MATH. SCAND. 69 (1991), 3144

ON THE VALIRON DEFICIENCIES OF
ORIENTED FUNCTIONS

R. BRAVO DE LA PARRA and A. FERNANDEZ ARIAS

Abstract.

An extension of a result of D. F. Shea on meromorphic functions of order 4,0 < A < 1 with negative
zeros and positive poles is presented for the class of oriented functions introduced by G. Valiron. Let
A(0, f), A(w, f) denote Valiron deficiencies and set X = 1 — A(0,f), Y= 1 — A(o0, f). D. F. Shea
proved for functions of order 4 less than one with negative zeros and positive poles that X2 + Y2 —
2XY-cosnd < sin?nA. In this paper it is proved that this relationship still holds for oriented
functions with sets of zeros and poles symmetric with respect to the real axis. Furthermoreif X = Y,in
particular if the zeros are symmetric to the poles with respect o the imaginary axis, then
X2 £271(1 + cos ) for functions not necessarily oriented but with zeros and poles a, = |a,| %,
b, = |b,| € satisfying n — |6,| < B, < /2, |y,| £ B < n/2 and being more densely distributed
around the real axis than away from it.

1. Introduction.
In [7] D. F. Shea proved the following result

THEOREM A. Let f(z) be a meromorphic function in the plane of order A,
0 = A £ 1, whose zeros lie on the negative real axis and whose poles lie on the
positive real axis.

If we set :

X=1-A0,1),Y =1~ Ao, f),
where A(0, ) denote Valiron deficiencies, then it holds

(L1 X? +Y?-2XYcosnA < sin? i

when1/2 <A< 1.
If 2 < 1/2,(1.1) also holds provided

X = cosnAdand Y = cos A

He also suggests that this and other related results of [ 7], might be extended to
functions with more general distributions of zeros and poles.
In particular he thinks that such an extension is possible for the class of
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oriented functions introduced by Valiron [9]. Extending the terminology of
Valiron to meromorphic functions, the oriented functions are defined as those
meromorphic functions whose zeros {a,} and poles {b,} satisfy
lim |Arga,| = &, lim Argb, = 0.
v—= o0 V=00
In this paper we intend to prove such an extension for Theorem A. However we
must impose a condition of symmetry of zeros and poles with respect to the real

axis.
Our theorem will be in particular applicable to the functions

Gi(2) = Fi(9) Fi(2),

where F1(z) F%(z) are the “modified Lindelof functions”

9

Fi) =[] (1 + 7—2—0—) Fi@) =[] <1 + ve#_,,)

v=1 v=1
a=1/4,0<i<1, Y |6, < oco.
v=1
Furthermore, if there is also symmetry between zeros and poles, the con-
clusions of Theorem A still hold for functions not necessarily oriented but with
zeros and poles whose arguments satisfy 7 — |0,] < B4, |y, < 1,0 £ B, < 7/2.

2. Statements of the results.

We shall deduce the above mentioned results from the following one.

THEOREM 1. Let f(z) be a meromorphic function in the plane of order A and lower
order pu, with 0 < u £ A < 1, and whose zeros and poles a, = |a,|e®, b, = |b,|e
satisfy the following conditions

(21) {av}veN = {dv}veN’ {bv}sz = {b-v}veN,
(2.2) 0sn—10)<Bi<m/2, 0=y S By <m/2,
and

23) | XI:S n —16,| = 0(™), ' IZ =0(*), i <

Then for all B, B, < B < m — B, we have the relationship
2.4 sinnd = X sin fA + Ysin(z — B)A.

As consequences of Theorem 1 we shall obtain
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THEOREM 2. Let f(z) a be meromorphic function of order A and lower order p,
with 0 < u £ A < 1, and whose zeros and poles a, = |a,|e®, b, = |b,|e" satisfy
(2.1) and (2.3) of Theorem 1 and

2.5) lim |6,| = =, lim y, = 0.
Then we have the relationship (1.1) of Theorem A, i.e.
(2.6) X2+ Y?2—-2XYcosnA < sin? A

when1/2 <A< 1.
If 2 < 1/2,(2.6) still holds provided

2.7) X = cosndand Y = cos .

THEOREM 3. Let f(z) be a meromorphic function of order A and lower order u,
with 0 < u £ A < 1, and whose zeros and poles a, = |a,|e"®, b, = |b,|e"" satisfy
(2.1),(2.2) and (2.3) of Theorem 1. Then if X =Y we have

1 + cos A

2.8) x? >

lIA

The condition X = Y is fulfilled in particular in the case of symmetry of zeros
and poles with respect to the imaginary axis and more general if |a,| = |b,|.
3. Auxiliary results.

We present some integral representations of finite genus g. We present them in
the general case though our main interest will be g = 0.

Let
u? ul
E(u,q)=(1 - u)exp(u + > +...+ 71—), (g>0)
Eu,0)=1—u,
then we have the following formula due to Valiron
3 z ¢ AN
. —=q)=(- ——dt,
( 1) 108E< a;‘]) ( 1) J;a tq+1(t + Z)

valid in |arg z — o] < =, where a« = Arga, a + 0 and
L, = {te" |a] £ t 0}.

Formula (3.1) can easily be obtained by expressing the integrand as a power
series and then by a term-by-term integration.
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reiﬂ
(‘T"f)ld"

+ . dt
=(—-1) 1 RC{IJ‘rqudZJ‘Lam},

where I, = {ré?|10 < 0 < B,0 < B < — |of}.
Let now g(z) be the Weierstrass product of genus ¢

9@ =1 E(—ai,q), a, %0,
v=1 v

we have the following result.

From (3.1), it follows when o &+ 7

B
(3.2) J log

0

LeMMA 1. If the zeros a, = |a,|e®® satisfy

(3.3) 16, < By < m/2,
(3.4) Y 100=00*), 0<p <y w<q+1
I“v|§r
then we have
B
(3.5) f log |g(re'®)| d6
0
® n(t, 0, 24d .
=(_1)q+lRe{ifo n(t"“g) dtfr t+zz}+0(,q+u),

where n(t,0, g) is the counting function of the zeros of g and
I,={re?|0<0<B<n—pB}

PROOF OF LEMMA 1.

B B ® reis
(3.6) f log|g(re®®)|do = J log| [] E(— , q) de
0 0 v=1 a,
© B i
=Y . log E(— r: ,q)ld().
v=1 v

Making use of (3.2) and choosing f as in the statement of the lemma we deduce
from (3.6)

(3.7 J ’ log|g(re®®)| d6
0

ad dt Zdz
= (— q+1 . _— X
comnelif [ 5
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Now we have

1+t - zldz
(3.8) ‘( 1) Re{lvgl1 JL s t+z}
n(tOg) 2z
_(—1)q+1Re{lJ‘ e J‘r,tﬁ“z}
el dt z4dz
=|l(—1)y9+1t
\( 1)?*1Re zgjL t“”fpt+z}

© dt z4dz
_(_1y9+1
U

We get the estimates

dt 2%dz © ds 2idz |
Ltttz Ja st Jr s+ 2|
<[ e ds 24dz
= sl el'(q+ l)Ovsq-O-l r, sewv +z

© ds z4dz |

lay) ST Jr, s€® + z |

© ds 2ldz N ds z2%dz
o) ST Jpose® 4z Jag s s+ 2

(3.9

+
= I, + II,.
First we estimate I,
® ds Zdz
. = |(1 — e~ -
< © nrat! ds
La
= ) S+ 52— 2rsm ST
where
a, =1 —e % = /21 — cosqb,) = Cl6,|
and

n=cos(n— p; — ) <1

35
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Making use of (3.4), we obtain from (3.10)

® aratt ds

a
v e ST+ sF—2rsp T

© lay+ 1] nrq+1 ds
o
v§1 ﬁavl (ké:v k) \/ 2 +s2—2rsp S*1

© nritl s*ds
= CJ;=minIa \/r2 + 5% —2rsy s
veN v

_ Cr“’fw n, dt

T Y Sy P

after making the change of variable ¢t = s/r.
From (3.11) and L’Hopital we have for ¢ > 0

J“’ 7 dt
T T 7
(3.12) fim 2 L+¢ =2

r?

IIA
Ms

(3.11) f 1,

v=1 v

r—o

[ )
O/ /1 + (5/r)? — 2(6/r)m r’
gri!

= lim

r—+o
nra~H L

1im - < o
o 0U7H g /12 + 6% — 26

In the case g = 0,

f‘” T dt <o
o TN Sl r—2g

Thus from (3.11) and (3.12) we obtain
(3.13) Y I, =0(**9).
v=1

As for II, we have

(3.14) I, =

® ds Z4sds
_ e, _
(1 e )ﬁavl sq+1 .[I‘, (se""' + z)(s + z)

© rq+1 d
N R e b
o 5+ 5% —2rspy s*
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where A, = |1 — €| = . /2(1 — cos0,) < C|6,| and n < 1 is the same as above.
Using (3.4) again we get from (3.14)

(3.15) D) J'am'<z A
v=1 |

v=1Jlal ksv

©  qgritig s*'ds
=C| =2 T
s T4+ 5*—2rsp §*

i T tdt
= Cr* s .
r L,, A N |

nritls ds
r?+ 5% —2rsp s*t!

Applying L’Hdpital rule again we obtain for g > 0

J' ® g tdt
. 3r L N 2tn
(3.16) rlirg "
_ 4 o/r _ _é_
=i Oy ~#* 1 4+ (8/r)* — 2(5/r)m r?
T qr'!

7[61 —q+pu rq—u +1

= li =0.
,lff, qri(r® + 6% — 26rn)

Again in the case g = 0.

© oz ) tdt <
o THTL 1442 2 ’

Thus from (3.15) and (3.16) we conclude

(3.17) i II, = 0(r+").
v=1

Finally from (3.7), (3.8), (3.9), (3.13) and (3.17) we get (3.5) of Lemma 1.

We now refer to [7] to see how the term

(=1t [®n0q) , [ 2d
— Reqi s dt e

can be transformed by integration by parts into

j ) N(t,0,9)K,(t, 7, B)dt
)

where the kernel K (t,7, ) is defined by
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s qgo,—n<ﬂ<ﬂ.

K,(t,r,f) = (=1 1)“ r\"* ! rsingp + tsin(q + 1)B
’ t t2 + 2trcos B+ r?
The kernel K,(t,r, p) reduces to the Poisson kernel for the upper half plane,

however we shall keep the above notation.
The properties of K, which we shall make use of in what follows are

T
q+1

(3.18) K/t r,0) 20, 050=

2 sin B4 B
(3.19) L K(SIB)dS_smnA @<i<q+l,—-n<fB<n)

To end up with this section, we rewrite the conclusion (3.5) of Lemma 1 in
terms of the kernel K,

B ©

(3.20) f log|g(re®)| d6 = f N(t,0,9)K,(t,r, By dt + O(2*¥).
0 0

4. Proof of Theorem 1.

The steps of the proof of Theorem 1 are now quite the same to those of the proof

of Theorem A in [7].
Let f be a meromorphic function as in the statement of Theorem 1. Then f can

be expressed in the form
kel z
1—-=

0-3)

We consider the function g(z) = ¢ " 'z"™f(z) and apply Lemma 1. We have

1(* il re'?
Y2 i)

do = r N(t,0,9)K,(t, 7, B)dt + O(r*)
1)

f@z) =cz"

8
4.1) % J log |g(re'®)| d6

Sl (-1

By (3.20) we have

1(* d re®
4.2 —11 -
( ) T J‘O o8 vl:[1<1 a, )

forany §,0< f<n — B;.

do.
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We also have by (3.20) and Jensen’s formula

1 (? © re'
. —1 1 —
(4 3) T Jo o8 vI=-[l (1 bv ) @
1 B © rei(n—O)
== 1
T Jo o8 vI=_I1<1+ Ev )d0
1 fn @® reio
- ;a n—ﬂlog vl;[l<1 * Ev ) 4
n—p © reio
=N(r,oo,g)—J‘ log ]_[(1+—> do
0o v=1 Ev

= N(r, @, g) - Jl:o N(t’ 0, g)Ko(t9 r,m— B) dt + 0(7‘“'),

for those B such that 0 < n — f < m — B, or equivalently 0 < f; < f.
We note that we have made use of the fact

© reio @ re” i
vl;[1<1 * 5\' ) vl:ll (1 * Ev )
which holds by (2.1).

From (4.1, (4.2) and (4.3) we conclude

8
4.4 % f log|g(re®®)|dd + N(r, 0, g)
0

= Jw N(t,0,9)K,(t,r, ) dt + JwN(t, 0, g)K,(t,r,m — B)dt + O(r*),

0 0o

for those f such that §;, < f <7 — B;. .
Making use of the fact that |g(re®®)| is an even function of 6, i.e. |g(re”)| =
lg(re )| what is a consequence again of (2.1), we get from (4.4)

B
4.5) m(r,f) = m(r,g) + Clogr 2 %J log |g(re®®)| d6 + Clogr
0

and since
N(t90:f) = N(t,(),g) + Clogt’ N(t’ w’f) = N(t’ wag) + Clogt

we conclude from (4.5)
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(4.6) TG, f)=m(f)+ N, o,f)

8
> —115—_[ log |g(re'®)| d0 + N(r, 0, g) + O(logr)
0

> Lm N(t,0, 1)K, (t,r, B)dt + f : N(t, o0, )K,(t, 7, m — B)dt + O@*).
If X =1 — A(0, f), choose X so that 0 < X < X and if X = 0, take X = 0.

Hence, we always have

4.7) N0, f) 2 XT(, f)

for all sufficiently large t. We take ¥ in a similar way, i.e.

1—A(0,f)=Y>Y>0
if Y>0,and Y = 0if Y = 0, so that we also have
(4.8) N(t, 0, f) 2 YT, f).

Let {r,} be a sequence of Pdlya peaks of the second kind of order 4 for the
function T(t, f), see [7]). Then we obtain from (4.6), (4.7) and (4.8), bearing in
mind that K,(t,r, ) is positive

Tmazirmm1+dmf&ﬁﬁQKmemm

+7nwa+dmfﬂmw&mmm—mm+m¢)

asm— o0.
Making the change of variable s = t/r,, dividing by T(r,,) and evaluating the
resulting integral according to (3.19) we get to

sinnd = Xsin A + Ysin(n — B)A,
and finally letting X — X, ¥ —» Y we obtain
sinnd = X sin A + Ysin(n — p)4,

i.e. we conclude (2.4) of Theorem 1.

5. Proofs of Theorems 2 and 3.

PrOOF OF THEOREM 2. We derive Theorem 2 from Theorem 1. We decompose

f as
(5.1) @) = f"@fw)
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where

and

(-%)
(@) = n zv

v

Since f" is rational, we deduce from (5.1)
T(r, f) = T(r, fy) + O(logr),
N(r,00, f) = N(r, 00, fy) + O(logr),
N(,0, f) = N(r,0, fy) + O(logr),
whence, writing Xy = 1 — A(0, fy), Yy = 1 — A(oo, fy), we have
(5.2 Xy=X,Yy=7Y.

Making use of the hypothese (2.5), we deduce that given any £,,0 < g, < n/2,
we can find N so large that

val <ﬁls |n—0v| <ﬂl’ v>N

so that we can apply Theorem 1 to fy and conclude the relationship (2.4) for any
B,0 < B < =, and by continuity also for § = 0, n. Taking now

g = iarct X — Ycosmi
) g YsinnA

one gets (2.6) from (2.4) after some simple calculations.
PrOOF OF THEOREM 3. Theorem 3 is an immediate consequence of Theorem
1 since the inequality (2.8) is (2.4) for the particular case X = Y, f = m/2.
6. Example.
We show that the functions
Gi(2) = Fi@Fi(2)

where F}(z), F2(z) are the modified Lindeldf functions
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Fie) = H(l + T’m),Fi(z) -1 (1 + ;—}—v)

v=1 ve v=1
a=1/4,0<i<1, Y 16, < co.
v=1

satisfy the hypotheses of Theorem 2.
We just check that G,(z) is an integral function of regular growth of order A.
We compare the asymptotic behaviour of a modified Lindel6f function, say
F}(z), with that of the corresponding Lindelsf function

@

Fi(z) = [](1+via>, a=1/40<Ai<l.

v=1
First we estimate |F}(2)/F;(z)| in |Argz| < n/2 — 6,6 > 0.

z

1 —_—
| =| v
6.1) -1 —==
Fl(z) v=1 1 + _E_
va
o I )
<[I[1+20=c0
- vl:[1 | + lva + Z'
< 2l — e
< ar et
so0{ £ 155

The terms |z||v* + z|~! are bounded by one in |Argz| < n/2 — §. Since
|1 — e < C16,|, we conclude from (6.1)

Fi(2)

6.2 2 l<C<w
(6.2) Fo) | =
in |JArgz| < n/2 — 6.

Similarly we have

1+ =
' Fi@| " [Fi@) |y, ,_z
vaeiov

where
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Z
ik el — 1
6.4 —_—| L 1+ ——
€4 vl>_[N 142 - vl:[NI: Ve + 7] ]
vaeiov

=< exp{ Y Ll — 1] e — 1'}.

v>N Ivaemv + ZI
We now take N so large that we have |,| < é for v > N. Thus we obtain again
2| |[v*e®® + z| ' < 1forzin |Argz] S m—dand v > N.
Thus we deduce from (6.3) and (6.4)

FO|_ .| FE
¢ Fia| = 7w
We have (see R. Nevanlinna [5], page 18)
- n A
(6.6) log|F,(z)] = (1 + &(2)) pr |z|* cos (A Arg z),

where &(z) — 0 uniformly in |Argz| £ n — J as |z] - o0.
Bearing in mind

llog|F} (re”)| = O(logr), [log| F3" (re®)| = O(log),
we conclude from (6.2), (6.5) and (6.6)
Cyr* < log™ |F}(re®) = log|F}(re®) < C,r*, Cy,C; >0,

in |Argz| £ n/2 — 4.
Thus for G,(z) = Fi(z) F%(z) we have a relationship of the same kind, i.e.

(6.7) Cl rt < 10g+ ‘G‘.(reio)l b Czrl, Cl’ Cz > 0.
It can easily be checked that
log™* |G,(re®)l = O(r*)in © = |Argz| = n/2 — 4,

and thus
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1 (" .
(6.8) T(r, Gs) = m(r,G;) = EI log™ |Ga(re”) d6

log ™" |G,(re®)|d6 + % f log* |G, (re'®) df

0|sn/2-6 n/2-65|0)=n

_1
T 2n

= 0(r") + % J log™* |G,(re®)| dé.
|0l <n/2 -5

Finally from (6.7) and (6.8) we conclude that G,(z) is of order A and regular
growth.
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