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Abstract. The object of this paper is to state several theorems of representation of linear
operators between locally convex spaces. For this a natural bilinear integral for u-simple functions

is used.

In [1] several theorems of representation of linear operators are proved using a bilinear
integral in locally convex spaces similar to the integral used in [6] and [9]. Here we obtain
several results of the same type using a natural integral for u-simple functions, which
allows us to assume the measure to be only finitely additive and of bounded semivariation.
In comparison with [1] results stated here present several advantages, between them it
must be mentionned that now it is necessary to have no control family of the measure (the
measures of this control family in [1] are assumed to be Radon measures in several cases),
so conditions given here are more natural and simple.

The integral used here is a particular case of the bilinear integral studied in [7] (which
is not in general comparable with the integral of [6]).

Let X and Y be two complete locally convex Hausdorff spaces and denote by P and
Q two generating families of seminorms of the topologies of X and Y respectively and by
L(X,Y) the space of all continuous linear maps from X into Y endowed with the topology
of the point convergence. Let us consider the space C = C(K, X) of all continuous functions
from a compact Hausdorff space K into X , endowed with the topology defined by the family

of seminorms

pr(f) = max{p(f(t)):t € K} with peP.
We will denote by B the o-algebra of Borel subsets of K.

Definition 1. Let m : B — L(X,Y) be a finitely additive measure, then for a simple

function f = 5_ zixB; : K — X we define as usual
i=1

Jp fdm = 2"3 m(BNB)z; €Y (BeB)W
i=1

For p € P and ¢ € Q the semivariation m,, : B — R will be defined by

my p(B) = sup q(L fdm) (B € B)

(1) Now on we will write z;m(B N B;) to denote m(B N B;)z;.
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where the supremum is taken over all simple functions f: K — X such that
pa(f) =supp(f(t)) < 1.
teB

It is easy verified that

(L1) a /B fdm) < pp(f)mqp(B)

forall B€B,f: K — X simple, p€ P and ¢ € Q such that myp(K) < +o0.

Definition 2. A function f : K — X is said to be u-simple if there exists a net
{fi}ier of simple functions such that for every € > 0 and every p € P it is possible to
find 4y for which it is verified that pg(f — f;) < € whenever i > i;. These nets are called
approximating nets of f. Let us denote by S the set of u-simple functions from K into
X . If m is of bounded semivariation, that is, for every ¢ € Q there exists p € P such that
my,p(K) < 400, we define the integral of f € S as usual:

/B fdm = lim /B fidm (B € B)

being {fi}ier an approximating net of f. It follows immediately from (1.1) that the
operator Ty, : S — Y, defined by the integral

To(f) = /B fim (f €9),

is linear and continuous if S is endowed with the topology defined by the family of semi-
norms {pk : p € P} as described in the case of functions belonging to C(K, X))

Theorem 3. Let T: C(K,X)— Y be a continuous linear operator, then the following
‘are equivalent:

3.1. There exists a finitely additive measure of bounded semivariation m : B — L(X,Y)
such that T =T,,.

3.2. There is a continuous linear operators T : S — Y which extends T.

Proof. 3.1. implies evidently 3.2. so let us suppose that 3.2. is verified. Then for
every B € B and z € X it is defined in a natural way m(B)z = T(zxp) (€ Y), and
it is easily proved that m(B) € L(X,Y) and that the set function constructed is finitely
additive and it represents the operator 7' (this is a trivial consequence of the continuity of
T). Moreover m is of bounded semivariation because for every ¢ € @@ there exists p € P
such that ¢(T(f)) < px(f) for all f € S, and therefore,

mgp(K) = sup{q(/K fdm): f simple, px(f) <1}

=sup{g(T(f)) : f simple, pg(f) <1} <1< 4oo.

(2)Note that C(K,X) C S.
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Definition 4. Let T : C — Y be a continuous linear operator. For p€ P and ¢ € Q
we define the (p, ¢)-semivariation of T by:

T,p(B)= inf  sup{a(T()): f € C, supp f C G,pxc(f) <1}

for all B € B, being w(B) the family of the open subsets of K containing B.
Since T is continuous, for every ¢ € Q there exists p € P such that T, ,(K) < +oo.

Moreover it is easily proved that the set function T}, is finitely subadditive and monotone
on B.

Let mo(B) the family of compact subsets of K contained in B (€ B) and
{G-H}p={G-H:G € n(B),H € m(B)}.
Let F: B— R be a function. It will be said that

lim F(G-H)=0
{G-H}g

if for every € > 0 there is Go — Ho € {G — H}p such that F(G — H) < € holds for every
G—-HCGy—Hy.

We say that a continuous linear operator T : C — Y is (G, H)-continuous if
4.1 i — =
(4.1) {G_“'II}]B T p(G-H)=0

holds for every B € B,p € P and ¢ € Q with T} ,(K) < +00. Last condition is equivalent
to the following:

sup Ty p(H) = Ty,p(B)
Heno(B)

for all B€ B,p € P and q € Q with T, ,(K) < +o0.
Analogously, if m : B — L(X,Y) is a finitely additive measure of bounded semivariation,
we say that m is (G, H)-continuous if

4. i - =
(4.3) Am mep(G—H) =0

holds for every B € B,p € P and ¢ € Q such that m,,(K) < +o0o. Last condition is

equivalent to:

sup myp(H)=m,,(B)= inf m, (G
HevroIEB) q,p( ) q,p( ) Gen(B) q,p( )

for all B € B,p€ P and ¢ € Q with mg,(K) < +00.

Proosition 5. If m:B — L(X,Y) is a (G, H)-continuous measure then

mgp(B) = Geil;(fB)Sup{Q(Tm(f)) : f€C, supp f C G,px(f) <1}
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holds for every B € B,p € P and q € Q such that mg,(K) < +00.

Proof. Let it be B € B and f € C with supp f C G € n(B) and pg(f) <1, then
there exists an approximating net {f;}ics of f such that supp f; C G and pr(fi) <1 for
all ¢ € I. Therefore,

o(Tn(1)) =lima( [ fidm) =limg( [ fidm) < me,p(G)
13 K 3 G
and
Gég(fB)SUP{q(Tm(f)) :f€C,supp fCG,pr(f) <1} < Geilg(fB)mq,p(G) = my,p(B),

since m is (G, H)-continuous. Let see now that the opposite inequality also holds. Let G
be an open subset of K and ¢ : K — X a simple function with pg(g) < 1, then there
exists a simple function f = .., zixg, such that p(z;) < 1for i=1,--- ,n,{E;}, CB

is a partition of G and
/ fdm :/ gdm.
G G

If for every ¢ = 1,--- ,n we choose a compact set K; and an open set G; such that
. n
K; C E; C G; C G, then {G}}, is an open cover of K, being Gj = K — |J K; and
i=1
n
G; =Gi— U K;j for i =1,.--,n, and there exists a continuous partition of the unity
i=1

i
{fi}i=, associated to that cover such that fi|x, = 1,supp f; C G; (i = 1,---,n) and

> fi = 1. So for every choice a of the families {K&},, {G#}y we have continuous
i=0

partition of the unity {ff}i-, and a continuous function

o= aff
1=0

from K into X such that px(f*) <1,supp f*CG and f*— f|» =0. Then,
K;

i=1

o [ gdm) = a( | gam) <o [ fodm)+ a( [ (57 = yam)

n
<a( [ fodm)+ 2" myp(GF - K7)
i=1
and since m is (G, H)-continuous, it results that

« /G gdm) < sup{g(Tm(f)) : f € C, supp f C G,px(f) < 1}.

Therefore,

myp¢(B) = Ge‘frl(fB) my p(G)

< C"eix;{B)sup{q(Tm(f)) :f €C, supp f C G,px(f) <1}.
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Theorem 6. Let T : C — Y be a (G, H)-continuous operator, then there is a con-
tinuous operator T : S — Y which extends T'.

Proof. Let f = 3., zixg, be a simple function. Given two families {H{}L, and

{G$}r,, of subsets of K, compact and open respectively, such that H C E; C G¢ (i=
n

1,---,n), we have an open cover of K,{Gi®}%,, with G* = Gf — U Hf. Let {fEYr,
j=
i3

be a continuous partition of the unity associated to that cover and let us consider

fa= 3 aife ®

It is easy to see that px(fa) = px(f), t.h’ezrizfore
PK(foz — far) £ pr(fa) +pK(fa’) = 2PK(f)-

Also fo(t) = f(t) for all t € |J HY and if we consider that o < o' if and only if H¥ C HE'
i=1
and G D G;"' for all i = 1,--- ,n, we have a net {fo} C C such that the net {T(fa)}

is convergent as we are going to prove now. In fact, if p € P and ¢ € @ are such that
Ty p(K) < 400,
4(T(fa) — T(for)) = «(T(fa — far)),

n . ’
and, as supp (foa — for) C K — |J HF¥ N HY , by Definition 4, we have
i=1

UT(fa = fo)) < Pr(fa = o) Tp o (K — | J HE N HE),

=1

then

Q(T(fo) — T(for)) < 205 (F)Typ(K — | J HE O HY)

i=1
< 29k (f) Y Typl(GFUGE) — (HF N HE))
i=1
from where it follows that

lim o(T(fe) = T(far) = 0,

since T is (G, H)-continuous.
So let us define

(6.1) To(f) = imT(fa).

From the (G, H)-continuity of T it is easily proved that the last limit (6.1) is well defined
and that Ty is a continuous linear operator, and therefore, since simple functions are dense

in S, there exists one and only one continuous linear extension T :S8 —Y of Ty defined by

(3) Remark that if there is an open set C C K such that E; C G for all { = 1,--+,n, then it can be
obtained that supp f C G.
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T(f) = limg To(fg) for every f € S, being {fs} an approximating net of f. Let us prove
now that T extends T. Given f € C,{f?} an approximating net of f and € > 0, for every
p € P and ¢ € Q such that T, ,(K) < 400, there is o such that px(f — fP) < ¢ for all
B> Bo. For every f let us choose the families {H?*}1*, and {G?"*}74 and consider the

associated continuous functions f# (following the last definition of Tp) for which it holds

pr(f = f2) < px(f = %) + o (f° — £E) < e+ 2pk (fP)
< e+ 2(px(f) + P (fP - f)) < 3¢+ 2pk (f) forall B> fo.

For every [ let us also define the open sets

mg ‘
Gho=K—|JH* and G}, ={teK:p(f(t)— fE(t)) < 2¢}.

=1

mg mp
As fE(t) = fP(t) for every t € K — |J H® we have |J H?* C G%, and so
i=1 i=1

{G}.o1G% o} is an open cover of K, and let {f{**, f;’} be a continuous partition of
the unity associated to that cover. Then

o(T(f) = T(f5)) = «(T((f = SIS+ £5°))
< QTS = FEN) + (TSP (F = 18)))

mpg
< pr(f— )Ty (K - U HP) + PG%_G(f — )T (K)

i=1

mg
< (e + 20k (M) Te o (| J(GP™ — HP™)) + 2T, (K)
i=1
mps

< (3e+ 2pk(f)) Z Tq,p(Gip’a - H:p'a) + 2eTy p(K).

i=1
From where it results that

lign ¢(T(f) - To(f?)) =0,

since {f?} is uniformly convergent and T is (G, H)-continuous.

Theorem 7. The following assertions are equivalent:

71. T:C =Y is (G, H)-conlinuous.

7.2. There ezists a (G, H)-continuous measure m : B — L(X,Y) such that T(f) =
Jx fdm for all f€C.

Moreover, this measure m is unique and regular, and mg ,(B) = T4 p(B) for all B €
B,p € P and q € Q with T, ,(K) < +o00.

Proof. 1t is easily proved that 7.2 implies 7.1. Let us suppose that 7.1. is verified,

then from Theorems 3 and 6 it follows the existence of a finitely additive measure m : B —
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L(X,Y) with bounded semivariation which represents I". Let us see that m is (G, H)-
continuous. If G is an open subset of K and f is a simple function with pe(f) < 1,
then proceeding like in the proof of Theorem 6, it can be found a net (f*) C C such that
p(f*) <1, supp f* C G and

o [ fam) = lima(T(")) < Tup(C),

being p € P and ¢ € Q with my,(K) < +oo. Therefore, mq,(G) < Ty p(G) for every

open subset GG, from where it follows immediately that

{

holds for all B € B and so m is (G, H)-continuous.
Let us prove now that m is unique and regular. Suppose that m,m’ : B — L(X,Y)

GIPFTI‘}B mep(G — H) < {GI-EIIIII}B Tp(G-H)=0

are two measures verifying 7.2, then if z € X and B € B, for every compact H and every
open set G such that H C B C G, let fgg : K — [0,1] be a continuous function such
that fuglg = 1 and fyglk—-¢ = 0. Then for every p € P and ¢ € Q which verify
T4,p(IK) < 400, we have that

4(m(B)z — m'(B)z) < /G (= xp)edm) + /G (g = xp)zdm)
< 2p(2)[my p(G — H) + ), (G — H)],

from where it follows that m(B)z = m'(B)z, since m and m’ are (G, H)-continuous.

Moreover if B € B,q € Q,z € X and ¢ > 0, then since m is (G, H)-continuous there
exists a compact H and an open subset G such that H C B C G and my (G — H) < ¢,
being p € P with my,(K) < +oo. Therefore, we have

g(m(E)z) < p(z)my,p(E) < p(x)myp(G — H) < p(z)e

for all £ € B with £ C G— H, and then m is regular.

The equality of the semivariations of m and T follows immediately from Proposition 5.

Corollary 8. Every (G, H)-continuous operator T : C — Y has a unique (G, H)-

continuous extension T :8S =Y.
References

[1] A. Balbas and P. Jiménez Guerra, Representation of operators by bilinear integrals,
Czech. Math. J., 37(112), 4 (1987), 551-558.

[2] A. Balbas and P. Jiménez Guerra, A Radon-Nikodym theorem for a bilinear integral in
locally convez spaces, Math. Japon., 32 (1987), 863-870.

[3] R. Bravo, Tépicos en integracion bilineal vectorial, Ph. D. Thesis, U.N.E.D., Madrid,
1986.



262 R. BRAVO and P. J. GUERRA

(4] 3. K. Brooks and P. W. Lewis, Linear operators and vector measures, Trans. Amer.
Math. Soc., 192 (1974), 139-162. ,

[6] I. Dobrakov, On representation of linear operators on C(T,X), Czech. Math. J., 21
(1971), 12-30.

[6] R. Rao Chivukula and A. S. Sastri, Product vector measures via Bartle integrals, J.
Math. Anal., 96 (1983), 180-195.

[7] S. Rodriguez Salazar, Integracidn general en espacios localmente convezos, Ph. D. The-
sis, Univ. Complutense, Madrid, (1985).

(8] B. Rodriguez Salinas, Integracién de funciones con valores en un espacio localmente
convezro, Rev. R. Acad. Ci. Madrid, 63 (1979), 361-387.

[9] S. A. Sivasankara, Vector integrals and product of vector measures, Univ. Microfilm
Inter. Michigan, (1983).

[10] N. V. Smith and D. H. Tucker, Weak integral convergence theorems and operators

measures, Pacific J. of Math., 111 (1984), 243-256.

*Departamento de Matematicas, facultad de Ciencias, Universidad de Alcald de Henares,
Alcala de Henares, Madrid 28871, Spain.

**Departamento de Mathematicas Fundamentals, Facultad de Ciencias, U.N.E.D., Ciudad
Universitaria, Madrid 28040, Spain.



