
Abstract. The object of this paper is to state several theorems of representation of linear

operators between locally convex spaces. For this a natural bilinear integral for u-simple functions

is used.

In [1] several theorems of representation of linear operators are proved using a bilinear
integral in locally convex spaces similar to the integral used in [6] and [9]. Here we obtain
several results of the same type using a natural integral for u-simple functions, which
allows us to assume the measure to be only finitely additive and of bounded semivariation.

In comparison with [1] results stated here present several advantages, between them it
must be mentionned that now it is necessary to have no control family of the measure (the
measures of this control family in [1] are assumed to be Radon measures in several cases),

so conditions given here are more natural and simple.

The integral used here is a particular case of the bilinear integral studied in [7] (which
is not in general comparable with the integral of [6]).

Let X and Y be two complete locally convex Hausdorff spaces and denote by P and
Q two generating families of seminorms of the topologies of X and Y respectively and by
L(X, Y) the space of all continuous linear maps from X into Y endowed with the topology

of the point convergence. Let us consider the space C = C(K, X) of all continuous functions

from a compact Hausdorff space K into X , endowed with the topology defined by the family
of seminorms

Definition 1. Let m : B -+ L(X, Y) be a finitely additive measure, then for a simple
n

function f = E XiXBi : I< -+ X we define as usual
i=l

nIB fdm = E m(B n Bi)Xi E Y (B E B) (1)
i=l

For pEP and q E Q the semivariation mq,p : B -+ R will be defined by

mq,p(B) = sup q(L fdm) (B E B)



PB(f) = sup p(f(t» ::; 1.
tEB

q(k fdm) ::;PB(f)mq,p(B)

for all BE B, f : K -+ X simple, PEP and q E Q such that mq,p(K) < +00.

Definition 2. A function f : K -+ X is said to be u-simple if there exists a net

{f;}iEI of simple functions such that for every f > 0 and every pEP it is possible to

find io for which it is verified that PK(f - fi) < f whenever i > io. These nets are called

approximating nets of f. Let us denote by S the set of u-simple functions from K into
X. If m is of bounded semi variation, that is, for every q E Q there exists PEP such that
mq,p(K) < +00, we define the integral of f E S as usual:

[ fdm = li~ [ Jidm (B E B)
JB • JB

being {f;}iEI an approximating net of f. It follows immediately from (1.1) that the
operator Tm : S -+ Y, de'fined by the integral

Tm(f) = k fdm (f E S),

is linear and continuous if S is endowed with the topology defined by the family of semi-

norms {PK : PEP} as described in the case of functions belonging to C(K, X) (2)

Theorem 3. Let T: C(K, X) -+ Y be a continuous linear operator, then the following
-are equivalent:

3.1. There exists a finitely additive measure of bounded semivariation m : B -+ L(X, Y)
such that T = Tm.

3.2. There is a continuous linear operators T :S -+ Y which extends T.

Proof 3.1. implies evidently 3.2. so let us suppose that 3.2. is verified. Then for

every B E B and x E X it is defined in a natural way m(B)x = T(XXB) (E Y), and
it is easily proved that m(B) E L(X, Y) and that the set function constructed is finitely

additive and it represents the operator T (this is a trivial consequence of the continuity of
T). Moreover m is of bounded semivariation because for every q E Q there exists pEP
such that q(T(f» ::;PK(f) for all f E S, and therefore,

mq,p(K) = sup{q([ fdm) : f simple, PK(f)::; 1}

= sup{q(T(f» : f simple, PK(f)::; 1} ::; 1 < +00.



Definition 4. Let T: C -+ Y be a continuous linear operator. For pEP and q E Q
we define the (p, q)-sernivariation of T by:

Tq p(B) = inf sup{q(T(f)): fEe, supp f C G,PK(f) ~ 1}
, Ge1r(B)

for all B E B, being 71'(B) the family of the open subsets of K containing B.
Since T is continuous, for every q E Q there exists pEP such that Tq,p(K) < +00.

Moreover it is easily proved that the set function Tq,p is finitely sub additive and monotone
on B.

Let 71'o(B) the family of compact subsets of K contained in B (E B) and

lim F(G-H)=O
{G-H}B

iffor every { > 0 there is Go - Ho E {G - H}B such that F(G - H) < { holds for every
G- H C Go -Ho.

We say that a continuous linear operator T: C -+ Y is (G, H)-continuous if

lim Tq p(G - H) = 0
{G-H}B '

holds for every BE B,p E P and q E Q with Tq,p(K) < +00. Last condition is equivalent
to the following:

for all BE B,p E P and q E Q with Tq,p(K) < +00.

Analogously, if m : B -+ L(X, Y) is a finitely additive measure of bounded semivariation,

we say that m is (G, H)-continuous if

lim mq p (G - H) = 0
{G-H}B '

holds for every B E B, pEP and q E Q such that mq,p(I<) < +00. Last condition is
equivalent to:

sup mq,p(H) = mq,p(B) = inf mq,p(G)
He1ro(B) Ge,..(B)

mq p(B) = inf sup{q(Tm(f)): fEe, supp f c G,PK(f) ~ 1}
, Gelr(B)



holds lor every BE B,p E P and q E Q such that mq,p(K) < +00.

Proof. Let it be B EB and lEe with supp leG E1r(B) and PK(f) ::; 1, then

there exists an approximating net {/ilieI of I such that supp Ii C G and PK(fi) ::;1 for

all i E I. Therefore,

q(Tm(f» = li~q( f lidm) = li~q( f lidm)::; mq,p(G)
I lK I lG

inf sup{q(Tm(f»: lEe, supp Ie G,PK(f) < I} < inf mq p(G) = mq p(B),Ge'll"(B) - - Ge.•.(B)' ,

since m is (G, H)-continuous. Let see now that the opposite inequality also holds. Let G

be an open subset of K and g : K -+ X a simple function with PG(g) ::; 1, then there

exists a simple function 1= L:?=1 XiXE; such that p(Xi) ::; 1 for i = 1,··· ,n, {Ei}?=1 C B
is a partition of G and

lldm= 19dm.

If for every i = 1,··· , n we choose a compact set Ki and an open set Gi such that
n

[{i C Ei C Gi C G, then {GD?=o is an open cover of K, being G~ = K - U Ki and
i=1

n
G: = Gi - U Kj for i = 1,··· ,n, and there exists a continuous partition of the unity

;=1
i~j

{/il?=o associated to that cover such that Ii IK; = 1, supp Ii C Gi (i = 1,··· ,n) and
n

L: Ii = 1. So for every choice a of the families {Kr}?=o, {Gf}?=o we have continuous
i=O
partition of the unity Ui}?::o and a continuous function

n

la = Lxdt
i=O

from K into X such that PK(r) ::;1, supp reG and r - II" = o. Then,UK;

q(l gdm) = q(l Idm) ::;q(l rdm) + q(l (r - J)dm)

::;q(l rdm) + 2tmq,p(Gf - Ki)
G i=1

and since m is (G, H)-continuous, it results that

q(l gdm) ::;sup{q(Tm(f» : fEe, supp I c G,PK(f) ::; I}.

mp,q(B) = GJ~fB)mq,p(G)

::; inf sup{q(Tm(f»: lEe, supp I c G,PK(f) ::;I}.
Ge1r(B)



Theorem 6. Let T : C -+ Y be a (G, H) -continuous opemtor, then there is a con-
tinuous opemtor l' :S -+ Y which extends T.

Proof. Let I = I:?=1 XiXE; be a simple function. Given two families {Hi}f=o and
{Gf}f=o of subsets of K, compact and open respectively, such that Hi C Ei C G'1 (i =

n

1"" , n), we have an open cover of K,{G~a}f=o, with Gt = G'1 - U Hi· Let {/i}f=l
j=i
i*;

be a continuous partition of the unity associated to that cover and let us consider
n

la = I: xdi(3)
i=l

It is easy to see that PK(la) = PK(I), therefore

n
Also la(t) = I(t) for all t E U Hi and if we consider that a:::; a' if and only if Hi CHi'

i=l
and G'1 => G'1' for all i = 1,··· ,n, we have a net {/a} C C such that the net {T(la)}
is convergent as we are going to prove now. In fact, if pEP and q E Q are such that

Tq,p(K) < +00,

n
and, as supp (la - la') C K - U Hi n H{ , by Definition 4, we have

i=l
n

q(T(la - la')):::; PK(la - la,)Tp,q(K - U Hi n Hi'),
i=l

n

q(T(la) - T(la')) :::;2PK(I)Tq,p(K - U Hi n H{)
i=l

n

:::;2PK(I) LTq,p[(G'1 U G'1') - (Hi n H{)]
i=l

lim q(T(la) - T(la')) = 0,
Ct,Ol'

since T is (G, H)-continuous.

So let us define

1'0(1) = limT(la)'
a

From the (G, H)-continuity of T it is easily proved that the last limit (6.1) is well defined

and that To is a continuous linear operator, and therefore, since simple functions are dense

in S, there exists one and only one continuous linear extension l' :s -+ Y of To defined by

(3) Remark that if there is an open set C C K such that E; C G for all i = 1"" ,n, then it can be

obtained that supp f C G.



T(f) = limp To(f p) for every f E S I being Up} an approximating net of f. Let us prove
now that T extends T. Given fEe, UP} an approximating net of f and f > 0, for every

pEP and q E Q such that Tq.p(K) < +00, there is [30 such that PK(f - fP) < f for all
[3 ~ [30. For every [3 let us choose the families {Hf·a}~:l and {Gf·a}~:l and consider the
associated continuous functions fg (following the last definition of To) for which it holds

PK(f - f~) ~ PK(f - fP) + PK(fP - f~) < f + 2PK(fP)

~ f + 2(PK(f) + PK(fP - I)) < 3f + 2PK(f) for all [3 ~ [30.

mil

Gb,a = K - U Hf·a and G~,a = {t E K : p(f(t) - f~(t)) < 2f}.
i=l

mil mil
As fg(t) = fP(t) for every t E K - U Hf·a we have U Hf·a C G~.a and so

i=l i=l
{Gb,aIG~.a} is an open cover of K, and let {ff·a,ff·a} be a continuous partition of
the unity associated to that cover. Then

q(T(f) - T(f~)) = q(T«(f - f~)(ff'a + ff,a)))

~ q(T(ff·a(f - f~))) + q(T(ff·a(f - fg)))
mil

~ PK(f - f~)Tq.p(K - U Hf'a) + PG~,••(f - f~)Tq.p(K)
i=l

mil
~ (3f + 2PK(f))Tq,p(U(Gf,a - Hf,a)) + 2fTq.p(K)

i=l
mil

~ (3f + 2PK(f)) LTq,p(Gf,a - Hf'a) + 2fTq,p(K).
i=l

limq(T(f) - To(fP)) = 0,
P

Theorem 7. The following assertions are equivalent:
7.1. T: C -+ Y is (G,H)-continuous.
7.2. There exists a (G, H)-continuous measure m : B -+ L(X, Y) such that T(f) =

fK f dm for all fEe.
Moreover, this measure m is unique and regular, and mq,p(B) = Tq,p(B) for all B E

B,P E P and q E Q with Tq,p(K) < +00.

Proof It is easily proved that 7.2 implies 7.1. Let us suppose that 7.1. is verified,
then from Theorems 3 and 6 it follows the existence of a finitely additive measure m : B -+



L(X, Y) with bounded semivariation which represents T. Let us see that m IS (G, H)-
continuous. If G is an open subset of I< and f is a simple function with PG(f) :::; 1,

then proceeding like in the proof of Theorem 6, it can be found a net (r') C C such that
PK(fC» :::; 1, supp r' c G and

q( f fdm) = limq(T(r')):::; Tq,p(G),JG C>

being pEP and q E Q with mq,p(I<) < +00. Therefore, mq,p(G) :::;Tq,p(G) for every
open subset G, from where it follows immediately that

lim mq,p(G - H):::; lim Tq,p(G - H) = 0{G-H}B {G-H}B

holds for all BE B and so m is (G, H)-continuous.

Let us prove now that m is unique and regular. Suppose that m, m' : B -.. L(X, Y)
are two measures verifying 7.2, then if x E X and BE B, for every compact H and every

open set G such that H C BeG, let fH,G : I< -.. [0,1] be a continuous function such

that fH,GIH == 1 and fH,GIK-G == O. Then for every pEP and q E Q which verify
Tq,p(I<) < +00, we have that

q(m(B)x - m'(B)x) :::;q( f (fH,G - XB)xdm) + q( f (fH,G - XB)xdm')JG-H JG-H

:::;2p(x)[mq,p(G - H) + m~,p(G - H)],

from where it follows that m(B)x = m'(B)x, since m and m' are (G, H)-continuous.
Moreover if B E B, q E Q, x E X and f> 0, then since m is (G, H)-continuous there

exists a compact H and an open subset G such that H C BeG and mq,p(G - H) < f,

being pEP with mq,p(I<) < +00. Therefore, we have

for all E E B with E C G - H, and then m is regular.
The equality of the semivariations of m and T follows immediately from Proposition 5.

Corollary 8. Every (G,H)-continuous operator T: C -.. Y has a unique (G,H)-
continuous extension T : S -.. Y.
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