
•••••• co

where pJ is the kth power of the matrix Pi"
- - - k -We denote diag{P l""'p q} by P, and so we have limk__ P •• P.

Though in the continuous case it is immediate to include two different time scales, (see
Auger, 1989), there is not a direct way to do so in the discrete case. In our model we have
to combine two projection matrices whose associated projection intervals of which one
much longer than the other. To avoid this problem we propose two qualitatively similar
models which can prove to be a good approximate aggregation.

In the first model we use as projection interval the one associated to the fast dynamics,
that is, to the matrix P. We need, therefore, to approximate the effect of matrix M over a
projection interval much shorter than its own. For that we use matrix

where E > 0 and little enough.
We could think that M(E) makes M act in proportion E, as little as we want, and let

variables unchanged in proportion 1 - E. From a mathematical point of view the following
property of M( E) reflects the fact that we have approximately translated the dynamics of
M to the time scale of P:

If M has a dominant eigenvalue A. with an associated eigenvector V, then M(E) has E1.
+ (l-E) as strictly dominant eigenvalue and v is also its associated eigenvector.

That implies that dynamics associated to M and M(E) have the same asymptotically
stable stage distribution but M has a much greater growth rate than M(E) because E1. + (1
- E) is closer to 1 than A..

The first model consist of the following system of linear difference equations

In the second model the projection interval coincides with that of the slow dynamics, the
one associated to matrix M. And so, we need to approximate the effect of matrix P over a
projection interval a number times longer than its own. We suppose in that case that P has
operated such a number of times, that is, we use matrix pl, where k is a big enough integer.

In that way our second model consist in the following system of linear difference
equations:

3. AGGREGATION OF MODELXn+1 = M(e)PXn

In this and the next section we approximate a general system of N variables, those
corresponding to the subgroups, by an aggregated system of q variables and those associated
to the groups. We shall prove that the general and aggregated system exhibit a similar
asymptotic behaviour; to be more precise, that the elements defining the asymptotic



behaviour of both systems, dominant eigenvalues and eigenvectors, coincide to a certain
degree.

Beginning with the general system (1) and following the notation of the former section
we define the global variables

Ni
Xi "" r ilc . 1 (3)n LJ xn ' } "" ,•••,q

1c=1

that indicate the total number of individuals in every group.
'TI!.osenew variables could be obtained from vector Xn multiplying by matrix U =

T -Tdiag{11 ,.••,1q }

(xnl, ..., xn'l)T = UXn (4)

If in the general system (1) we multiply by matrix U

UXn+1 = U (M(e}p) Xn

we get the global variables in the first member but we do not get an autonomous system
on these variables.

If the system (5) were autonomous on the global variables, we would have obtained an
example of what it is called perfect aggregation, see (Iwasa ~t aL, 1987), that is only
possible in very particular cases.

To avoid this problem we consider the following system instead of system (5)

where we suppose that, before aggregating, the subgroups variables have reached the stable
distributions associated to the fast dynamics.

To describe the so-called aggregated system we need to define a new matrix

Pc"" diag{vl' ...'vq}

If we have a vector belonging to R+q, that indi~tes the total number of individuals included
in the different groups, and we multiply it by Pc' we will obtain a vector belonging to R+N
that would give how these individuals would be divided in the subgroups depending on the
stable distributions of the fast dynamics.

In the following Lemma we state the properties of the matrices P, P, P co and U that we
will use frequently throughout the paper.

Lemma 3.1. The matrices P, P, Pc' and U verify the following identities:

a) PP = PP ""PP ""P

b)PPc""PPc=Pc
- -

c) UP = U; UPc = Iq; PcU=P

The system (6) could be written as follows

UXn+1= UM(e}p JUXJ

and denoting the new variables UXn by Yn, we obtain

Yn+1= UM(e}p In



- -
UM(E)P c = U(EM + (l-E)IN)Pc = E(UMP J + (l-E)Iq

- - - -
and making M = UMPc and M(E) = EM + (l-E)Iq' the aggregated system presents the
next simple form

Yn+1 = M(E)Yn (7)
- -

We point out that M and M(E), and_M and M(E) are related in the same way.
The coefficients of the matrix M = (iii;)qxq are obtained using the next expression

- -TM-
m;j = 1; ;jVj

So M could be considered as a classical Leftkovitch matrix whose coefficients are
calculated from the coefficients of M and the stable di~tributions of fast dynamics.

M(E) would depi~ in a certain sense the effect of M over a projection interval E times
shorter than that of M.

Summarizing, we have three different kinds of variables, the general variables Xn that
verify (1), the exact global variables UXn that verify (5), and finally the approximate
aggregated variables that verify (7).

Below we describe the asymptotic behaviour of these variables, showing their
similarities. The following results are direct consequences of those proven in Bravo et ai.
(to appear), see Appendix I. Though we could state more general results, we start from the
following hypothesis:

Hypothesis (II). M is a primitive matrix.

So, M possesses a strictly dominant eigenvalue A > 0, and associated to A two positive
eigenvectors, a left one v, and a right one v,:

v{if = AV{ ; iiv, = AV,

3.1. Asymptotic behaviour of the aggregated system (7)
M(E) is a primitive matrix, with A.(E) = EA + 1 - E = 1 + E(A-1) as strictly

dominant eigenvalue, and v, and v, as left and right associated eigenvectors, respectively.
So, if Yo is any non negative initial condition we have

. Yn < vl'Yo >-hm '" -v,
n •..• oo (A.(E»n < vl'v, >

where < .,. > is the usual scalar product in Rq.

3.2. Asymptotic behaviour of the general system (1)
M( E)P is a primitive matrix, with its strictly dominant eigenvalue of the form

A.(E) + 0(E2) (E ...• 0)

and its left and right associated eigenvectors, respectively:

UTvl + O(E) ; Pcv, + O(E) (E...• O)



Then, if Xo is any non negative initial condition we obtain

. Xn < ulV1+0(E),xo >
hm "" __ -- __ --- (PCVy+O(E))
n...•~oo(A.(E)+0(E2))n < UT¢l+O(E)'cVy+O(E) >

< vpUXo > -""----PCvy + O(E)
< VpVR >

4. AGGREGATION OF MODELXn+1 = MpkXn
The results of last section that allow approximate aggregation of the system Xn+1 ""

M(E)PXn were based upon considering the matrix M(E)P ""P + E(M-l)P as an analytical
perturbation of the matrix P, see Bravo et aL (to appear). In this section the results
concerning approximation will be deduced from the identities

Hm pk "" P Mpk "" MP + M(pk_p)
k ...•oo

that let us consider the matrix Mpk as a perturbation of matrix MP
Starting with the general system (2), which we will call perturbed system, we define the

so-called non-perturbed system
-

Xn+1""MPXn (8)

This system admits the interpretation of being an approximation of (2) in which the last
dynamics has reached its stable distributions.

In order to build an aggregated system we define the global variables xj as in (3) and
(4), and we verify that

UXn+1 "" U M pk Xn

is again a non-autonomous system on these global variables.
Nevertheless, if we aggregate variables in the non-perturbed system (8) we obtain

- -
UXn+1 = U M P Xn = U M Pc U Xn
- -

and making Yn = UXn and M = UMP co following the notation of the last section, we get the
next aggregated system:

We could remark that the non-perturbed system (8) is one of those few exceptional systems
that are susceptible of being perfectly aggregated.

The rest of the section is devoted to the development of similar results to those proven
in Section 3 about the asymptotic behaviour of ~e diffe.!ent treated systems. We start with
relating the spectral properties of the matrices MP and M, associated to the systems (8) and



(9), and later, using the m...!itrixperturbation theory, we will compare the asymptotic
elements of the matrices MP and Mpk, what will yield the relation between systems (8)
~~ -

We summarize in the next theorem the spectral relations between matrices MP and M
that we will use below.

- -
Theorem 4.1. The matrices MP and M verify:

a) det(AIN - MP) = )..N-q det(AIq - ii).
b) If Iir ••0 is a right eige"Y.ector of MP associated to the eigenvalue ).. •• 0, then Uiir ••

o is a right eigenvector of M associated also to A.
-

c) Ifvr •• 0 is a right eigenvector of M associated to the eigenvalue).. •• 0, then MP c vr
•• 0 is a right eigenvector associated to the same eigenvalue A.

d) If iii •• 0 is a left eigenvector of MP associated to the eigenvalue ).. ~ 0, then there
exists VI E Rq - (OJ such that iii = UT v, and VI is a left eigenvector of M associated to
).. too.

e) If VI •• 0 is a left eige!!:vector of M associated to the eigenvalue).. •• 0, then UTVI ••
o is a left eigenvector of MP associated also to A.

Proof. a) P is a projector and so we could write

Jl!V = ker P @ImP
Then we b~ld a basis of Jl!V starting witl.!..any basis of ker P and adding the column vectors
of matrix Pc' that form a basis of Im P. Let K.!?e the matrix of dimensions N x (N -q)
whose columns are the_vectors in the basis ofker P. We now find the matrix representation,
K, of the operator MP respect to the basis first defined. K should verify the following
identity:

as MPK = 0, decomposing K into appropriate blocks, we have

(OIMPPo) • (KIPO> (: ~l

and multiplying on the left by U: - -
UMPc = UKA+UPcB



and then follows that

det(A.IN-MP) '" det(A.IN-K) '" AN-qdet(A.Iq-M)

b)i4, •• 0 v~rifies MPIi, '" A.Ii, •• o.
As MPIi, '" MP cVii, •• 0, then Vii, •• o. Moreover

MUU, '" UMPcUU, '" UMPu, '" AUU,

c) va:.." 0 verifies MVL", AV," o.
As UMPcv, •• 0, then MPcv, •• o. Also

MPMPcv, '" MPcUMPcv, '" MPcMv, '" AMPcv,

d) iii" 0 verifies lit MP = A.lit.

As the first N1 columns of P are identical, and so happen to th~ next N2 columns, and so
on, we have the same identities among the columns of lit MP and therefore among the
components of lir
From that we deduce that there exists a vector VI E Rq - {OJ such that

-TU - T d 1 -T - T-VI "'"I an a so VI "'"I Pc

-T- -T - -T -- -T- -T
VI M '" VI UMPc '" "I MPPc '" A"I Pc '" AVI

e) VI •• 0 verifies vt M = Avt •• O.
So UTVI" 0 and

(UTvl)TMP '" v{UMPcU '" AV{U '" A(UTvl)T.

We begin now the study of the spectral relations between the matrices MP and Mpk,
having in mind that Mpk could be considered a perturbation of MP:

Mpk '" MP+M(pk_P) '" MP+M(P_p)k

As every matrix Pi' i '" 1,...,q is a regular stochastic matrix of dimensions Jt x Jt, we could
order their eigenvalues according to decreasing modulus in the following way:

1 2 Ni

Ai '" 1 > IAil~···~IAi I
If we do the same with the matrix P we should obtain

Al '" ... '" Aq '" 1>IAq+ll~ ..·~IANI

IAq+1 I '" max IA~I; i '" 1, ... ,q
The next proposition allows to fmd a bound of the perturbation.

Proposition 3.2. If I * I is any consistent norm in the space !MNxN of N x N matrices,
then for every a. > IAq+11 it is verified that



Proof. See Appendix n.
Before stating the asymptotic behaviours of the different mentioned systems, we make

the same hypothesis proposed in Section 3.

Hypothesis (8). M is a primitive matrix.

Let A > 0 be the strictly dominant eigenvalue of M, and vI and vr its associated left and
right eigenvectors, respectively. We then have that, given any non-negative initial condition
Yo, the aggregated system (9) verifies

Yn <vl'Yo>lim _ = v
rn-oo An <V1,Vr>

Proposition 4.3. The non perturbed system (8), given any non-negative initial condition Xo
verifies tluzt

XnJim _ =
n _00 An

Proof. From Theorem 4.1 we deduce that

<UTvl'XO> -
T- MPcvr

<u vl,MPcvr>

Xnlim_ =
n _00 An

<VI'UXo>= --- --MPcvr
<vI'UMPcvr>

<v1,UXO> --
= ---....,,--- M Pc Vr

<V1,AVr>
and that yields (10).

Proposition 4.4. The matrix Mpk has a strictly dominant eigenvalue
T - k -<U v1,M(P-P) MPcvr>Itk '" A + -_--- + o(a2k)

<UTV1,MPcvr>

= A + O(ak)

and associated to Itk there exist a left and a right eigenvectors that could be written in the
following form, respectively

MPcVd + O(a~ (non-negative)

Proof. Immediate consequence of the Theorem in Appendix n.
Theorem 4.5. Let system (2) verify (8). Then, given any non negative initial condition

Xo the system (2) verifies



and that yields (11).
We should notice that the exact global variables verifies

. UXn <v1,UXo> 1 - k
hm ----- "" - __ - "r" UMPcvr+O(a )

n _00 (A,+O(ak))n <v1,Vr> '"

<vl'UXo> k"" - vr+O(a )
<Vl'Vr>

Our general results allow for different applications. For example, it is possible to model
a patch and age structured population, or else a patch structured community. Age structured
populations are commonly described by a Leslie matrix. When individuals go to different
spatial patches, one must also consider the spatial distributions of individuals among the
different sites. If patch migration takes place at a fast time scale with respect to age
changes, one can describe a patch and age structured population (see Bravo et aI., to
appear).

It has been shown that spatial heterogeneity can playa very important role regarding
the stability of ecological communities (Hassel et aL, 1991). This was shown in a time and
space discrete version of the host-parasitoid Nicholson-Bailey model. Although the one
patch model is always unstable, computer simulations have shown that the spatial version
becomes stable when the size n of the 2D array of (nxn) patches is large enough. This
result shows that the spatial dynamics can have important consequences for the dynamics
and stability of the community.

Our method allows to get the simplified aggregated model and also, to obtain the
relationships between the parameters of the aggregated model and the parameters which
control the fast dynamics. For example, in the patch and age structured population, the
aggregated model is a classical Leslie matrix in which the overall fecundities and aging
rates are expressed in terms of the spatial distributions of individuals on the different
patches. Thus, a change in the spatial distribution has an effect on the aggregated Leslie
matrix which can be calculated.



Facing local unfavourable situations and in order to avoid extinction, two main strategies
can be developed, either migration to find a better site or prolonged diapause to wait for
a better context in the future. There are two alternate strategies. The Leslie model with fast
patch dynamics is a good tool for estimating the advantages of these two different
strategies. We are now on the point to confront our model to experimental data relating to
an insect population (the chestnut weevil) (Menu, 1993; Debouzie et aL, 1993).

In the future we also intend to use our general methods given here for the study of patch
structured communities. For example, we plan to model a patch structured host-parasitoid
community. An interesting problem is to check if one can obtain similar results than in the
cell automaton spatial model of a Nicholson-Bailey model (Hassel et ai., 1991).
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We present in this appendix a general result developed in Bravo et aL (to appear), that
implies the asymptotic results of Section 3. (See Baumgartel, 1985; Horn & Johnson, 1985;
Kato, 1980).

We follow the notation of Sections 2 and 3.
We have the following general difference equations system depending on the little

parameter e:

Xn+1(e) =A(e)xie) (12)

Every matrix Ajie) has dimensions N x ~ and depends holomorphically on e. So

A(e) = A(O) + EA'(O) + ...

We make the next two hypothesis on A( e):

Hypothesis (HI). A(O) has the same structure of matrix P, that is, AjiO) = ° whenever
j ••k, and AiO) is a regular stochastic matrix, j,k = 1,...,q.

- -
Hypothesis (H2). Matrix P A'(O) P has a simple nonzero eigenvalue I.l. whose real part

is strictly greater than the real parts of the rest of eigenvalues.
- -

Let v be an eigenvector of P A' (0)P associated to I.l.. Let
- -

B(e) = U A(e)Pc = Iq + eU A'(O)pc + ...

and so the aggregated system is

Yn+1(e) = B(e)Yie)

Theorem. Let system (12) verify (H1) and (H2). Then, there exist II > °such that for every
e > 0, e < ll, we have:

a) A( e) has a simple eigenvalue whose modulus is strictly dominant and that admits the
following expression:

A..nax(e) = 1+ el.l. + 0(e2) , (e - 0)

Associated to this eigenvalue there exist a unique eigenvector of A( e) that could be written
as follows:

x(e) = v + O(e) , (e - 0)

b) B( e) has a simple eigenvalue whose modulus is strictly dominant and that admits the
following expansion:

I.l.max(e) = 1 + el.l. + 0(e2) , (e - 0)

Associated to this eigenvalue there exist the next eigenvector of B(e):

)/(e) = UV + O(e) , (e - 0)



Proof of Proposition 3.2.

As P is the projector over the eigenspace of P associated to the eigenvalue 1 we have

JtI = ImP ® ker P

(P - P>unP = 0 ; (P - P\erP = P

We then conclude that the eigenvalues of P-P ordered by decreasing modulus could be
written as follows:

Next, we apply the following known result relating the norms and the spectral radius of a
matrix:

For every A belonging to the space Mnxn of n x n mtltrices and every I; > 0 there exists
a consistent norm 11*1. in Mnxn such that p(A) ~ 11.41. < I; + p(A), being p(A) the
spectral radius of A.

From (13) we have p(P-P) = 1A.q+ll and from the last result we deduce that for every
a> lA.q+ll we could find a consistent norm U*lla such that

HP -Plla < a

As any two norms in Mnxn are equivalents we have for any norm 11*. in Mnxn and any k
= 1,2,... that there exists C > 0 such that

I~ -PI ~ npk -Plla

lim IIMpk-MPII
k-oo ak

'" UMIC lim (IIP-halk '" 0
k-oo a

Below we state the main result about matrix perturbation that it is applied in Section 4, see
(Stewart, 1990).

Theorem. Let A. be a simple eigenvalue of n x n mtltrix A, with left and right
eigenvectors Xl and x" respectively. Let A = A + E be a perturbation of mtltrix A, and 11*11
any consistent norm in Mnxn• Then there exists a unique eigenvalue);'. of A such that

xTEx
).. '" A. + _l__ r + O(lIEU2)

-T-
Xl xr

Moreover, associated to );'.there exist left and right eigenvectors fl and f" respectively,
such that



....
X I = Xl + O(IIEIO

....
X r = xr + O(lIEIO

The eigenvalue);. is the unique eigenvalue of A close to A. whenever lIE II is little enough.
In our application of that result we will use that if A. is strictly dominant so will be ).'.for
little lIEU.




